STN: A Robust and Distributed SDN Control Plane

Marco Canini®, Daniele De Cicco®, Petr Kuznetsov®, Dan Levin®, Stefan Schmid* and Stefano Vissicchio ™

T Université catholique de Louvain

In Software Defined Networking (SDN), control applica-
tions operate on a global network view. This view enables
simplified programming models to define at a high-level the
intended operational behavior of the network. While a fully
centralized system is a natural solution to create such a global
view, it may not adequately or cost-effectively provide the re-
quired levels of availability, responsiveness and scalability. In-
stead, commercial SDN deployments [9] resort to redundant
and distributed systems running on multiple physical nodes.
However physical distribution comes with hard challenges,
i.e., “the designers of such systems have to face the funda-
mental trade-offs between the different consistency models,
the need to guarantee acceptable application performance, and
the necessity to have a highly available system” [1].

An appealing approach to deal with these challenges con-
sists of creating sophisticated applications by composing mul-
tiple, simpler modules, in the same spirit as Pyretic [6], an
SDN programming language that enables policy composition.
Beyond enabling a divide-and-conquer approach to network-
ing problems, modularity also enables multi-authored policies
that may come from different administrators or even end-host
applications [4]. In the following, we describe our progresses
in developing a distributed SDN control plane, called Soft-
ware Transactional Networking (STN), which is inspired by
Software Transactional Memory principles and is provably ro-
bust to a fixed number f of controller node failures. In par-
ticular, this paper focuses on how to solve concurrency issues
that arise from the concurrent execution of control modules on
different physical nodes. Indeed, conflicts among concurrent
policy updates to network state may result in serious inconsis-
tencies on the data plane, even when each update is installed
with per-packet consistent update semantics (see [3] for an ex-
ample). Generally, a policy update herein refers to a collection
of state modifications spanning one or more switches.

STN Design

An overview of the STN architecture is conveyed in Figure 1.
We designed STN to ensure: (1) all-or-nothing semantics, i.e.,
every policy update is either fully installed, or it will never af-
fect any single packet, (2) updates which generate no conflicts
(e.g., defined over independent flow spaces), are eventually in-

*Stefano Vissicchio is a postdoctoral researcher of the Belgian fund for
scientific research (F.R.S.-FNRS).

¥ Télécom ParisTech

®* TU Berlin * TU Berlin/ T-Labs

stalled, (3) a packet is never delayed due to an ongoing policy
update, and (4) per-packet consistent forwarding [7]. To this
end, the STN design is based on the following concepts.
The Transactional Interface. A possible approach to deal
with update conflicts is to expose conflicts to the application
developer and let her handle their resolution. To the best of
our knowledge, the state-of-the art distributed control planes
Onix and ON.Lab’s ONOS, adopt this approach. As both use
a replicated data store to maintain an up-to-date view of net-
work state, they can detect conflicts at that level. In contrast
with existing solutions, we propose an elegant policy composi-
tion abstraction based on a transactional interface with all-or-
nothing semantics, inspired by the concept of Software Trans-
actional Memory (STM) [8]. This interface ensures that a pol-
icy update required by one control module is either committed,
i.e., applied and consistently composed over the entire net-
work, or aborted, in which case no packet is affected by it. The
transactional interface relieves control modules from cumber-
some and error-prone synchronization and locking tasks, and
enables easier and more lightweight control applications. We
envision scenarios in which multiple concurrent updates mod-
ify the policy by introducing possibly conflicting rules, and we
expect that only policy updates that compose (induce a correct
network behavior, which we next define) are allowed to affect
the traffic. To define the correct network behavior, we adopt
a solution similar to PANE’s global share tree [4], which we
refer to as the global network policy.

Our correctness property
informally requires that the [nates] (s) (2o)
STN abstraction, regardless WS apply(p, Fack 7
of the actual interleaving of [N j
policy updates and packet ar- T T
rivals, appears sequential to U S
every packet, as though all
the committed policy updates
(and possibly a subset of in-
complete ones) are applied atomically and no packet is in flight
while an update is being installed. Note that our approach is
not concerned with how an update is computed, and we can
utilize a data store to obtain a view of network state. Such a
data store must be accessed by modules in a read-only fash-
ion, however, as all updates (i.e., writes) must execute via our
abstraction to guarantee that they are composed and installed

Figure 1: STN architecture.

correctly. Also, note that our notion of consistency applies to
the data plane, similarly to consistent network updates [5, 7].
In this paper, we are not concerned with the consistency model
of the network state data store, if any is used.

The Shared Memory Analogy. To reason about correct and
concurrent composition of network policy, we introduce a for-
mal model describing the interaction between the network data
plane and a distributed control plane, in which we consider
failures under the fail-stop model. Our model views the net-
work and its state as a distributed “shared memory” that is
accessed by two kinds of processes: (i) the control modules,
which concurrently read and update the network state in or-
der to install different policies, and (ii) the data packet, whose
paths across the network are determined by the forwarding
rules installed by the controllers. The STN system is real-
ized as a Distributed State Machine and can emulate both the
2-phase [7] and the dependency-based policy installation [5].
The control plane uses a tagging mechanism to (1) impose
a global order on the modules and (b) ensure a coordinated
use and reuse of the protocol tags. Concretely, the state ma-
chine exports, to each process, operations push and pull to ob-
tain and release tags. Intuitively, the system invokes pull to
fetch the next policy to be installed, based on policy update re-
quests coming from different control modules. The invocation
returns L if all policies pushed so far are already installed,
otherwise it returns a policy and a tag with which the con-
troller should install that policy. The STN system minimizes
the number of used tags. Indeed, we prove [2] that in our de-
sign, a controller’s failure can block at most one tag, and that
the STN system requires @(f) tags, where f is the number of
fail-stop failures that the protocol can tolerate.

STN Prototype

We are building a prototype STN system upon Pyretic [6]. Our
prototype leverages user-defined rules to compose some poli-
cies proposed by SDN control modules, and resorts to the STN
interface for the other cases. Those composition rules use the
sequential >> and parallel 4+ composition operators already
supported by Pyretic. Let p; and p; be two policies. The
expression p; >> p, translates to first applying policy p; on
each incoming packet and then policy p, on the output of p;.
In contrast, p; + p» applies the two policy functions on the
same incoming packet and combines the results.

To enable the specification of realistic policy composition
rules, we found the need to extend Pyretic. To describe our
extensions, we use a running example of an STN system that
coordinates actions between three modules respectively imple-
menting (1) a routing policy R, installing shortest paths be-
tween sources and destinations for every traffic flow, (2) a
waypointing policy W, forcing traffic from an IP prefix P to
traverse a given middlebox, and (3) a monitoring policy M to
be applied to all Web traffic. Additional modules are present
in the system. We define the set of (located) packets to which
a policy p applies as domain of the policy dom(p).
Language Extension. As a first extension to Pyretic, we in-
troduce a precedence operator > to resolve a-priori some con-
flicts between policies. Concretely, the precedence operator
enables STN system users (e.g., network administrators) to in-
dicate which policy has to be applied if multiple modules want

to install rules for the same packets. Consider, e.g., the routing
and waypointing policies with partially overlapping domains.
If the latter policy induces an action different than shortest
path routing, those policies generate conflicts, i.e., mutually
exclusive actions would be applied for packets originated from
P. The > operator provides a deterministic way to resolve
such conflicts by setting the relative priority between policies.
Given two policies p; and p;, p; > p» translates to applying
p2 if and only if p; cannot be applied. Formally, for each in-
coming packet pkt, p; >~ ps is equivalent to IF pkt € dom(p;)
THEN p; ELSE p,. Note that pkt € dom(p3) is checked in
the ELSE branch, by definition of policy.

Dynamic Module (De)Activation. Pyretic enables static def-
inition of policies. However, STN needs to support dynamic
activation and deactivation of modules, and to update accord-
ingly the policy effectively applied by the switches. To this
end, we define the global policy as the policy composition rule
provided as input to the STN system. Moreover, we refer to
the effective policy as the composition of policies proposed by
currently active modules. Each time the set of active modules
changes, the effective policy is updated according to the sub-
expression of the global policy only including the currently
active modules. In addition, the effective policy can contain
further policies not included in the global policy (if does not
include all the policies implemented by modules in the sys-
tem). Consider again our example with the R, M, and W poli-
cies, and let the global policy defined by the administrator be
(W > R)+ M. This means that monitoring is always applied in
parallel either to the waypointing module or to the routing one
(for traffic that has not to be waypointed). If only the routing
module is initially active, then the effective global policy will
be R. Then, if waypointing is activated, the effective policy
is updated to W > R, and R is applied only for packets out-
side the domain of W. Otherwise, if the monitoring module is
the second one to be activated, then the effective policy is up-
dated to R+ M. The global policy is eventually enforced when
all the three modules are activated. Policies not appearing in
the global policy are either accepted or rejected (if conflicting)
according to the STN interface.

Acknowledgments. This work was (partially) supported by the ARC
grant 13/18-054 from Communauté francaise de Belgique.

References

[1] F. Botelho, F. M. V. Ramos, D. Kreutz, and A. Bessani. On the feasibility
of a consistent and fault-tolerant data store for SDNs. In EWSDN, 2013.

[2] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. The Case for Reliable
Software Transactional Networking. CoRR. http://arxiv.org/
abs/1305.7429.

[3] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. Software Transac-
tional Networking: Concurrent and Consistent Policy Composition. In
HotSDN, 2013.

[4] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthy.
Participatory Networking: An API for Application Control of SDNs. In
SIGCOMM, 2013.

[5] R.Mahajan and R. Wattenhofer. On Consistent Updates in Software De-
fined Networks. In HotNets, 2013.

[6] C.Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker. Composing
Software Defined Networks. In NSDI, 2013.

[71 M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Ab-
stractions for network update. In SIGCOMM, 2012.

[8] N. Shavit and D. Touitou. Software transactional memory. Distributed
Computing, 1997.

[9] T. Koponen et al.. Onix: A Distributed Control Platform for Large-scale
Production Networks. In OSDI, 2010.

