
Towards a Scalable and Near-Sighted
Control Plane Architecture for WiFi SDNs

Julius Schulz-Zander
TU Berlin

Berlin, Germany
julius@inet.tu-berlin.de

Nadi Sarrar
TU Berlin

Berlin, Germany
nadi@inet.tu-berlin.de

Stefan Schmid
Telekom Innovation

Laboratories / TU Berlin
Berlin, Germany

stefan@inet.tu-berlin.de

ABSTRACT
Not much is known today about how to reap the SDN benefits
in WiFi networks—a critical use case given the increasing impor-
tance of WiFi networks. This paper presents AeroFlux, a scalable
software-defined wireless network, that supports large enterprise
and carrier WiFi deployments with low-latency programmatic con-
trol of fine-grained WiFi-specific transmission settings. This is
achieved through AeroFlux’s hierarchical design. We report on
an early prototype implementation and evaluation, showing that
AeroFlux can significantly reduce control plane traffic.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network management; C.2.1
[Network Architecture and Design]: Wireless Communication

Keywords
SDN, Virtualization, OpenFlow, WLAN, WiFi, IEEE 802.11

1. INTRODUCTION & ARCHITECTURE
In the near future, WiFi is expected to be the predominant In-

ternet access technology, and scalability issues will become more
important. Moreover, besides control plane communication over-
head, latency in WiFi control plane operations is critical, render-
ing indirections via a remote controller (in the cloud) out of ques-
tion. This paper initiates the study of the design of a WiFi SDN,
called AeroFlux, where transmissions are optimized through a fine-
grained and near-sighted control loop.

We first review the AeroFlux architecture (cf. [4] for more de-
tails). AeroFlux is based on a 2-tiered control plane that handles
frequent, localized events close to where they originate, i.e., close
to the data plane, by so-called near-sighted controllers (NSC), e.g.,
located close to the Access Points (APs). Global events, which
require a broader picture of the network state, are handled by the
global controller (GC), the logically centralized part of the control
plane, e.g., a set of redundant controllers deployed in a data center.

The GC handles events which are not time-critical [1], or events
belonging to inherently global tasks [3]. Examples include authen-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
HotSDN’14, August 22, 2014, Chicago, IL, USA.
ACM 978-1-4503-2989-7/14/08.
http://dx.doi.org/10.1145/2620728.2620772.

tication, wide-area mobility management, global policy verifica-
tion (including loop-free forwarding sets), client load-balancing,
and applications for intrusion detection or network monitoring. In
addition, the global controller is best suited to manage middleboxes
(MBs1, such as firewalls), including their instantiation and the steer-
ing of flows for MB traversal. The GC also instantiates and con-
trols the NSCs, by offloading selected control plane functions to
the NSCs whilst monitoring their load. This is important in the
presence of client mobility, and also when attempting to realize
per-flow application- and traffic-aware optimizations, where MBs
need to perform a deep packet inspection (DPI) for flow classifica-
tion. Besides reducing the network’s control plane traffic load, this
also ensures a low latency for control plane operations between the
NSCs and WiFi APs: an important property given the non station-
ary characteristic of the wireless channel, which requires timely
adjustments.

Essentially all functions exported by the Radio Agent (RA) on
the APs can be used by control plane applications running on the
NSCs. Moreover, in AeroFlux, a software daemon running on each
AP (henceforth referred to by RA), maintains the AP’s Light Virtual
Access Points (LVAPs) [5]. LVAPs keep per-client association and
authentication state, and they store per-client OpenFlow and WiFi
Datapath Transmission (WDTX) rules. WDTX rules extend Open-
Flow rules by defining per-flow transmission settings. WDTXs are
kept on a WiFi AP and are linked to OpenFlow flow table entries,
while a WDTX entry can relate to one or multiple OF rules. Through
the AF protocol, NSCs (and the GC) manage the WDTX entries on
an AP. In our current prototype, a WDTX entry allows to control the
following 802.11-specific settings: transmission rate, number of
retries, transmission power, and the usage of ACKs and RTS/CTS.
WDTX rules can be extended to enable flow-based control over the
transmission chain or the antenna used for the transmissions.

AeroFlux exports an interface that allows applications to specify
control application constraints, informing the GC which apps need
to be handled by NSCs (e.g., due to their stringent latency require-
ments). The GC will use these constraints to decide, where in the
control plane (on the GC itself, or on an NSC) to run the applica-
tion. As a result, AeroFlux enables a centralized per-flow control
of the Wifi datapath, which supports application-aware service dif-
ferentiation. Specifically, AeroFlux introduces a more fine-grained
control by adapting the power, transmission rate and retry count
on a per-slice, per-client, or per-flow level. Furthermore, AeroFlux
allows infrastructure controlled handovers, authentication and the
automated routing of flows through middleboxes [2].

1We can safely assume that sooner rather than later, most network functions
in enterprise and operator networks are provided by software running on
standard server hardware, as envisioned by Network Function Virtualization
(NFV).



Figure 1: WDTX rules provide control wireless transmission settings on a
per-flow level.

2. PROTOTYPE
Our early AeroFlux prototype builds upon our existing Odin-

framework [5]. The prototype consists of the following architecture
building blocks.

Global Controller: The GC is based on the Odin controller. The
Odin controller in turn is based on the open source Floodlight con-
troller, which, as of today, does not support a distributed deploy-
ment. By relying on Odin, AeroFlux inherits an implementation of
the LVAP concept. The GC currently implements two southbound
interfaces, the OpenFlow protocol for the wired and a separate data-
path control interface for the wireless portion of the network. Odin
introduced a separate southbound interface for the WiFi specific
transmission settings, since accommodating that extra functionality
into the OpenFlow protocol does neither yield any specific advan-
tages nor does it simplify the prototyping.

Near-Sighted Controller: The NSC interacts with the RA via a
south-bound protocol. The NSC manages pools of LVAPs that be-
long to a network slice. The communication interface between GC
and NSC is currently under development. A basic stand-alone vari-
ant of the NSC exists as proof-of-concept prototype to investigate
the feasibility and performance of RA’s components.

Radio Agent: Each AP hosts an RA which implements an in-
terface for controlling WiFi-specific transmission settings and for
gathering wireless related measurement data such as link and chan-
nel statistics, e.g., adjusting per-flow transmission power level or
export channel utilization. Furthermore, the RA hosts Light Virtual
Access Points [5], which are virtual, per-client APs, that abstract
the client’s state. associations, authentication, handovers and slic-
ing. The NSC and its interactions with the RA is shown in Fig. 1.
WDTX rules: The WDTX rules are implemented within the

mac80211 framework of the Linux Kernel to benefit from the WiFi
driver abstraction and the Linux rate control algorithms (Minstrel
and MinstrelHT) to maintain transmission rate statistics. WDTX
rules can overwrite the per-flow physical transmission rate (TRn),
power (TPn) and retry count (RCn). Rules can either contain fixed
and/or meta transmission settings, including best probability rate,
best throughput rate and basic rate, which can be set for the device
multirate retry chains. WDTX rules are bound to OF rules (Fig. 1) by
tagging of all packets belonging to an OF flow at the ingress port.
We are currently investigating the possibility to assign transmis-
sion bounds to WDTX rules, e.g., a minimum transmission success
probability or maximum duration including frame retransmissions.

3. EARLY EVALUATION
To get an idea of the scalability characteristics of AeroFlux,

we conducted simulations based on data from an existing enter-
prise campus network, serving up to 9, 000 clients every day. The
network statistics indicate six popular areas with more than 400
clients, two with more than a thousand clients. Roughly 60 percent
of the clients are served by less than 10 hotspot locations. We con-
sider a power and rate control application: This application requires
frequent communication (statistics requests) with the RA and does

Number of NSCs

S
ta

ts
 r

eq
ue

st
 lo

ad
 [G

B
it/

s]

●

●

●
●

●
●

●
●

●
●

● ● ● ● ● ●

0 5 10 15

0.
0

0.
5

1.
0

1.
5

2.
0

● GC load
combined NSC load
avg load per NSC

Figure 2: Near-sighted control reduces control plane load.

not rely on a global view of the network state; it is hence an ideal
candidate for near-sighted control.

To estimate the control plane load, we will only take into account
statistics requests. This yields a lower bound on the actual control
plane overhead and hence on the benefit of the near-sighted con-
trol. The frequency at which WDTX entries are updated depends on
the implemented rate and power control algorithm. Analogous to
the Linux default rate control implementation, our application col-
lects up-to-date per-client statistics once every 100ms. A client’s
statistics status update is 2.3kB in size on average when supporting
802.11n 2x2 MIMO transmission rates.

Fig. 2 shows the reduction in statistics request load on the GC
when incrementally deploying NSCs in a greedy manner: The lo-
cation of a next NSC is chosen to be the most popular NSC-less
location, i.e., the location with the greatest number of associated
clients that is not yet served by an NSC. Alternative algorithms per-
forming more rigorous optimizations will only improve the benefits
of the near-sighted control further.

Fig. 2 shows that with zero NSCs deployed, i.e., when GC is re-
sponsible for performing rate and power control for all clients, the
statistics-related control plane traffic alone consumes a bandwidth
of 1.6 GBit/s. Deploying NSCs helps: With NSCs at the eight most
popular locations, the load on the GC is halved to about 800 MBit/s,
while the average load on the NSCs is only 111 MBit/s. With
our greedy deployment strategy and with only very few (one or
two) NSCs deployed in the network, the average NSC load is below
200 MBit/s (easy to handle) while the benefit in terms of reduced
GC load is already significant.

4. CONCLUSION
This paper initiates the study of the design of a WiFi SDN

where transmissions are optimized through a fine-grained and near-
sighted control loop. In particular, we have presented a 2-tiered
control plane architecture, called AeroFlux, and sketched our pro-
totype implementation and early evaluation.

Acknowledgments: The authors would like to thank Anja Feld-
mann for useful inputs. Research supported by the EIT ICT project
Mobile SDN and Federal Ministry of Education and Research
(BMBF) (Reference number 01IS12056).

5. REFERENCES
[1] S. Hassas Yeganeh and Y. Ganjali. Kandoo: a framework for efficient

and scalable offloading of control applications. In HotSDN ’12.
[2] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu.

SIMPLE-fying Middlebox Policy Enforcement Using SDN. In ACM
SIGCOMM ’13.

[3] S. Schmid and J. Suomela. Exploiting locality in distributed SDN
control. In HotSDN ’13.

[4] J. Schulz-Zander, N. Sarrar, and S. Schmid. Aeroflux: A near-sighted
controller architecture for software-defined wireless networks. In
Proc. Open Networking Summit (ONS), 2014.

[5] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, and
R. Merz. Programmatic orchestration of wifi networks. In USENIX
ATC ’14.


