
Brief Announcement:
Towards Distributed and Reliable

Software Defined Networking?

Marco Canini1 Petr Kuznetsov2 Dan Levin1 Stefan Schmid1

1 TU Berlin / T-Labs 2 Télécom ParisTech

Software-defined networking (SDN) is a novel paradigm that out-sources the
control of packet-forwarding switches to a set of software controllers. The most
fundamental task of these controllers is the correct implementation of the net-
work policy, i.e., the intended network behavior. In essence, such a policy specifies
the rules by which packets must be forwarded across the network. This paper
initiates the study of the SDN control plane as a distributed system.

We consider a distributed SDN control plane which accepts policy updates
(e.g., routing or access control changes) issued concurrently by different con-
trollers and whose goal is to consistently compose these updates. One of our
contributions is precisely the notion of consistency of concurrent policy com-
position. We introduce a formal model for SDN under fault-prone concurrent
control. In particular, we seek to ensure per-packet consistency [3]. Informally,
this property ensures that every packet is processed at every switch it encounters
in the data plane according to just one and same policy, which is the composition
of policy updates installed by the time when the packet entered the network.

We present the abstraction of Consistent Policy Composition (CPC) which
offers a transactional interface. A policy-update request returns commit if the
update is successfully integrated in the current network policy or abort if the
update cannot be installed. Our correctness property informally requires that
the abstraction, regardless of the actual interleaving of concurrent policy updates
and data packets’ arrivals, appears sequential to every data packet, as though all
the committed requests (and possibly a subset of incomplete ones) are applied
atomically and no data packet is in flight while an update is being installed.

We show that it is generally impossible to implement the CPC abstraction
in the presence of a single controller’s crash failure. The requirement of per-
packet consistency allows us to introduce an interesting variant of the bivalency
argument [2], where the valency of an algorithm’s execution accounts for all pos-
sible paths a packet may take in all extensions of the execution. Since typically
the controllers do not have influence on the network traffic workload, our im-
possibility proof is able to exploit the intertwined combination of two kinds of
concurrency: overlapping policy updates arbitrarily interleaving with traffic.

Accordingly, we investigate stronger model abstractions which enable fault-
tolerant CPC implementations. We find that a slightly more powerful SDN
switch interface supporting an atomic read-modify-write allows for a wait-free
CPC solution, and we investigate the tag complexity of such a solution.

? A full version of this paper can be found at [1].

switch
1

switch 3

switch
2

apply(π1)

p1 p2 p3

(a)

sw 1
sw 2
sw 3

p1

p2

p3

[]
[]

[]

apply(π1)
apply(π2)

apply(π3) nack

ack
ack

Time

[]
[]

apply(π1)

apply(π2) ack

ack

Time

=~

(b)

Fig. 1. Example of a policy composition: (a) 3-process control plane and 3-switch data
plane, (b) a concurrent history H and its sequential equivalent HS .

Policy Composition in SDN: Example. Consider a network consisting of
three switches sw1, sw2 and sw3 (Figure 1(a)), and controlled by p1, p2, and
p3. The controllers’ function is to try to install policy-update requests on the
switches. An example of a concurrent history H is presented in Figure 1(b).
The three controllers try to concurrently install three different policies π1, π2,
and π3. Imagine that π1 and π2 are applied to disjoint fractions of traffic (e.g.,
π1 affects only http traffic and π2 only ssh traffic) and, thus, can be installed
independently of each other. In contrast, let us assume that π3 is conflicting with
both π1 and π2 (e.g., it applies to traffic from address 1.2.3.4). In this history,
π1 and π2 are committed (returned ack), while π3 is aborted (returned nack).

While the concurrent policy-update requests are processed, three packets are
injected to the network (at switches sw1, sw2, and sw3) leaving three traces de-
picted with dotted and dashed arrows. Each trace is in fact the sequence of ports
which the packet goes through while it traverses the network. For example, in one
of the traces (depicted with the dotted arrow), a packet arrives at sw1, then it is
forwarded to sw2, and then to sw1. Next to H we present its “sequential equiv-
alent” HS . The traffic on the data plane is processed as though the application
of policy updates is atomic and packets cross the network instantaneously.

The full paper [1] presents a formal specification of concurrent policy compo-
sition and explores its implementation costs. We believe that this work opens a
new and exciting problem area with a number of unexplored concurrency issues.

References

1. M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. The case for reliable software
transactional networking. Technical report, arXiv TR 1305.7429, 2013.

2. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed con-
sensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

3. M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker. Abstractions
for network update. In SIGCOMM, 2012.

