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I. Introduction
Software-defined networks (SDNs) are built on the

promise of consistency between control and data plane.
Data plane consists of software or hardware and is
subject to failures e.g., hardware or software bugs.
Sometimes, these failures are outside the knowledge of
the control plane consisting of network operating system
or the SDN controller. The current state-of-the art tools
either check the network statically from the control plane
or use tagging or active probe generation to check the
data plane behaviour. There is a spectrum of control
plane mechanisms [1], [2], [3], [4] which check for some
or all of the network-wide invariants like reachability,
forwarding loops, waypoint enforcement and slice isola-
tion. While most of the control plane mechanisms cannot
model ECMP or NAT, all of them, however, are unaware
of the actual behaviour on the data plane and thus, as-
sume that control plane has a consistent view. There is a
panoply of data plane mechanisms involving tagging [5],
[6] or active probe generation [7], [8] which either check
the path or the installed flow rules to monitor the data
plane. Moreover, ping and traceroute continue to be
the only tools available for network debugging to the
network administrators in practice. Bugs in flow table
match-action logic or switch hardware can manifest in
various ways which are hard to detect and thus, to
localize by any of the existing approaches. Moreover,
tagging comes with its own limitations. There cannot
be available and sufficient space for placing tags for
a big scale scenario. Some of the existing mechanisms
end up placing a lot of flow rules on the scarce TCAM
to take action on tagged packets [5], [9]. The tagging
mechanisms which end up tagging a packet on each
switch may not detect faults where the output port is
same but packet matched a different rule. Considering all
of the above limitations, there is a need for a meticulous
data plane monitoring tool. In software debugging, we
design test cases which check the “code coverage” for
finding possible faults, similarly, the monitoring tool
should check all of the flow rules and links for possible
faults and localize them.

II. Preliminary Analysis
To come up with a rigorous data plane monitoring

mechanism, it is important to identify various scenarios

which may lead to incorrect behaviour on the data plane.
We came up with a scenario where there is a problem
in the match part of a specific rule/s in the flow table.
This means packets match what they are not supposed
to match or do not match what they are supposed to
match. We identify these faults or inconsistencies as
“match inconsistencies”. The problem is undetectable by
a tagging mechanism if action of the flow rule matched
erroneously is same as the action of expected flow rule.
This will result in same path but different flow rule
match. Moreover, in OpenFlow, if one adds any non-
overlapping rule through the command line utility of the
switch e.g., ovs-ofctl then there is no notification
generated to the controller. Thus, it causes the SDN
controller to be unaware of the added flow rule. This
is a serious drawback as any adversary can get access
to any one switch and insert a flow rule which matches
malicious or malformed traffic and thus, compromises
the network security. Misconfiguration can also cause
such accidental insertion of non-overlapping flow rule.
Key Insights We experimented in an OvS OpenFlow-
based soft switches and realised that exisiting mech-
anisms which use tagging tend to work under strong
assumptions. VLAN, MPLS and IP ToS fields are mostly
considered for tagging. However, we realise that most of
the current networks utilize these fields for forwarding
packets and thus, these header fields are not available
for tagging. Secondly, tags grow with paths and a limited
space field header is not sufficient in a scalable scenario.
Thirdly, specific flow rules should be installed in order
to take actions on the tagged packets. TCAM is a scarce
storage resource and therefore, installing additional flow
rules may make TCAM space insufficient for adding
further forwarding rules.
On the control plane front, we conducted experiments
with the existing control plane mechanisms [1], [2], [3].
HSA [1] and NetPlumber [2] carry out set operations like
union, difference, complement and intersection on wild-
cards representing packet headers. The set operations
are efficient on Boolean expression but not on wildcards
which make HSA and NetPlumber slow. Binary Decision
Diagrams (BDDs) [10] are data structures for boolean
expressions and have a much faster support for set
operations. APVerifier [3] uses BDD-based header space
analysis. An implementation based on APVerifier allows
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Fig. 1: Execution times of various control plane mecha-
nisms

fast control plane-level calculations to figure out packet
header spaces reachable at any point in the topology
under consideration. APVerifier has two models one with
BDD and the other with Atomic Predicates based on
BDD. We carried out our experiments in an ECMP
simulation where each node had two links to the next
node. At the first node, if the first bit had zero in
first bit position, the packet was sent on first link to
the second node and if there was one in the first
bit, the packet was sent to the other link to second
node. On the second node, the second bit of the packet
was checked for forwarding in the similar fashion. We
continued upto 50 nodes. Figure 1 shows the execution
time of HSA, NetPlumber and the two variations of
APVerifier. The experiment carried out on OpenFlow-
based OpenVSwitches clearly shows that in our ECMP
simulation environment, our BDD-based implementation
of APVerifier performed better.

III. Research Directions
For an efficient data plane monitoring mechanism, we

need to use our key insight to develop a new header
field dedicated for tagging. In order to ensure that the
data plane monitoring is rigorous, we would like to
store path-level and rule-level information in the tags
carried by the new header field. The positioning of the
header field is quite tricky as it should be backward
compatible with all of the existing protocol headers
and in any case, should not interfere in forwarding.
Moreover, there should be a support in the switches
to take action as per new header field. Since, TCAM
is a scarce commodity so its not advisable to install
new flow rules specifying actions to be taken on the
tagged packet. Therefore, we need to develop set of

new actions which can be appended to the existing flow
rules to save TCAM space. The tags carrying the rule-
level information should include the unique identifiers of
the matched flow rules and the tags carrying the path-
level should include the unique identifiers of the ports.
This information should be sent to the collector. For the
collection of tags, filtering with sampling at the edge
of the network domain is important to not overload the
collector. Similarly, using the BDD-based control plane
mechanism, we can calculate the expected tags from the
control plane.
Finally, the collector can compare the values obtained
from data plane and control plane. If the values match,
there is no inconsistency but if they do not match, there
is some inconsistency on the data plane. This kind of
mechanism will help us to detect most of the rule-based
and path-based anomalies.

IV. Summary
Network monitoring is a task of utmost importance

as bugs or misconfigurations could seriously impact
the network leading to loss of revenues. In order to
make sure that the data plane is consistent with the
control plane, we need a rigorous data plane verification
mechanism that not only checks paths but also the
rules matched by the packet on its way. This way we
ensure that the network is meticulously covered by the
monitoring approach.
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