
Kraken: Towards Elastic Performance Guarantees
in Multi-tenant Data Centers

Carlo Fuerst1, Stefan Schmid1,2, Lalith Suresh1, Paolo Costa3

1 TU Berlin, Germany; 2 T-Labs, Berlin, Germany; 3 Microsoft Research, UK
{carlo,stefan,lalith}@inet.tu-berlin.de; paolo.costa@microsoft.com

ABSTRACT
It is well-known that without strict network bandwidth guaran-
tees, application performance in multi-tenant cloud environments
is unpredictable. While recently proposed systems support ex-
plicit bandwidth reservation mechanisms, they require the resource
schedules to be announced ahead of time. We argue that this is
not practical in today’s cloud environments, where application de-
mands are inherently unpredictable, e.g., due to stragglers. We in
this paper present KRAKEN, a system that allows tenants to dynam-
ically request and update minimum resource guarantees for both
network bandwidth and compute resources at runtime. Unlike pre-
vious work, Kraken does not require prior knowledge about the re-
source needs of the tenants’ applications but allows tenant to mod-
ify their reservation at runtime. Kraken achieves this through an
online resource reservation scheme, and by optimally embedding
and reconfiguring virtual networks.

1. INTRODUCTION
Cloud-based applications, including MapReduce and scale-out

databases, generate significant amount of network traffic and a con-
siderable fraction of their runtime is due to network activity. Un-
fortunately, as reported in previous studies [1], in existing cloud
infrastructures the bandwidth available to the tenants varies signif-
icantly over time, even within the same day. Given the time spent
in network activity by these applications, this variability has a non-
negligible impact on the application performance, which makes it
impossible for tenants to accurately estimate the execution time in
advance [3].

Several systems have been proposed which leverage admission
control and support explicit bandwidth reservations to overcome
this problem. [1, 4] Many of these systems offer virtual cluster ab-
stractions, which provides the tenants with the illusion of having
their own dedicated network: A virtual cluster offers the tenant the
illusion for all her Compute Units (CUs) to be attached to a single
non-oversubscribed switch with a minimum bandwidth b guaran-
teed. A virtual cluster VC(n, b) has two parameters: n, the number
of (identical) CUs in the cluster, and b, the bandwidth reservation
from each CU to the virtual switch.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMETRICS’15, June 15-19, 2015, Portland, OR, USA.
ACM 978-1-4503-3486-0/15/06.
http://dx.doi.org/10.1145/2745844.2745879 .

0.00

0.25

0.50

0.75

1.00

400 450 500 550
Completion Time (seconds)

E
C

D
F

0.00

0.25

0.50

0.75

1.00

6 8 10
Number of killed tasks

E
C

D
F

Figure 1: Execution unpredictability—Completion times of
jobs in the presence of speculative execution (left) and the num-
ber of speculated tasks (right).

However, all existing solutions providing absolute bandwidth
guarantees are based on offline reservations schemes [1, 2, 4]: they
require that tenants announce the entire resource reservation sched-
ule ahead of time, i.e., at job submission time.

We argue that in most cases it is very hard to accurately estimate
application resource needs ahead of time, rendering offline reserva-
tion schemes inadequate. To highlight this point, we demonstrate
that even with the same workload and a dataset of the same size be-
ing re-executed, it is difficult to predict how a job progresses over
time. Concretely, we conduct an “idealized” experiment wherein
we run a Hadoop cluster in our OpenStack-based testbed; envi-
ronments such as Amazon EC2 are far more noisy. We use five
physical servers (8 CPU cores) with one virtual machine each.
Each virtual machine is allocated 4 virtual cores. Each node of
the Hadoop cluster is mapped to a virtual machine each (one mas-
ter, four slaves). The Hadoop workload consists of a TeraSort job.
We repeat the experiment five times with speculative execution en-
abled. Figure 1 (left) indicates the variance in job completion times
across the runs: a range of 150 seconds. This observation is also
supported by Figure 1 (right) which shows the variable number of
straggling tasks speculatively re-executed by the Hadoop cluster.

2. KRAKEN
Kraken introduces virtual clusters whose resource guarantees

can be adjusted over time, in an online fashion. Since the objec-
tives of the execution (e.g., deadlines) depend on the context and
the need of the tenant, we argue that the tenant itself should be re-
sponsible for the specific scheduling strategy, and Kraken simply
exposes an interface which allows to (1) upgrade a virtual cluster
VC(n,b) consisting of n CUs and with a bandwidth guarantee b,
both in size (i.e., number of CUs) as well as in the minimum band-
width, that is, to a virtual cluster with x ≥ 0 more nodes and a fac-
tor δ ≥ 1 more bandwidth, i.e., to VC(n+ x,b · δ); (2) downgrade



Core Switch

Server

Aggregation Switch

Rack

Pod

ToR Switch

VC after upgrade

VC Upgrade:

Upgrade

Before Upgrade After Upgrade

2 Units BW on each link

8 VMs

1 Units BW on each link

7 VMs

VC16 empty VM slots

Figure 2: Example: upgrade of virtual cluster requiring migra-
tion.

a virtual cluster in both size and bandwidth; (3) or a combination
of both (e.g., upgrade size and downgrade bandwidth).

How to support such reconfigurations is also an algorithmic
problem. We would like to avoid or at least minimize migrations in
order to satisfy a reconfiguration request; moreover, the resulting
embeddings should have small network footprints, in the sense that
CUs are embedded close to each other and unnecessary bandwidth
reservations (on substrate links) are avoided.

Example. To illustrate both the model and the challenge, let
us consider an example. Figure 2 (left) shows a part of a fat-tree
data center topology, i.e., a single pod consisting of three racks
with two servers each; each server has 4 CU slots. We assume that
the uplinks of the servers have a capacity of 4 units and the fat-
tree provides full bisection bandwidth, resulting in a capacity of 8
units on the ToR switches’ uplinks and a capacity of 24 units on
the links between the aggregation switches and the core switch. On
the right most rack, currently a virtual cluster VC is embedded; the
dashed line indicates the path along with bandwidth is reserved to
connect the CUs. At some point, VC is upgraded, from VC(7,1) to
VC(8,2), see Figure 2 (middle).

How can this request be implemented? Theoretically, the right
server in the rack still has a free CU slot which could be used to
accommodate the additional CU; however, doubling the bandwidth
reservations for each of the CUs will violate the bandwidth capac-
ities on the uplinks of the servers. Hence it becomes necessary to
distribute the CUs in the substrate, in order to reduce the bandwidth
utilization of the uplinks of the two servers. Thus, in this scenario,
some CUs need to be migrated to satisfy the request. Figure 2
(right) shows a solution: the resulting embedding is valid.

Theoretical Contribution. Kraken is based on the observation
that by first fixing the logical switch of the virtual cluster, opti-
mal tradeoffs between small footprints and reconfiguration costs
can be computed efficiently, using dynamic programming (namely
bottom-up, from the substrate-tree leaves to the core switch). Since
also the number of possible logical switch locations is small (linear
in the substrate size), Kraken is fast.

THEOREM 2.1. Kraken efficiently computes provably optimal
virtual cluster embeddings and minimizes reconfiguration costs.

Previous Work: Static Embeddings only and Suboptimal
Footprints. Previous systems such as Oktopus [1] and Proteus [4]
do not support online reconfigurations and migrations. Moreover,
the static embeddings computed by these systems can be subopti-
mal (large footprints): In the case of Oktopus, a small virtual cluster
which could be hosted by a single server (Kraken footprint: 0) may
be embedded across multiple servers (footprint > 1). In the case
of Proteus, the ratio of the optimal footprint computed by Kraken
and the footprint by Proteus can be as high as n/3: such an exam-
ple can be constructed by exploiting the fact that Proteus will only
consider cross-pod embeddings if a request cannot be fit in a single
pod. Thus, in case n − 1 slots are available on a single server in

one pod and n times one slot is available on servers in another pod,
the Proteus footprint is 2n while the footprint of Kraken is 6.

Preliminary Evaluation. Hadoop-YARN is an interesting ap-
plication for Kraken, as the MapReduce tasks inform the Applica-
tion Master about the progress of a task periodically. This informa-
tion is used, for instance, to speculate tasks that are straggling. To
demonstrate a basic version of Kraken (without support for elastic
computations or migrations), we implemented a simple controller
that runs inside a virtual machine and uses the Linux tc utility in
order to make bandwidth reservations. We then instrumented the
Hadoop source code such that tasks inform the controller prior to
executing a shuffle. If there is spare bandwidth to be allocated, the
controller increases the corresponding endpoint’s bandwidth reser-
vation. Once the shuffle is completed, the Hadoop framework in-
forms the controller of the same in order to release its reservations.
(Migrations are not supported yet.)

0

25

50

75

100

0 200 400 600
Time (s)

P
ro

gr
es

s 
(%

)

No reservations kraken Map progress Reduce progress

Map and reduce progress versus time

Figure 3: Map and reduce progress of a TeraSort job in best
effort conditions (dotted) and when using Kraken (solid lines).
The X marks indicate the point of job completion.

Using this framework, we executed the TeraSort benchmark
against a dataset size of 100 million 100 byte records (a total of
~10 GB of data). We co-locate the Hadoop datanodes against a set
of VMs that generate UDP flows on the network using iperf.
The UDP flows are set to last 400 seconds at a throughput of
600 Mbps and thus significantly stresses the underlying 1 Gbps net-
work. Hadoop is initially allocated only 100 Mbps of bandwidth,
but requests additional bandwidth when shuffles are to be executed
(with the UDP tenant given best-effort service, and left to consume
the remaining bandwidth throughout). Figure 3 indicates the map
and reduce progress with and without Kraken’s online reservations.
Without online reservations, the UDP tenant interferes heavily with
Hadoop’s network usage, thus prolonging the TeraSort job until the
UDP flows terminate. With online reservations however, Hadoop
requests bandwidth when it needs it, leading to just under 300 sec-
onds of improvement in job completion time.

Research Funding. BMBF Software Campus grant 01IS12056,
Bigfoot FP7-ICT-317858, G.I.F. No I-1245-407.6/2014.

3. REFERENCES[1] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron.
Towards predictable datacenter networks. In Proc. ACM
SIGCOMM, 2011.

[2] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang. SecondNet: A data center network
virtualization architecture with bandwidth guarantees. In Proc.
ACM CoNEXT, 2010.

[3] J. C. Mogul and L. Popa. What we talk about when we talk
about cloud network performance. SIGCOMM CCR,
42(5):44–48, 2012.

[4] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only
constant is change: incorporating time-varying network
reservations in data centers. In Proc. ACM SIGCOMM, 2012.


	Introduction
	Kraken
	References

