
Simple Destination-Swap Strategies for
Adaptive Intra- and Inter-Tenant VM Migration

Chen Avin1, Omer Dunay1, Stefan Schmid2
1 Ben Gurion University, Beersheva, Israel; 2 TU Berlin & T-Labs, Berlin, Germany
{avin,dunay}@cse.bgu.ac.il; stefan@net.t-labs.tu-berlin.de

Abstract—This paper investigates the opportunities and lim-
itations of adaptive virtual machine (VM) migration to reduce
communication costs in a virtualized environment. We introduce
a new formal model for the problem of online VM migration
in two scenarios: (1) VMs can be migrated arbitrarily in the
substrate network; e.g., a private cloud provider may have
an incentive to reduce the overall communication cost in the
network. (2) VMs can only be migrated within a given tenant;
e.g., a user that was assigned a set of physical machines may
exchange the functionality of the VMs on these machines.

We propose a simple class of Destination-Swap algorithms
which are based on an aggressive collocation strategy (inspired
by splay datastructures) and which maintain a minimal and local
amount of per-node (amortized cost) information to decide where
to migrate a VM and how; thus, the algorithms react quickly to
changes in the load. The algorithms come in two main flavors,
an indirect and distributed variant which keeps existing VM
placements local, and a direct variant which keeps the number
of affected VMs small.

We show that naturally, inter-tenant optimizations yield a
larger potential for optimization, but generally also a tenant itself
can improve its embedding. Moreover, there exists an interesting
tradeoff between direct and indirect strategies: indirect variants
are preferable under skewed and sparse communication patterns
due to their locality properties.

I. INTRODUCTION

Virtualization is perhaps the main innovation motor in
today’s networks. In particular, most datacenter resources have
become fully virtualized, and resource slices are carved out
dynamically for the different applications. The basic unit in
such datacenters are virtual machines (VMs): Ideally, a VM
appears to be a dedicated physical machine, but in reality
the VM may share the underlying physical machines with
other VMs. Moreover, since the virtualization layer decouples
the virtual services and resources from the constraints of the
underlying physical infrastructure, a VM can be migrated
seamlessly to other physical machines.

Migration introduces new flexibilities on how to manage a
given resource network. While the allocation (and isolation)
of CPU and memory resources is fairly well understood
today, the access to these resources has often been treated
as a second class citizen. However, it has recently been
argued that connecting VMs with explicit bandwidth and
hence communication guarantees, can reduce the variance and
duration (price) of an execution. [2], [20], [21], [29], [30]
Moving frequently communicating VMs closer together can
save network bandwidth (or even energy [25]) and improve
the predictability of the execution. Automatic collocation may

also enhance the privacy of the communication [23], especially
in wide-area networks.

In this paper, we attend to a generic setting consisting
of a physical network which is shared by multiple tenants.
The physical network connects different physical machines.
It may represent a datacenter, but may also be a wide-area
network spanning globally distributed resources or “micro-
datacenters” (e.g., the POPs or even street cabinets of an
Internet Service Provider, see also the trend towards network
functions virtualization [11]). In the following, we will often
refer to this network as the substrate or host graph.

Each tenant has access to a set of VMs. These VMs can be
mapped arbitrarily on the host graph (maybe subject to some
specification constraints in case of a wide-area network). In
order to complete their tasks, the VMs of a tenant need to
communicate. Accordingly, in this paper, we will think of the
VMs and their interactions as a graph as well: each tenant
describes a (dynamic) guest graph which is embedded on the
host graph.

This paper studies migration algorithms which ensure that
the frequently communicating VMs of a guest graph are
migrated together adaptively. We distinguish between two
migration scenarios:

1) Inter-tenant VM migration: In this scenario, VMs can
be migrated arbitrarily on the host graph. For example,
a private datacenter provider may have an incentive to
globally optimize the allocation of all VMs across all
tenants, in order to reduce network loads and improve
performance. Or in the context of wide-area networks
(WANs) and ISPs supporting network functions virtual-
ization, a provider may optimize the applications of all
its customers by migrating critical VMs geographically
closer and hence reduce latencies.

2) Intra-tenant VM migration: In this scenarios, the set
of physical machines assigned to a tenant is fixed.
However, the tenant can re-assign the VMs (e.g., [22])
and functionality of its own application among these
physical machines. For instance, while a monopolistic
public cloud provider may not have an incentive (or
is not allowed) to optimize the VM mapping, a user
may improve its application performance by collocating
frequently communicating machines.

Contribution. This paper makes the following contribu-
tions. (1) We initiate the study of adaptive inter- and intra-
tenant migration strategies and present a simple formal model

2

which allows us to reason about and analytically evaluate
different online algorithms. In particular, we pursue a conser-
vative and online approach and assume that we do not have
any a priori knowledge of the guest graph traffic matrices and
their evolution over time. Thus, our approach also captures set-
tings where the tenant specifies rough communication require-
ments (such as Virtual Clusters or Virtual-Oversubscribed-
Clusters [3]).
(2) We introduce a simple class of Destination-Swap migration
algorithms which only require a very small amount of per-
node state information, namely a local amortized cost. This
simple approach allows us to focus on the main properties
and challenges of adaptive migration. The Destination-Swap
algorithms are based on an aggressive collocation approach,
i.e., communicating VMs are migrated together. This is in the
spirit of classic self-adjusting distributed datastructures such
as splay trees. The algorithms come in two main flavors: An
indirect swapping strategy where VMs are migrated iteratively
to each other; this preserves (communication) locality and
can be seen as a distributed computing approach. A direct
swapping strategy where two VMs are collocated directly,
i.e., without moving other VMs along the path; although a
single VM may be globally displaced, the direct strategy has
the advantage that only one external VM is affected (local
impact). Generally, while these algorithms can be used for
any host graph topology, we in this paper will mostly focus
on the BCube datacenter topologies.
(3) We study different variants of Destination-Swap migration
algorithms under different communication patterns, and show
that they have some interesting properties. In particular, we
find that smart migration algorithms can indeed reduce the
communication cost, especially in the inter-tenant scenario;
in the more constrained intra-tenant scenario, the amortized
(communication) costs can be lowered too, but only to a lesser
extent. Moreover, we find that the algorithms adapt relatively
quickly to new communication patterns and that there are
interesting differences between direct and indirect swapping
approaches. In particular, indirect variants are preferable if
communication patterns are sparse and guest graphs tree like,
and if the communication frequencies between VMs is subject
to a higher variance; otherwise, direct variants perform better
due to the limited impact on other VM locations.

We understand our paper as a first step to shed light on the
online VM migration problem, and we kept our algorithms
as simple as possible. In particular, we believe that our work
opens several interesting directions for future research, and
more sophisticated approaches.

II. ONLINE VM REARRANGEMENT

We propose the following simple formal model to reason
about dynamically reconfigurable virtual networks. We con-
sider a physical network H = (M ∪ S,L), the host graph
(e.g., a datacenter), where M = {m1,m2, . . . } represents
the physical machines (or simply hosts), S = {s1, s2, . . . }
represents the switches (or routers) connecting the hosts, and
L represents the physical links. A link (or edge) may connect

a switch with a host and/or two hosts directly. We will assume
that communication over a physical link comes at a certain cost
(network load or latency), but we do not assume any strict link
capacity constraints.

The physical network hosts a set of applications A =
{A1, . . . , Ak}, from k different tenants. (In the following,
we will simply assume that each application corresponds to
one tenant, and will treat the terms as synonyms.) Each
application Ai consists of a set of virtual machines, i.e.,
Ai = {v(i1), . . . , v(ij), . . . }. We will refer to the cardinality of
a set X by |X|. For simplicity and ease of presentation, in the
following, we will focus on a scenario where each machine
m ∈M can host exactly one VM.

The arrangement function λ describes the mapping of the
VMs to physical machines. That is, λ(v) denotes the physical
machine to which a given VM v is mapped. Analogously, the
VM hosted by a machine m is denoted by λ−1(m); λ−1(m) =
⊥ means that m does not host any VM.

The basic objective of the migration algorithms studied in
this paper is to re-arrange VMs adaptively, in order to re-
duce the amount of communication. Since the communication
pattern may change over time, mapping decisions may be
reconsidered repeatedly. Therefore, we will use a time index
t, and let λt refer to the arrangement function at time t: λt(v)
is the mapping of v at time t.

Let us use d(u, v) to denote the distance between λ(u) and
λ(v) in H: the number of physical links ` ∈ L needed to
connect λ(u) and λ(v) along the shortest path in the host
graph. Since the arrangement function changes over time, we
also define the temporal version dt(u, v): the shortest distance
between λt(u) and λt(v).

We assume that the different VMs of tenant/application Ai
need to communicate in order to fulfill their task. Although
our algorithms are applicable more generally, in the following,
in order to study the reactivity and convergence properties of
the migrations, we will often make the assumption that the
interactions between the VMs follow a statistical distribution:
this distribution is not known in advance, and interactions are
sampled from this distribution independently and at random
over time. Accordingly, we can represent each application Ai
as a (tenant) guest graph Gi = (Ai, Ei, wi), where Ai is
the set of virtual machines and Ei represents the interactions
between the VMs. The weight w(e) of an edge e = (u, v) ∈
Ei describes the frequency of the interactions between the two
VMs u, v ∈ Ai according to this distribution. The total set of
all applications A, the union of all tenant guest graphs, is
represented as an (overall) guest graph G(V,E,w) = (G1 ∪
G2∪ . . .∪Gk) where V =

⋃
iAi, E =

⋃
iEi and w =

⋃
i wi.

In other words, the overall guest graph G is a combination of
independent connected components.

For our evaluation, we will often assume that the guest
graph G is fixed. However, as we will see, our migration
algorithms have a low converge time and hence quickly adapt
to a new structure of G. We assume a conservative perspective
and assume that the network controller (the orchestration
manager) does not know anything about the guest graph G

3

of the application in advance. Rather, the communication
pattern between VMs is revealed over time, and we are hence
interested in online migration algorithms ALG.

Generally, the input to the online algorithm ALG is a
sequence σ = (σ1, σ2, . . .) of communication requests σt =
(ut, vt) (coming, e.g., from a fixed guest graph G and ut, vt ∈
E, but it may also be arbitrary). After each such request, ALG
is allowed to migrate different VMs, i.e., redefine the mapping
λt. Of course, this request sequence approach is simplistic and
just serves for the modeling: we do not imply that migration
algorithms should happen on a per-request basis. Rather, in
practice, a request may be defined by a certain communication
volume (e.g., 5GB), possibly over a certain time interval.

Let the migration cost (i.e., the number of migrations)
of ALG for a request σt at time t be denoted as ρt. The
main yardstick for our evaluation is the amortized cost of
communication and VM migration for a given host graph,
algorithm and request sequence:

Definition 1 (Amortized (Communication) Cost): Given a
host graph H , a migration algorithm ALG and a sequence
of communication requests σ (e.g., from a guest graph G =
(A,E,w)), the amortized cost is defined as:

COST(H,ALG, σ) =
1

|σ|

|σ|∑
t=1,(u,v)∈σt

(dt(u, v) + ρt) (1)

Our goal is to find an ALG that minimizes COST.
We will simplify the model by normalizing the migra-

tion cost to the cost of a one hop routing request, i.e.,
we consider the amortized cost defined as COST(H,ALG, σ)

= 1/|σ|
∑|σ|
t=1,(u,v)∈σt

dt(u, v) and we attend to the problem
of finding an algorithm that minimizes the above amortized
cost.

0

0: BCube(k-1)

0

 1 ... x

1: BCube(k-1) n-1: BCube(k-1)

1 x

 0 1 x 0 1 x

...

00

Level 0

level 1

<0,0>

<1,0>

01 02 03

Level 0

<0,1>

Level 0

<0,2>

Level 0

<0,3>

<1,1> <1,2> <1,3>

10 11 12 13 20 21 22 23 30 31 32 33

Fig. 1. (a) BCube is defined recursively: A BCube(n, k) is constructed
from n BCube(n, k − 1)) and nk n-port switches. (b) The BCube(4, 1).

A. The BCube Architecture

Although our algorithms are applicable in general graphs,
this paper focuses on the special family of BCube [12] host
graph topologies. The BCube is a new network architecture
exhibiting a hypercubic topology. It is tailored for modular
datacenters.

There are two types of devices in a BCube: servers (hosts)
with multiple ports, and switches that connect a constant
number of servers. The BCube topology BCube(n, k) has
k+1 levels and uses n-port switches; hosts have k+1 ports.
The structure is defined recursively: A BCube(n, 0) describes

a “star network” where n hosts connect to an n-port switch.
A BCube(n, 1) is constructed from n different BCube(n, 0)
connected by n different n-port switches. More generically, a
BCube(n, k) (k ≥ 1) is constructed from n BCube(n, k− 1)
and nk n-port switches.

Each server in a BCube(n, k) has k + 1 ports, which are
numbered from level-0 to level-k. It is easy to see that a BCube
has N = nk+1 − 1 servers and k + 1 levels of switches, with
each level having nk n-port switches. Figure 1 presents an
example of a BCube.

The BCube guarantees that switches only connect to servers
and never directly connect to other switches. As a direct
consequence, for our purposes, we can treat the switches as
dummy crossbars that connect several neighboring servers and
let servers relay traffic for each other. In addition, the BCube
has several nice properties that makes it attractive for use
as a datacenter: First, its topology is very robust and has
k + 1 disjoint paths between any two hosts. If we ignore
the switches, the BCube topology is essentially a generalized
hypercube [6]. In order to address host and perform greedy
routing, a simple vector of size k + 1 is used. The distance
between any two hosts is given by their Hamming distance,
and hence the network diameter is k + 1 [12].

III. THE DESTINATION-SWAP ALGORITHMS

This section introduces the class of Destination-Swap mi-
gration algorithms that adaptively improve the VM embedding
over time. The appeal of these algorithms comes from their
simplicity: (1) These algorithms are based on very little state
information and do not perform any long-term statistical analy-
sis or a complicated pattern learning; this allows the algorithms
to stay reactive and adapt to new patterns quickly. (2) The
simplicity of these algorithms facilitates the formal study of
the benefits and inherent challenges of VM migrations.

We will first present the general concepts of Destination-
Swap and then consider some specific algorithms in more
detail.

A. Algorithmic Framework

As the name suggests, the Destination-Swap migration al-
gorithms consist of two modules: one to select a “destination”
where a given VM should be migrated to, and one to decide
on the migration or “swapping” strategy to reach the selected
destination.

Concretely, upon a request (u, v) at time t, in order to reduce
the communication cost of future requests, the algorithm
decides to migrate u and v closer to each other. To do
so, the algorithm may for example select a server µ as a
destination host for v and leave u fixed (destination strategy).
In order to migrate v to µ, the algorithm may perform several
rearrangements (swapping strategy), involving also other VMs.
Eventually, λ(v) = µ and dt+1(u, v) < dt(u, v).

We will describe our algorithms from an inter-tenant per-
spective. However, by restricting migrations to the physical
machines of the given tenant only (and otherwise not migrate
at all), the algorithms can be adapted for the intra-tenant

4

scenario. Moreover, although migration decisions can be per-
formed globally, our algorithms could also be seen from a
distributed computing perspective: as we will see, our indirect
swapping algorithm only involved local interactions, and our
direct swapping algorithm only involves three VMs.

B. Destination Strategy

In general, we seek to move u and v closer together
upon each communication request (u, v), either by moving
one of the two nodes or both. Concretely, all the algorithms
presented in this paper will make u and v immediate neighbors
after the request. The intuition for this rather aggressive
strategy comes from the related approaches used for dynamic
splay trees [26] and their distributed generalizations [1].

vm vfμ

LCost=x LCost=y

VU

Fig. 2. Principle of Destination-Swap Algo-
rithms

We distinguish
between four
basic methods:
MEETMIDDLE,
RANDOM,
BESTSWITCH and
BESTNEIGHBOR.
While the first
method does not

distinguish between the two interacting VMs u and v, the
other three methods are based on the amortized cost states.
In the following, we elaborate more on these methods.

Methods RANDOM, BESTSWITCH and BESTNEIGHBOR
only choose one of the two VMs u or v for migration: Let
us denote the to be migrated VM by vm and the fix VM by
vf . The migration destination, henceforth denoted by µ, is
always selected to be a neighbor of λ(vf); accordingly, after
the migration, u and v are direct neighbors in the host graph.

The decision of which of the two VMs u and v should
be migrated, is based on a local amortized cost criterion.
The basic idea of this criterion is that a VM that is already
close to all its communication partners, does not need to
migrate. For such a VM the local amortized cost should be low.
Contrarily, the VM which is located at a suboptimal position
in the host graph and which is still far from their partners,
the cost should be high and migrating it to a different position
may be beneficial. Formally, let σv ⊆ σ denote the set of
communication requests which include the VM v (either as a
communication source or destination).

Definition 2 (Local Amortized Cost): The local amortized
cost of a VM v is defined as

LCOST(v, σ) =
1

|σv|
1

log(|σv|)
∑
t∈σv

dt(u, v) (2)

Note that in contrast to Definition 1 which defines the
total amortized cost of the entire network, Definition 2 can
be calculated locally by each VM and it defines a per-node
cost criterion to decide which of the two communication end-
points u or v is already located at a strategically better position
and should hence not be migrated. We use an additional
logarithmic factor 1/ log(|σv|) to give more weight to a
frequently communicating VM.

Algorithms RANDOM, BESTSWITCH and BESTNEIGHBOR
migrate the VM with the higher local amortized cost while the
one with lower cost stays at the same location.

Henceforth, for a communication request
(u, v), let the “migrating node” be vm =
argminu,v{LCOST(u), LCOST(v)}; analogously, let the
“fixed node” be vf = argminu,v{LCOST(u), LCOST(v)}. If
LCOST(u) = LCOST(v), the tie can be broken arbitrarily.

After the choice of vf and vm is made, Destination-Swap
algorithms need to decide on the destination: we select the the
destination host µ as a neighbor of λ(vf). Figure 2 illustrates
the situation.

In order to describe the choice of µ, we define another cost
function called SC. It measures the amount of communication
among a set of hosts. Informally, for a set of hosts Q, the
score SC(Q) counts all the communication requests between
the VMs that are currently hosted by Q. Formally, let σu,v
be the communication requests for which the communication
partners VMs are u and v.

Definition 3 (SC): For a set of hosts Q, let SC(Q)

SC(Q) =
∑

m,m′∈Q
|σ(λ−1(m),λ−1(m′))| (3)

For now let m = λ−1(vf) be the host server of vf . The
first three algorithm we consider are:

1) RANDOM: We select µ as a random neighbor of m.
2) BESTSWITCH: We select µ from the “best switch” that

m is connected to according the following rule. Recall
that m is connected to k+1 switches henceforth denoted
by {T0, . . . , Tk}, each of which belongs to a different
level of the BCube. For each switch Ti we compute its
current SC(Qi), where Qi is the set of servers attached
to switch Ti, and its score if vm would be connected to
it (replacing the least communicating VM). We select,
as the best switch, the switch with the largest increase in
score, and the corresponding machine µ of that switch.
Note that µ must be a neighbor, since the nodes belong
to the same switch.

3) BESTNEIGHBOR: Let N (m) denote the set of neighbors
of m in the host graph H . We select µ as the neighbor
of vf for which migrating vm to µ increases SC(N (µ))
the most.

The forth algorithm is inspired by similar strategies for
splay tree networks (see, e.g. [1]) and serves as the baseline
performance.

4) MEETMIDDLE We migrate both u and v such that they
become neighbors in the middle on an arbitrary shortest
path between them. The two communicating VMs are
treated as “equal”.

C. Swapping Methods

After having selected the destination node µ for vm, we
need to decide how to move vm to µ. We distinguish between
two main strategies.

1) Direct: Migrate v to µ directly, i.e., exchange the loca-
tions of VMs v and λ−1(µ).

5

2) Indirect: Swap v iteratively with neighbors along an
arbitrary shortest path to m, until λ(v) is at distance two
from m. Then swap directly the VMs v and λ−1(µ).

vm

Direct:

2

...

...

...

...Indirect:

2 3 24 22μ

22 3 24 22

22 3 24 22

2 23 4 2 22

After

Before

After

Before

vf

vm

vm

vm vf

vf

vf

μ

μ

μ

Fig. 3. Direct vs Indirect Swapping

Intuitively, the indirect
approach seeks to keep the
embedding local, by not mi-
grating λ−1(m) too far; in
this light, it can be seen as
a distributed algorithm. The
direct approach on the other
hand has the advantage that
while λ−1(µ) is globally
displaced, less VMs are af-
fected by the change: while
the indirect approach mi-

grates all VMs along the shortest path, the direct approach
changes the locations of two VMs only. Figure 3 illustrates
the situation.

D. Summary

A Destination-Swap algorithm is a combination of a destina-
tion and a swapping strategy. For example, BESTNEIGHBOR-
DIRECT is an algorithm that uses BestNeighbor as its desti-
nation method and direct as its swapping method.

IV. EVALUATION

We analyze the behavior and performance of the
Destination-Swap migration algorithms formally and by sim-
ulation.

A. Guest Graph Model

In order to model the communication patterns, in our
evaluation we focus on the following guest graphs. We assume
that the overall communication pattern or (overall) guest graph
consists of multiple connected components, the guest graphs
of the tenants (the (tenant) guest graphs); in the following,
when it is clear from the context to which type of guest graph
we refer, we will omit the overall and tenant specifier.

If not stated differently, we will assume that the total number
of VMs equals the number of physical servers, that is, the
sum of all connected components perfectly covers all servers.
(Recall that we assume that a physical server has sufficient
capacity to host exactly one VM, and that we do not assume
any strict capacity caps on the links.)

For simplicity, we will focus on scenarios where all con-
nected components have the same topology. For example,
for a host graph BCube(3, 7), we have 6, 561 servers; if
guest graphs (the connected components) are of size 729
VMs, we will embed nine guest graphs of a given topology
(9 · 729 = 6, 561).

We concentrate on the following archetypical connected
guest graph topologies: (1) complete graphs (a.k.a. cliques)
describing an all-to-all communication pattern; (2) star graphs
describing a one-to-all communication pattern; (3) for a host
graph BCube(n,k) we consider smaller BCube guest graphs
BCube(n′,k′): we choose k′ for all possible values {0, . . . , k−

1} and n′ = n; (4) a guest graph consisting of a set of VM
pairs connected by single edge.

The traffic matrices of (1) and (2) are standard and studied
frequently [4]; the motivation for (3) is that it constitutes an
interesting scenario between the two extremes (1) and (2), and
because, due to the recursive structure of the BCube, small
BCubes (“sub-cubes”) can always be perfectly embedded in
larger BCubes, i.e., there exists a mapping with amortized
costs 1. The scenario can hence also be used as a simple base-
line / cost lower bound to evaluate an embedding or migration
algorithm. Finally, option (4) defines a set of VM pairs which
need to be matched up, independently of other VMs. Since
matching graphs can always be embedded perfectly on any
host graph due the independence, it constitutes a natural test
case for the migration algorithms.

In the following, let G(Kx) denote a (overall) guest graphs
in which all connected components are complete graphs Kx

consisting of x nodes. Similarly, let G(Sx) denote the guest
graphs in which all connected components are star graphs Sx
with x nodes, and let G(BCube(n′,k′)) be a guest graph in which
all connected components are BCube(n′,k′) graphs. Finally, let
us refer to the matching graph by G(M).

A guest graph can come in two flavors: weighted and
unweighted. In the unweighted variant, all interactions have
the same frequency. For the weighted variant, we will consider
randomized weight distributions, e.g., where the weight is
chosen uniformly at random from the range [1, . . . , N], for
each node independently; the frequency of an edge is then
simply the product of the frequencies of its incident VMs (the
so-called product distribution).

B. Formal Analysis

This section provides some analytical insights into what can
and cannot be achieved by Destination-Swap algorithms. We
first derive a formula for the embedding cost in an unoptimized
setting, namely where VMs are mapped randomly to the
BCube servers. The setting serves as a simple and worst-case
reference point, from which our migration algorithms seek
to improve the VM embeddings. Subsequently, we show that
our algorithms have the desirable property, that they can only
improve the embedding, and never increase the amortized costs
under a matching communication pattern. Finally, we derive
a cost lower bound on the optimal possible allocation by any
migration algorithm for the corresponding guest graph.

1) Baseline Performance: As an initial placement and as a
simple baseline for the migration algorithms, we will some-
times consider a setting where VMs are mapped randomly to
the physical machines. In such a random initial setting, the
expected communication cost of a given node pair (under any
guest graph!) can be computed as follows in a BCube.

Lemma 1: Given a host graph H = BCube(n, k) and an
arbitrary guest graph G, consider a mapping function λ which
assigns each VM to a machine of the BCube chosen uniformly
at random. Then, the expected communication cost for any
VM pair BCube(n,k) is given by (k + 1)(n− 1)/n.

Proof: Let X(u, v) be a random variable representing the
distance of the shortest path between u and v. Recall that in

6

a BCube, the distance between two nodes is given by their
Hamming distance. Fix a specific server m in BCube(n,k).
Since the length of the identifiers of the BCube(n,k) nodes
is k + 1, there are

(
k+1
i

)
addresses with a Hamming distance

of i from m. For every index, (n− 1) values can be chosen,
and hence the number of servers at distance i from node m is
(n − 1)i

(
k+1
i

)
Due to the symmetries of BCube(n,k), this is

also the formula for the number of servers at distance i from
any given server. Let us refer to the diameter of the graph by
D and recall that the diameter of BCube(n,k) is k + 1. Then
the expected shortest path from any given v is:

E[X(u, v)] =

D∑
i=1

i · P [d(u, v) = 1] =

k+1∑
i=1

(i · di(u, v))

nk+1

=

∑k+1
i=1 i

(k+1
i

)
(n− 1)i

nk+1
=

(k + 1)(n− 1)

n

2) Monotonic Improvement Property: Despite their sim-
plicity, our algorithms feature some basic guarantees. For
example, our algorithms pass the monotonic improvement test
under matching communication patterns: if VMs communicate
in a pair-wise fashion, i.e., subject to G(M), the amortized
communication cost can only become lower over time. The
proof is simple and omitted due to space constraints.

Lemma 2: Given a host graph H = BCube(n, k) and a
guest graph G = G(M), Destination-Swap algorithms can only
reduce the amortized communication cost over time.

3) Lower Bound: Of course, there are inherent limitations
on what can be achieved by embedding optimizing algorithms.
For clique and star like guest graphs, bounds can be computed
from cuts and Huffman coding arguments, see e.g. [1]. How-
ever, note that optimal embeddings are possible in our sub-
cube guest graphs GBn

′k′ . We will indicate this lower bound
in the figures of our simulation.

Lemma 3: The guest graph G = G(BCube(n′,k′)) can be
perfectly embedded in the host graph H = BCube(n, k): the
amortized cost (Definition 1) is one.

For Kx, we will use the following approximate (locally
optimal) lower bound: Given H = BCube(n, k), G = G(Kx)

and integer logn x then a situation where all VMs in Kx are
arranged in the sub-cube BCube(n, logn x− 1) constitutes a
local minimum with cost is (x + 1)(n − 1)/n. The proof is
by induction.

C. Simulation Study

To evaluate our Destination-Swap algorithms in more detail
and to compare their behavior in different settings and under
different communication patterns σ, we developed a simulation
framework for the BCube(n,k) datacenter topology.

If not stated otherwise, for our simulations, we will consider
a BCube(3, 7) which consists of 6,561 nodes. For each
experiment, we simulate |σ| = 3m requests. We will repeat
each experiment ten times and plot the average values. (The
variance of our experiments is typically very low.)

0

1

2

3

4

5

6

3 9 27 81 243 729 2187

0

1

2

3

4

5

6

3 9 27 81 243 729 2187

0

1

2

3

4

5

6

3 9 27 81 243 729 2187 0

1

2

3

4

5

6

3 9 27 81 243 729 2187

MeetMiddle

Random-Direct

BestSwitch-Direct

BestNeighbor-Direct

BestNeighbor-Indirect

NoAlgorithm

Lower Bound

Fig. 4. Amortized communication cost as a function of the (tenants) guest
graph size after 3m requests for host graph BCube(3,7) and for upper left: all-
to-all communication G(Kx), upper right: one-to-all communication G(Sx),
bottom left: G(BCube(3,log3(x)−1)) pattern.

1) Impact of Scale: We first investigate how the amortized
communication cost (over σ requests) depends on the network
size. We concentrate on direct migration algorithms for now.
Figure 4 (upper left) shows that under unweighted all-to-
all communication patterns G(Kx) (as a function of x), all
migration algorithms strictly improve the amortized cost. The
best performance is achieved by BESTNEIGHBOR, followed
by BESTSWITCH; RANDOM can be more than 50% more
expensive. This is not surprising, and shows that the additional
information about the local amortized communication cost
generally helps. Moreover, since the neighbors of a specific
VM can be located quite far from each other, the destination
should be selected carefully for the swap operation.

Figure 4 (upper right) studies the same setting but for
a weighted one-to-all communication pattern G(Sx). While
the amortized costs are generally slightly lower in this case,
the order of the algorithms is the same as before. Finally,
Figure 4 (bottom left) shows the results for weighted sub-cube
communication patterns G(BCube(n′,k′)).

2) Benefit and Limitation of Indirect Swaps: We next
consider the indirect swapping methods. Figure 5 (upper
left) (for the unweighted all-to-all communication G(Kx)) and
Figure 5 bottom (for a weighted sub-cube communication
G(BCube(n′,k′))) provides a comparison of direct and indirect
strategies of BESTNEIGHBOR. We see that direct swaps are
better than indirect swaps: in case of highly connected guest
graphs, the indirect strategy migrates multiple VMs in a non-
optimized manner, while the direct algorithm restricts itself to
the best switch or neighbor.

However, under a more star-like and weighted communica-
tion pattern, see Figure 5 (bottom) (for a weighted one-to-
all communication G(Sx)) the indirect strategy is preferable.
This can be explained by the fact that once BESTNEIGH-
BOR managed to collocate most VMs of a given tenant,
the VMs communicating more frequently will stay closer to
the center of the star guest graph; in contrast, in the direct
approach, a frequently communicating VM can be globally
displaced again. This is also the reason why in Figure 5

7

0

1

2

3

4

5

6

3 9 27 81 243 729 2187
0

1

2

3

4

5

6

3 9 27 81 243 729 2187

0

1

2

3

4

5

6

3 9 27 81 243 729 2187

Fig. 5. Direct vs indirect for BESTNEIGHBOR: Amortized communication
cost as a function of (tenant) guest graph size after 3m requests for host
graph BCube(3,7) and upper left: unweighted guest graph G(Kx), upper
right: weighted G(BCube(3,log3(x)−1)) and bottom: weighted one-to-all
communication G(Sx). The algorithm legend is the same as in Figure 4.

(bottom), a larger guest graph (i.e., more involved VMs)
increases the advantage of BestNeighbor − Indirect over
BestNeighbor −Direct: from Lemma 1 we know that a host
m has (n−1)1

(
k+1
1

)
= 14 neighbors at distance one, so when

the guest graph is of size nine then also the direct approach
can maintain a local communication. However, when the guest
graph becomes larger, more and more nodes need to be moved
larger from the center and the advantages of the indirect swaps
are emphasized.

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 2 4 6 8 10 12 14 16 18

3

9

27

81

243

729

2187
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 2 4 6 8 10 12 14 16 18

2.5

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12 14 16 18

Fig. 6. Amortized communication cost over time (number of per link
requests) for host graph BCube(3,7). Left: unweighted all-to-all guest graph
G(Kx) under BESTNEIGHBOR-DIRECT (colors represent different sizes of
tenant guest graph), right: unweighted all-to-all guest graph G(K27) (colors
represent different types of algorithms). The legend for the algorithms is the
same as in Figure 4.

3) Reaction Time: Of course, an eventual reduction of the
amortized communication cost alone is not very interesting:
over a long time, a given communication pattern could also
be learned and the embedding adapted accordingly. Rather,
the main purpose of our algorithms is to flexibly react to
communication shifts and quickly find a new embedding.

In the following, we provide evidence that our algorithms
indeed readjust the embedding quickly. Figure 6 left show
that the convergence is quick for the different kinds of our
algorithms, and Figure 6 right show that it’s also quick for
different sizes of tenants graphs (both under unweighted all-to-
all communication); the time axis is normalized and represents
the number of requests per guest graph edge. We find that
the convergence time of all our algorithm is very low: for
a 6,561-nodes host graph, a good embedding is found after

around 10 requests per edge. Other simulation results (not
included in these figures) show that for weighted one-to-all
communication the convergence if about after 3 requests per
edge.

1.7
1.8
1.9

2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3

A
m

o
rt

iz
e

d
 C

o
st

Weighted Bcube Weighted Star

Fig. 7. Amortized communication
cost on host graph BCube(3,3), and a
BCube as well as a star communication
pattern (weighted).

4) Intra-Tenant
Migration: Our algorithms
can also be used to optimize
the VM placement inside
a tenant: we restrict the
migration destinations
and neighbors to the
VMs of the given tenant.
Naturally, this reduces
the number of migration
options significantly, and
we expect lower gains from

migration. In order to investigate the benefits and limitations
of intra-tenant migrations, we consider a setting where the
substrate network hosts a single, connected tenant. This
allows us to abstract from cost artefacts due to non-local
VMs placements: the single tenant is mapped locally, but in
a random and hence suboptimal manner. Figure 7 shows our
results for host graph BCube(3, 3) and a BCube and a star
communication pattern. The figure indicates that even inside a
single tenant, migration can help reducing the communication
cost by around 50% under a BCube traffic matrix; under a
one-to-all communication pattern, the benefits are lower.

V. RELATED WORK

Today’s networks become more and more dynamic in the
sense that they are able to self-adjust to the network state,
user demand, or even energy cost, and the benefits of process
migration have been exploited long before the emergence
of the cloud computing paradigm, e.g., for load-balancing
applications [14]. Generally, applications range from self-
optimizing peer-to-peer topologies over green computing (e.g.,
due to reduced energy consumption) [15] to adaptive virtual
machine migrations in datacenters [25], microprocessor mem-
ory architectures [18], grids [5] or elastic virtual and wide-
area cloud networks [24]. Other self-adjusting routing scheme
were considered, e.g., in scale-free networks to overcome
congestion [27].

VM migration in cloud computing has been proposed to
improve resource utilization as well as to balance load and
alleviate hotspots [17], or even save energy [15]. For exam-
ple, the VMware Distributed Resource Scheduler uses live
migration to balance load in response to CPU and memory
contention.

Seamless VM migration can be implemented in different
ways. One may pre-copy [8] the VM memory to the destina-
tion host before releasing the VM at the source, or defer the
memory transfer until the processor state has been sent to the
destination (the so-called post-copy [16] approach). Wood et
al. [32] investigate automated black-box, gray-box, and hybrid
strategies for VM migration in datacenters. Researchers also
conduct measurements and derive models for VM migration

8

costs, e.g., under Web 2.0 workloads and quality-of-service
sensitive applications. [28]

VM migration has also been proposed for wide-area net-
works, where a lazy copyon reference can be used for moving
VM disk state to reduce migration costs over weak links. [31]
In the wide-area, moving entire services closer to the (mo-
bile) users can reduce access latency [19], and there also
exists work on the migration of entire virtual networks [24]
which are latency-critical (“move-with-the-sun”) or latency-
uncritical (“move-with-the-moon”). Also in the context of
network virtualization, Hao et al. [13] have shown that under
certain circumstances, the migration of a Samba front-end
server closer to the clients can be beneficial even for bulk-
data applications.

In the theory community, many migration problem variants
have been studied in the context of online page migration, and
more generally, online metrical task systems [7]. There exist
several interesting results by Naor et al. on how to embed
and migrate services to reduce load, e.g., [4], [9]. Indeed,
given a fixed communication pattern between pairs of VMs,
our work is related to classic graph embedding problems
such as the minimum linear arrangement (e.g., [10]) of a
graph. Recently, such embedding problems have also been
studied from the perspective of self-adjusting networks, in
the context of distributed splay datastructures and peer-to-peer
networks [1]. Indeed, our algorithms are inspired by the classic
splaying techniques introduced in the seminal work by Sleator
and Tarjan [26] on self-adjusting search trees, in the sense that
we also aggressively migrate VMs closer together.

However, we are not aware on any literature on online and
adaptive VM migration algorithms that flexibly adapt to a
dynamic demand.

VI. CONCLUSION

We understand our paper as a first step towards a better
understanding of simple and adaptive VM migration strategies.
The presented Destination-Swap algorithms are pair-based
only and do not try to infer or accumulate much information
about the environment. This slim solution increases the flexi-
bility, and hence reduces the reaction time of the algorithms.

We have shown that this approach can indeed improve the
embedding of VMs, especially in inter-tenant situations where
VMs can be globally optimized throughout the entire (private)
datacenter. If a tenant must improve the embeddings itself and
is restricted to a given set of physical machines, the benefits are
naturally lower but still visible. Moreover, our results suggest
that there exists an interesting tradeoff between direct and
indirect approaches, and we find that indirect algorithms are
better for sparser and more skewed communication patterns,
as locality is preserved.

Our work opens several interesting directions for future
research. Obviously, a deeper understanding of the tradeoff
between the embedding quality and the number of migrations
needs to be developed. Another interesting question regards the
amount of additional information (beyond the local amortized
cost) needed to improve the mapping further and faster.

REFERENCES

[1] C. Avin, B. Haeupler, Z. Lotker, C. Scheideler, and S. Schmid. Locally
self-adjusting tree networks. In Proc. IEEE IPDPS, 2013.

[2] B. Hindman et al. Mesos: a platform for fine-grained resource sharing
in the data center. In Proc. USENIX NSDI, 2011.

[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards
predictable datacenter networks. In Proc. ACM SIGCOMM, pages 242–
253, 2011.

[4] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer. Minimum congestion
mapping in a cloud. In Proc. ACM PODC, 2011.

[5] D. Batista, N. da Fonseca, F. Granelli, and D. Kliazovich. Self-adjusting
grid networks. In Proc. ICC, 2007.

[6] L. N. Bhuyan and D. P. Agrawal. Generalized hypercube and hyperbus
structures for a computer network. IEEE Trans. Comput., 33(4):323–
333, Apr. 1984.

[7] A. Borodin and R. El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, New York, NY, USA, 1998.

[8] C. Clark et al. Live migration of virtual machines. In Proc. NSDI, 2005.
[9] R. Cohen, L. Lewin-Eytan, S. Naor, and D. Raz. Almost optimal virtual

machine placement for traffic intense data center. In Proc. IEEE Infocom
Mini-Conference, 2013.

[10] N. R. Devanur, S. A. Khot, R. Saket, and N. K. Vishnoi. Integrality gaps
for sparsest cut and minimum linear arrangement problems. In Proc.
ACM STOC, 2006.

[11] ETSI. Network functions virtualisation. Introductory White Paper, 2013.
[12] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and

S. Lu. Bcube: a high performance, server-centric network architecture
for modular data centers. SIGCOMM CCR, 39(4):63–74, Aug. 2009.

[13] F. Hao, T. V. Lakshman, S. Mukherjee, and H. Song. Enhancing dynamic
cloud-based services using network virtualization. SIGCOMM CCR,
40(1):67–74, 2010.

[14] M. Harchol-Balter and A. B. Downey. Exploiting process lifetime
distributions for dynamic load balancing. ACM Trans. Comput. Syst.,
15(3):253–285, 1997.

[15] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. Elastictree: saving energy in data center
networks. In Proc. USENIX NSDI, 2010.

[16] M. R. Hines and K. Gopalan. Post-copy based live virtual machine
migration using adaptive pre-paging and dynamic self-ballooning. In
Proc. VEE, 2009.

[17] N. Jain, I. Menache, J. S. Naor, and F. B. Shepherd. Topology-aware
vm migration in bandwidth oversubscribed datacenter networks. In Proc.
39th ICALP, 2012.

[18] M. Lis, K. Shim, M. Cho, C. Fletcher, M. Kinsy, I. Lebedev, O. Khan,
and S. Devadas. Brief announcement: distributed shared memory based
on computation migration. In SPAA, pages 253–256. ACM, 2011.

[19] M. Bienkowski et al. The wide-area virtual service migration problem: A
competitive analysis approach. IEEE/ACM Transactions on Networking
(ToN), to appear.

[20] J. C. Mogul and L. Popa. What we talk about when we talk about cloud
network performance. SIGCOMM CCR, 42(5):44–48, 2012.

[21] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: Managing
performance interference effects for qos-aware clouds. In Proc. EuroSys,
2010.

[22] Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-Jääski, and P. Hui. Exploiting
hardware heterogeneity within the same instance type of amazon ec2.
In Proc. HotCloud, 2012.

[23] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds. In Proc. 16th ACM CCS, pages 199–212, 2009.

[24] G. Schaffrath, S. Schmid, and A. Feldmann. Optimizing long-lived
cloudnets with migrations. In Proc. IEEE/ACM UCC, 2012.

[25] Y. Shang, D. Li, and M. Xu. Energy-aware routing in data center
network. In Proc. Workshop Green Networking, pages 1–8, New York,
NY, USA, 2010.

[26] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees. J.
ACM, 32(3):652–686, July 1985.

[27] M. Tang, Z. Liu, X. Liang, and P. M. Hui. Self-adjusting routing
schemes for time-varying traffic in scale-free networks. Phys. Rev. E,
80(2):026114, Aug 2009.

[28] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya. Cost of virtual
machine live migration in clouds: A performance evaluation. In Proc.
International Conference on Cloud Computing (CloudCom), pages 254–
265, 2009.

[29] G. Wang and E. Ng. The impact of virtualization on network perfor-
mance of amazon ec2 data center. In Proc. INFOCOM, 2010.

[30] A. Williamson. Has amazon EC2 become over subscribed? http://alan.
blog-city.com/has amazon ec2 become over subscribed.htm, 2013.

[31] T. Wood, K. K. Ramakrishnan, P. Shenoy, and J. van der Merwe.
Cloudnet: dynamic pooling of cloud resources by live wan migration
of virtual machines. SIGPLAN Not., 46(7):121–132, 2011.

[32] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and
gray-box strategies for virtual machine migration. In Proc. USENIX
NSDI, 2007.

