
Brief Announcement:
Dynamic Forwarding Table Aggregation without
Update Churn: The Case of Dependent Prefixes?

Marcin Bienkowski1, Nadi Sarrar2, Stefan Schmid2, and Steve Uhlig3

1 Institute of Computer Science, University of Wrocław, Poland
2 Telekom Innovation Laboratories & TU Berlin, Germany

3 School of EE and CS, Queen Mary University, United Kingdom

Abstract. This paper considers the problem of a route or SDN con-
troller which manages a FIB table. The controller wants to aggregate
the FIB entries as much as possible while minimizing the interactions
with the FIB. We present a O(w)-competitive online algorithm for the
aggregation of FIB tables in presence of routing updates, where w is the
maximum length of an IP address. Our result is asymptotically optimal
within a natural class of algorithms.

Introduction and Model. This paper studies a new online problem arising
in the context of forwarding table aggregation in a router or Software Defined
Network (SDN) switch. The Forwarding Information Base (FIB) contains the
rules used by the router to decide, for each packet, to which port it should be
forwarded; a rule is simply an (IP prefix, port) pair. We will identify ports with
colors.

More specifically, any packet has a destination (IP) address which is a binary
string of length w (e.g., w = 32 for IPv4 and w = 128 for IPv6). For any packet
processed by the router, a decision is made on the basis of its destination IP
address x using the longest prefix match policy: among the FIB rules {(pi, ci)}i,
the router chooses the longest pi being a prefix of x, and forwards the packet
to the port of color ci. Unlike [1], we allow dependent prefixes, i.e., the address
ranges described by prefixes stored in the FIB may be contained in each other.

In order to save memory, we let the online algorithm aggregate this table,
i.e., replace the current set of rules by an equivalent but smaller set. In addition
to reducing the number of FIB rules, an online algorithm should minimize the
number of rule updates. Precisely speaking, the router consists of two parts:
the controller (e.g., implemented on the route processor) and the (compressed)
FIB (stored in a fast and expensive memory). The controller keeps a copy of
the uncompressed FIB (U-FIB) and receives dynamic routing updates to this
structure (that may change the color of an existing prefix). Right after such
an update occurs, the controller must ensure that the U-FIB and the FIB are
equivalent. To this end, the controller can insert, delete or update individual
rules in the FIB, cf Fig. 1a.
? A full version of this paper can be found at [2].



Controller

FIB
(U-FIB)

uncompressed FIB

(compressed)

insert
delete
update

INPUT

(changes U-FIB)

p
ac
ke
ts

b) U-FIB triea) Controller and FIB

Fig. 1. On the left: Controller and FIB; the controller updates the rules in the FIB.
This paper focuses on online algorithms for the controller. On the right: Example U-FIB
trie. Stick boundaries are marked with dashed lines.

For presentation purposes, we represent both U-FIB and FIB as colored
binary tries. These tries may contain blank nodes that do not correspond to
existing rules.
Costs. We associate a fixed cost α with a change of a single rule in FIB. This
paper focuses on the minimization of the sum of the total update cost and the
total memory cost, where the latter is defined as the size of the FIB integrated
over time.
Our Result. We present the online algorithm HiMs (Hide Invisible and
Merge Sibling). HiMs is based on the concept of sticks: roughly speaking, a
stick is a maximal part of the U-FIB trie that — if cut out of the trie — will
constitute a trie of its own, with all leaves colored and all internal nodes blank.
An example is given in Fig. 1b.

HiMs employs two time-delayed optimization rules: (1) If there are two sib-
lings in a stick that are of the same color for time α, then they are removed and
a rule corresponding to their parent is inserted. (2) If all colored nodes of a stick
are of the same color and of the same color as their least colored ancestor in
the trie (again for time α), then all these stick rules become removed from the
trie. These optimizations are rolled back only when necessary to assure that the
forwarding behavior of FIB is the same as that of U-FIB. A precise definition of
the algorithm and its analysis are given in [2].

Theorem 1. HiMs is O(w)-competitive. This is optimal in the class of all algo-
rithms (even offline ones) that do not create dependent prefixes within a single
stick. Furthermore, HiMs can be implemented using a data structure, whose
amortized complexity for a single operation is at most O(w) times the number
of updates Opt performs in its FIB.

References

1. M. Bienkowski and S. Schmid. Competitive FIB aggregation for independent pre-
fixes: Online ski rental on the trie. In Proc. of the 20th Colloquium on Structural
Information and Communication Complexity (SIROCCO), 2013. To appear.

2. N. Sarrar, M. Bienkowski, S. Schmid, S. Uhlig, and R. Wuttke. Exploiting Locality
of Churn for FIB Aggregation. In TR 2012/12, TU Berlin, 2012.


	Brief Announcement: Dynamic Forwarding Table Aggregation without Update Churn: The Case of Dependent Prefixes

