
T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

it 4/2013

Special Issue ���

A Federated CloudNet Architecture:
The PIP and the VNP Role
Eine föderierte CloudNet-Architektur: Die PIP und die VNP Rolle

Johannes Grassler, Gregor Schaffrath, Stefan Schmid∗, TU Berlin & T-Labs

∗ Correspondence author: stefan@net.t-labs.tu-berlin.de

Summary We present a generic and flexible architecture
to realize CloudNets: virtual networks connecting geograph-
ically distributed cloud resources (such as storage or CPU)
with resource guarantees. Our architecture is federated and
supports different (and maybe even competing) economical
roles, by providing explicit negotiation and provisioning inter-
faces. Contract-based interactions and a resource description
language that allows for aggregation and abstraction, pre-
serve the different roles’ autonomy without sacrificing flexi-
bility. Moreover, since our CloudNet architecture is plugin
based, essentially all cloud operating systems (e. g., Open-
Stack) or link technologies (e. g., VLANs, OpenFlow, VPLS)
can be used within the framework. This paper describes two
roles in more detail: The Physical Infrastructure Providers (PIP)
which own the substrate network and resources, and the Vir-
tual Network Providers (VNP) which can act as resource and
CloudNet brokers and resellers. Both roles are fully imple-
mented in our wide-area prototype that spans remote sites and
resources. ��� Zusammenfassung Wir beschreiben
eine generische und flexible Architektur, um Cloud Netzwerke

(kurz: CloudNets) zu realisieren. CloudNets sind virtuelle Netz-
werke, die weltweit verteilte Cloud-Ressourcen verbinden (mit
Qualitätsgarantien). Unsere Architektur ist föderiert und unter-
stützt mehrere (eventuell sogar konkurrierende) ökonomische
Spieler, indem sie explizite Verhandlungs- und Administra-
tionsschnittstellen anbietet. Durch vertragsbasierte Interaktio-
nen und eine Ressourcenbeschreibungssprache, welche Aggre-
gationen und Abstraktionen zulässt, ist die Autonomie der
unterschiedlichen Rollen ohne Flexibilitätsverluste gewährleis-
tet. Durch einen Plugin-basierten Aufbau kann die CloudNets-
Architektur mit beliebigen Cloud-Betriebssystemen (z. B. Open-
Stack) und Linktechnologien (z. B. VLANs, OpenFlow, VPLS)
umgesetzt werden. Dieser Artikel befasst sich insbesondere mit
den folgenden zwei Rollen: Dem Provider der physikalischen
Infrastruktur (PIP), welcher das Substrat und dessen Ressourcen
besitzt und unterhält, und dem Virtuellen Netzwerk Provider
(VNP), welcher als Ressourcen- oder CloudNet-Broker auftreten
kann. Die VNP-Rolle kann dabei sogar rekursiv sein. Sowohl die
PIP- als auch die VNP-Rolle sind in unserem wide-area Prototyp
vollständig implementiert.

Keywords ACM CSS → Networks → Network architectures; Computer Networks, Virtualization, Cloud Computing ���
Schlagwörter Computernetzwerke, Virtualisierung, Cloud Computing

1 Introduction
The virtualization paradigm is arguably the main in-
novation motor in today’s Internet. Especially server
virtualization (a. k. a. node virtualization) revolutionized
the server business over the last years, and in today’s
clouds, resources are fully virtualized. However, node

virtualization alone is meaningless if no access to the
cloud resources is provided: to ensure performance and
isolation guarantees, virtualization needs to be extended
to the communication network. Software-defined networks
(SDN) are one way to implement network and link vir-
tualization [3].

it – Information Technology 55 (2013) 4 / DOI 10.1524/itit.2013.1007 © Oldenbourg Wissenschaftsverlag 155

mailto:stefan@net.t-labs.tu-berlin.de


T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Special Issue

The concept of CloudNets (short for cloud networks)
takes the virtualization paradigm one step further, envi-
sioning a unified approach which combines node and
link virtualization and offers Quality-of-Service (QoS)
guarantees, both on the nodes and the links. Basically,
a CloudNet describes a virtual network topology where
the virtual nodes represent cloud resources (e. g., storage
or computation) which are connected by virtual links.

While CloudNet concepts are already emerging in the
context of data centers (e. g., [1; 2]), we expect that in
the future, Internet Service Providers (ISP) will also of-
fer flexibly specifiable and on-demand virtual networks,
connecting (heterogeneous) cloud resources with con-
nectivity guarantees. The CPU and storage resources can
not only be distributed over large datacenters, but may
also be located, e. g., together with the ISP’s DSLAMs in
the central offices or Points-of-Presence (PoP), or even in
the street cabinets (in “nano-datacenters”). Hosting (and
migrating) services close to the users is known to increase
productivity and revenues: e. g., a better web performance
directly translates into higher productivity at Google, and
higher revenue at Microsoft Bing or Amazon [4].

Besides statically connecting distributed resources, an
elastic wide-area CloudNet connectivity can be attractive,
e. g., for inter-site data transfers or state synchroniza-
tion of a distributed application (such as online gaming).
Other use cases are the spill-over (or out-sourcing) to the
public cloud in times of resource shortage in the private
data center, or the distribution of content to caches.

Note that a CloudNet may not even specify the loca-
tions of its constituting resources, and the mapping of the
CloudNet to the physical network can hence be subject to
optimization. The resources of the CloudNets may even
be migrated to different locations over time. For example,
latency-critical CloudNets (e. g., realizing a game, an SAP,
or a social networking service) can be dynamically mi-
grated together with the demand of the (mobile) users
(“move with the sun”), while delay-tolerant CloudNets
(e. g., for large-scale computations or bulk data storage)
are run on physical servers remote from the users (“move
with the moon”). Concretely, the migration of (parts of)
a CloudNet can involve the movement of one or multiple
virtual nodes (“virtual machines”); however, sometimes
it may be sufficient to migrate virtual links only (e. g.,
finding alternative routes in the physical network).

Moreover, resources allocated to a CloudNet can be
scaled up or down depending on the demand at the
different sites. Finally, the decoupling of the CloudNet
from the underlying physical infrastructure can also im-
prove reliability, as networks can seamlessly switch to
alternative cloud and link resources after a failure, or for
maintenance purposes.

We expect that several different economic players will
be involved in the provisioning of CloudNets. Besides the
service and infrastructure provider, new business models
may emerge, for instance, resource brokers that resell
CloudNet resources.

Contribution
The scientific contribution of this paper is the presen-
tation of an architecture which supports the CloudNet
negotiation between different economic roles while re-
specting their autonomy. In particular, we have also
described interfaces and communication protocols be-
tween the physical infrastructure provider and the virtual
network provider roles. As a contribution to the research
community, we also present an open-source prototype
implementation of these concepts.

In particular, we present the anatomy and prototype
implementation of a flexible and federated CloudNet ar-
chitecture. We will describe the Physical Infrastructure
Provider (PIP) role and the Virtual Network Provider
(VNP) role in more detail. The two roles communicate
requirements and allocations via clear negotiation inter-
faces and using a generic resource description language.
Since interfaces between players are generic and since
we do not distinguish between physical and virtual re-
sources, a recursive role concept is supported (e. g., a VNP
sub-structured into other VNPs). Moreover, a high gen-
erality is achieved by a plugin architecture which allows
for replacement of underlying technologies and operating
systems.

In contrast to the distributed CloudNet architectures
by Baldine et al. [5] (whose control framework was partly
developed in NSF GENI project) or Ericsson’s Network
Embedded Clouds [6], our approach seeks to keep (and ex-
ploit) the embedding and resource allocation flexibilities
in the service specification without violating the auton-
omy of the different stakeholders.

2 Architecture
We first give some background on the CloudNet vision
and on network virtualization [7] in general.

The Road to CloudNets
Inter-provider QoS connectivity has been discussed for
many years now but it is still not widely supported. So
why should wide-area and multi-provider CloudNets be-
come a reality now? We believe that the answer lies in the
economical incentives, and the recent virtualization and
Software-Defined Networking (SDN) trends (e. g., [3]).
Content and service providers (e. g., Netflix, Amazon,
etc.) as well as content distribution network providers
(e. g., Akamai) have become powerful players in the Inter-
net and have stringent resource requirements. CloudNets
can help an ISP to monetarize its infrastructure, not only
by sharing resources but also by offering a flexible service
deployment. For example, in the architecture described
in this paper, physical infrastructure providers participate
in the service negotiation, which allows them to become
a service partner at eye-level (rather than being a pure
bitpipe provider).

We expect that CloudNets will first be deployed in-
side a single ISP. Such an innovative ISP may benefit
from a more efficient resource management, and may

156



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

A Federated CloudNet Architecture: The PIP and the VNP Role ���

have a first-mover advantage by offering new flexible and
elastic services. Over time, it can make sense for so far
independent CloudNet providers to collaborate. For ex-
ample, two providers with a local footprint can offer more
global CloudNets.

Economical Roles
The advent of CloudNets may create a tussle among
service and infrastructure providers over who should
operate and who should manage the corresponding net-
works. In [8], we identified two additional roles (i. e.,
potential market players) besides Physical Infrastructure
Providers (PIPs) and Service Providers (SPs): Virtual Net-
work Providers (VNPs) (essentially “resource brokers”)
for assembling virtual resources from one or multiple
PIPs into a virtual network, and Virtual Network Op-
erators (VNOs) for the installation and operation of the
CloudNet provided by the VNP according to the needs of
the SP. Our CloudNet architecture defines standardized
interfaces between the players to automate the setup of
virtual networks (by using a common control plane).

2.1 Architecture & Prototype

Specification and Specificity
Our architecture is based on a Resource and CloudNet
Description Language (RDL) [9] (a. k. a. FleRD) which re-
volves around basic NetworkElement (NE) objects (for
both nodes and links!) that are interconnected via Net-
workInterfaces (NI) objects. Keeping these objects generic
has the side effect that descriptions of resource aggrega-
tions, or non-standard entities (e. g., clusters of providers)
is trivially supported: they may be modeled as NEs of an
appropriate type and included as topological elements.
Thus, we can for example also describe mappings in the
context of a reseller. Concretely, NE properties are rep-
resented as a set of attribute-value pair objects labeled as
Resource and Features. The meaning of resources here is
canonic and resources may be shared amongst NEs. Fea-
tures represent any type of property that is not a resource
(e. g., CPU architecture).

One challenge in the communication of specifications
and RDL elements across different roles is to ensure con-
sistency, especially for non-topological requirements. For
instance, imagine a service provider specification only
requires that two nodes are binary compatible (e. g., 32
or 64 bit). How can a VNP in charge of distributing
such a CloudNet across multiple PIPs fulfill the specifica-
tion? A simple solution would be that the VNP chooses
one of the different options (e. g., both 64 bit) before
forwarding the request to the different PIPs. However,
this solution comes with an unnecessary specificity and
hence a loss in flexibility: as the VNP has a limited view
on the infrastructure of the PIPs only, the VNP’s choice
may lead to inefficient allocations (e. g., the two nodes
are mapped unnecessarily far away). Alternatively, the
VNP may assign the corresponding NEs globally unique

IDs which can be used by the PIPs to agree on a choice
themselves; for instance, a unique identifier may con-
sist of a unique VNP ID followed by a VNP-chosen NE
identifier. The required communication to achieve this
may go via the VNP again, or occur directly between the
PIPs.

Plugins
Our architecture is plugin-based to facilitate extensions
and adaptations to new networking and virtualization
technologies. Plugin-based operation hinges on a fea-
ture of the resource description language, namely typed
NetworkElements: The NetworkElement objects all have
a hierarchical attribute field (this also applies to the Net-
workInterface, Resource and Feature objects). This field
is a string of hierarchy levels, like a path in a Unix file
system (e. g., /node/host/generic).

Much like a CloudNet, any player’s substrate can
be described in terms of the RDL. Hence all substrate
NEs and all CloudNet NEs will have an attribute field.
The higher order hierarchy levels of a CloudNet’s NEs
type will be used in the course of the mapping process
to determine which substrate NEs they can be allo-
cated to (i. e., both /node/host/mainframe and
/node/host/server might be suitable allocations
for a /node/host/generic CloudNet NE).

Once a CloudNet’s resources have been mapped to
a player’s substrate resources, the lower levels of the sub-
strate NE’s type will be used to determine which plugin
to use to provision the CloudNet NEs in question. De-
pending on the substrate NetworkElement’s hardware or
software (e. g., Layer 2 VPNs, Ethernet, OpenFlow, MPLS,
mainframes, VM hosts), the appropriate embedding plu-
gin can be chosen to embed all the CloudNet’s resources
mapped to the substrate element in question.

In conclusion, attributes are used for two purposes:
1) The attribute determines which substrate NE types
a request’s NEs can be mapped to. This is done by
matching up the upper hierarchy layers in the NE’s type,
(e. g., /node/host in the example) against a list of
available substrate network element types. And 2), given
a mapping from a request graph’s NE to a substrate
NE, the substrate NE’s type determines which embed-
ding plugin is used to implement the requested virtual
NE.

Prototype
The (open-source) CloudNets prototype is a proof-of-
concept implementation of the architecture described
above. Currently, the prototype implements the PIP busi-
ness role (the infrastructure provider) as well as the VNP
business role (the resource broker). As a link virtual-
ization plugin we use tagged VLANs: each virtual link
is realized as a VLAN. The VLANs provide isolation and
enable the demultiplexing of frames to the corresponding
virtual machines (to which the connection looks like an
Ethernet link).

157



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Special Issue

In the following, we will first give an overview of the
testbed and then discuss the prototype. In the context of
the prototype, we will refer to virtual nodes as VNodes and
to virtual links as VLinks. Moreover, we will sometimes
distinguish between the mapping of a CloudNet (i. e.,
where to allocate the CloudNet in the substrate) and the
embedding of a CloudNet (the actual implementation of
said allocation).

Testbed
Our network virtualization prototype is run on two sep-
arate testbed environments, one at TU Berlin and one
at NTT DoCoMo Eurolabs, Munich. Both testbeds have
a Cisco 4500 series switch carrying both virtual net-
work data plane VLANs and testbed management VLANs.
Moreover, both testbeds consist of Sun X4150 machines
hosting both substrate resources and the virtual machines
running the various roles’ management software. Virtual
nodes can either be fully virtualized KVM virtual ma-
chines where physical substrate nodes are available, or
paravirtualized Xen virtual machines.

The substrate resource allocation for the CloudNet
embeddings is computed with an optimized Mixed In-
teger Program (MIP). Once the resource allocation is
determined, the physical infrastructure provider creates
virtual machines, establishes the links between them and
hands control over to the customer (by providing console
access to the virtual nodes for instance). At the heart of
the prototype lie MySQL databases where each provider
keeps all information about its substrate topology and
embedded virtual networks.

The Embedding Plugin
In order to embed CloudNets on the given substrate top-
ology, we use a two-stage approach: first, a fast heuristic
is used to initially place the CloudNet; subsequently,
a Mixed Integer Program plugin (short MIP) is used
to optimize long-lived and “heavy-hitter” CloudNets in
the background, migrating them to a new location [10].
In the following, we will focus on the second stage
only; for an overview of fast embedding heuristics, we
refer the reader to [11–13], and especially the sur-
veys [14; 15]).

The mathematical programming approach is attractive
as it is very general and allows us to specify many different
types of embeddings and embedding constraints. Espe-
cially embeddings on arbitrary Internet infrastructures
with heterogeneous resources and links requires a high
flexibility. Our MIP supports a simple replacement of the
optimization function, without the need to redesign the
embedding algorithm. For instance, one possible objec-
tive function may arise in scenarios where a CloudNet
should be embedded in such a manner that the maximal
load or congestion is minimized. In other scenarios, the
CloudNets should be embedded in a compact manner
(subject to collocation constraints) in order to be able to
shut down the other parts of the physical network, e. g.,

to save energy. Moreover, our MIP plugin also supports
the migration of (parts of) a CloudNet: As the Cloud-
Net requests arriving over time may be hard to predict,
certain embeddings computed online in the past may
become suboptimal, and re-embeddings and migrations
are necessary.

By computing the embedding that would result after
a migration together with the migration cost, the MIP
allows us to determine, e. g., the cost-benefit tradeoff of
migration. For example, our algorithm allows to an-
swer questions such as: Can we migrate CloudNets to
a more compact form such that 20% of the currently used
resources are freed up, and what would be the corres-
ponding migration cost? It is then left to the (potentially
automated) administrator to decide whether the changes
are worthwhile.

3 PIP and VNP Roles
In the following, we will focus on the PIP (Physical In-
frastructure Provider) role and the VNP (Virtual Network
Provider) role, and will describe their implementation.
The VNO (Virtual Network Operator) and SP (Service
Provider) are not implemented in our prototype yet.

Graph Serialization
To permit interactions between PIP and VNP roles, a first
and important task to be solved is graph serialization.
Since the management nodes for the VNP and the PIPs
in its substrate graph all run on dedicated machines with
dedicated databases, graphs representing the CloudNet
topologies have to be serialized into a database indepen-
dent representation to be sent across the network. To this
end we developed a YAML representation of the resource
description language.

3.1 The PIP
The PIP role supports arbitrary topology specification
and topology modification including live migration of
running nodes (within a PIP’s substrate). It mainly con-
sists of a Mapping Component that handles the MIP
formulation, the result interpretation and Mapping Layer
graph generation, and an extensible (plugin based) Em-
bedding Component that embeds a (partial) CloudNet
topology on the PIP’s substrate given its overlay and
mapping layer graphs. Figure 1 (left) gives an overview.

Substrate
The PIP’s substrate is largely virtualized in our testbed
in Berlin: most substrate nodes are KVM virtual ma-
chines running on the testbed’s Sun X4150 machines. The
X4150s are interconnected by an IEEE 802.1q-capable
switch. The virtualized substrate nodes are assigned
unique Ethernet addresses and connected via physical
Ethernet interfaces. The CloudNet VNodes are then cre-
ated on aforementioned KVM machines. Each virtual link
is assigned a unique VLAN tag (picked by the PIP from
its assigned range of VLAN tags). These VLAN tags are

158



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

A Federated CloudNet Architecture: The PIP and the VNP Role ���

Figure 1 Left: The CloudNets architecture as implemented by the PIP role. Right: Stages of a CloudNet request: from VNP to PIP.

set on all data plane interfaces (or switch ports) of the
substrate nodes on the virtual link.

In addition, some of the X4150 machines are config-
ured to serve as substrate nodes themselves, on top of
hosting virtualized substrate nodes. They can host fully
virtualized KVM VNodes (as opposed to the virtualized
substrate nodes which can only host paravirtualized Xen
SNodes).

All substrate nodes store their VM images on an
NFS share exported by their controlling PIP. PIPs are
responsible for creating VM images and hypervisor
configurations, while the substrate nodes’ provisioning
scripts take care of the rest.

Interconnections between links that do not involve
VNodes are realized by creating bridge devices on ded-
icated Tunnel Bridge (TBR) nodes. Unlike regular
substrate nodes, these do not run OpenVSwitch but the
regular Linux bridge. They can host virtual switches and
terminate OpenVPN tunnels.

In particular these bridge devices are used to establish
VLinks spanning across PIP boundaries (transit links):
They interconnect the outside segment of these links
(within the specifying VNP’s management scope) with
the internal segment of these links (within the PIP’s man-
agement scope). The mechanism behind this is based on
OpenVPN TAP style layer two tunnels: These are VPN
tunnels terminating in virtual Ethernet devices on both
tunnel bridges involved in the transit link. Said virtual
interfaces trunk all VLinks embedded on the transit link
in question and are bridged to the tunnel bridges’ data
plane interface.

3.1.1 Cloud Operating System
The prototype provides similar services as modern Cloud
Operating Systems:

Automated VM Provisioning
The Embedding Component automatically creates VM
images for VNodes (typically by making copies of a tem-
plate VM image suitable for the hosting substrate node’s
hypervisor) and hypervisor configuration files. With ev-
erything in place these VMs can be started through an
XMLRPC interface to the hosting substrate node’s pro-
visioning scripts. This interface offers a range of basic
VM provisioning functionalities such as start, stop, and
powercycle.

VM Image Caching
Since the I/O performance of the X4150 machines is
rather poor and there is plenty of storage space available
we developed a caching scheme to speed up CloudNet
embedding. There is a daemon, clipd, that maintains
a cache of VM images on every PIP’s exported NFS
share (on disk). The Embedding component can request
VM images from this daemon’s cache, which are then
be moved to their final location on the NFS share, thus
greatly speeding up the whole embedding process. The
clipd cache is replenished by a cron job while the Map-
ping Layer/Embedding is inactive.

Customer Console Access to VNodes
Since placement of VNodes is rather opaque to a PIP’s
customers – and not relevant as long as their require-

159



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Special Issue

ments are met – there is a mechanism to automatically
look up any given VNode’s hosting substrate node, and
offer a proxied serial console session on that very VNode
to a customer requesting access.

Automated Link Provisioning
Virtual links are provisioned and brought up automati-
cally. In the Mapping Layer graph they are split up into
segments, one for each substrate network element they
are mapped to (for instance the two substrate nodes
on either end and the switch port the substrate nodes’
data plane interfaces are connected to). For each of these
components appropriate Embedding Plugin is called. To
date there are Embedding Plugins handling OpenVSwitch
based hosts, traditional Linux Bridge based hosts and
Cisco 4500 series switches (the latter are configured via
SNMP).

3.1.2 Negotiation and Provisioning Interface
A PIP controls its substrate nodes and (physical) switch
through an XMLRPC configuration interface. The PIP in
turn offers two interfaces to the VNP role: The Negotia-
tion Interface and the Provisioning Interface. Both consist
of a range of XMLRPC methods.

Negotiation follows a two-stage protocol: The Negoti-
ation Interface allows for sending preliminary embedding
requests (and potentially prices) for either topology cre-
ation or modification of previously embedded topologies.
Once a VNP is sure it wants to embed a topology perma-
nently (i. e., after receiving the ‘okays’ from all involved
PIPs), it will send a confirmation request for the prelim-
inary topology.

The VNodes of an embedded topology can then be
started and stopped through the Provisioning Interface.

3.2 The VNP
The VNP’s high-level architecture is similar to the PIP’s,
also comprising a Mapping Component and an Embed-
ding Component. The Mapping Component is for the
most part identical to the PIP’s. The major differences are
in the embedding component: (1) since the VNP’s sub-
strate consists of entire PIPs rather than physical nodes
and links, the VNP has its own set of embedding plug-
ins to interact with PIPs’ Negotiation Interfaces; (2) the
Embedding Component contains additional code for the
creation of partial graphs which can be mapped to a single
PIP.

In order to generate the partial PIP networks, the VNP
first constructs a “helper graph” consisting of all PIPs it
has contracts with. For this helper graph, the PIP net-
works are “guessed” by the VNP given the information it
has about them. (In our prototype, we simply aggregate
the PIP’s memory capacities.) The VNP then embeds
the CloudNet onto the helper graph to determine which
NEs should be hosted on which PIP. The NEs mapped
to a single PIP then form the partial graph of this PIP,

which is handed down to the infrastructure provider for
the final embedding.

Substrate
The VNP’s substrate consists of PIP nodes interconnected
by transit links1. Hence the VNP is aware of the topology
between PIPs (or a subset of said topology) but does not
know anything about the PIPs’ internal topology.

Negotiation and Provisioning Interface
A library on the VNP level implements the client side
functionality of the PIP’s Negotiation and Provisioning
Interface. It is used to send partial topology graphs to
PIPs and embed them.

4 Life of a CloudNet Request
Figure 1 (right) gives a graphical outline of the life of
a CloudNet.

Incoming CloudNet Request
The CloudNet request in the form of an ‘overlay graph’
(henceforth referred to as OL0 graph) is submitted to the
VNP (as a serialized topology graph, through an XML-
RPC interface similar to the PIP’s Negotiation Interface).
Subsequently, the VNP’s mapping process is started.

Substrate Synchronization
The first step in mapping a CloudNet request is substrate
synchronization: The VNP uses the Negotiation Inter-
face to update the available resources (and their costs)
on the PIPs constituting its substrate. In order to both
protect PIP’s business secrets (namely the details of its
substrate topology), and give the VNP a rough approx-
imation of a given PIP’s available resources, we simply
sum up all the resources of a given type in the PIP’s
substrate. These aggregate resources will then be assigned
to the /node/host/pip NE representing this PIP in
the VNP’s substrate graph.

Solution of VNP-level MIP
Before proceeding with the mapping process, the VNP
completes the overlay OL0 graph, yielding an OL1 graph.
This is to account for any vagueness on the upstream
entity’s part: e. g., values are chosen for those required
resources and features that were left unspecified. For in-
stance the virtualization technology might not have been
specified, allowing the VNP to make a choice of its own
or pass the the vague graph on to downstream players,
who will in turn have the freedom of choice. Next it
formulates the MIP for mapping the incoming CloudNet
request to its substrate of PIPs. The MIP is based upon
the following variables: (1) the incoming OL0 graph’s
resource and feature requirements and constraints, (2)
the available resources and features on the PIPs consti-

1 In our prototype, these are represented by OpenVPN (see
http://openvpn.net/) tap style tunnels between the PIPs’ tunnel bridge
nodes.

160

http://openvpn.net/


T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

A Federated CloudNet Architecture: The PIP and the VNP Role ���

tuting the VNP’s substrate (as far as they are known to
the VNP), and (3) the available resources and features on
the transit links between PIPs.

Once the MIP has been solved the result is translated
back into a mapping layer graph, mapping all of the OL1
graph’s Network Elements (NEs) to PIPs and transit links.

Partial Graph Generation
Now the VNP iterates through the OL1 graph and creates
a set of partial graphs, one for each PIP. Each of these
partial graphs consists of all the NEs mapped to the PIP
in question.

In the course of partial graph generation, stubs for
transit links are created. These consist of two spe-
cial network element types: /node/host/pip and
/link/transit.

The /link/transit NE specifies the VLAN to use
for this transit link (we opted for letting the VNP pick
transit VLANs to avoid implementing an error prone PIP-
to-PIP negotiation mechanism for this purpose). This
closely matches the most likely real-world scenario, too:
A VNP might have an embedding plugin for a transit
provider (for instance someone running an MPLS net-
work) with black boxes located at both PIPs’ network
edges. This embedding plugin requests a transit link be-
tween these two PIPs and receives some kind of link
identifier (such as a VLAN tag). The VNP then com-
municates this link identifier to the PIPs on either end,
which allows both PIPs to connect the black box to their
local segment of the virtual link.

Serialization and Transmission
Once the partial graphs have been assembled, each of
them is serialized and sent to its hosting PIP through
the Negotiation Interface. This currently takes place in
a serial manner in our prototype, i. e., partial graphs are
sent to PIPs one after the other. If one of the PIPs in the
chain turns out to be unable to embed its partial graph
the VNP rolls back the already embedded partial graphs
(deletes them) and reports a failure status to the upstream
entity that sent the original CloudNet request.

Formulation and Solution
Upon receipt of a partial graph a PIP will – much like
the VNP – complete the OL0 graphs to yield OL1 graphs,
and formulate the MIP for mapping the incoming partial
CloudNet request to its substrate of physical hardware.
The program is based on the following variables: (1) the
incoming partial graph’s resource and feature require-
ments and constraints, (2) the available resources and
features on this PIP, and (3) the available resources and
features on this PIP’s outgoing transit links leading to
destination.

Once the MIP has been solved the result is trans-
lated back into a mapping layer graph, mapping all of
the OL1 graph’s Network Elements to substrate links and
nodes. Control passes to the Embedding Component now

●●●●●

●

●

●

●

●

AP1
(link)

AP2
(link)

AP3
(link)

AP1
(node)

AP2
(node)

AP3
(node)

0
10

20
30

40

Data sets
D

ow
nt

im
e 

du
ra

tio
n 

(s
)

Figure 2 Link vs. node migration.

which will configure the topology’s VLANs on the switch
as specified by the Mapping Component and create the
VNodes’ images and hypervisor configuration. With ev-
erything in place the PIP reports success to the VNP
which sent the (partial) CloudNet creation request.

Bootup and Handoff
Once success has been reported back to the VNP by all
PIPs involved in the CloudNet creation request, the VNP
confirms all these requests through the PIPs’ Negotiation
Interface, uses the PIPs’ Provisioning Interface to start the
newly created VNodes (the links will already have been
brought up in the course of negotiation). Finally, the
VNP hands control over the CloudNet to the requesting
upstream entity (typically in the form of console inter-
faces).

Performance
Figure 2 shows the performance (downtime) of migrat-
ing a live streaming server (size 1 GB) in our prototype
(between 3 access points): (1) when just virtual links are
migrated, (2) when the server migrates between physi-
cal machines, possibly displacing other, latency-uncritical
CloudNets’ nodes. Link migration turned out to perform
worse in terms of service outage than node migration.
Node migration, on the other hand performed much
worse than link migration in terms of total migration
duration (node migration took a median of 225 s, versus
only a median 23 s for link migration).

References

[1] G. Wang and E. Ng. The impact of virtualization on network per-
formance of Amazon EC2 data center. In Proc. IEEE INFOCOM,
2010.

[2] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better
never than late: meeting deadlines in datacenter networks. In Proc.
ACM SIGCOMM, 2011.

161



T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Special Issue

[3] D. Drutskoy, E. Keller, and J. Rexford. Scalable network virtual-
ization in software-defined networks. In Proc. Internet Computing,
2012.

[4] Bing News. http://velocityconf.com/velocity2009/public/schedule/
detail/8523. In Website, 2012.

[5] I. Baldine, Y. Xin, A. Mandal, C. Renci, U. Chase, V. Marupadi,
A. Yumerefendi, and D. Irwin. Networked cloud orchestration:
A geni perspective. In GLOBECOM Workshops, 2010.

[6] James Kempf et al. The network embedded cloud. In Technical
Report Ericsson Research, 2012.

[7] M. K. Chowdhury and R. Boutaba. A survey of network virtual-
ization. Computer Networks, 2010.

[8] G. Schaffrath, C. Werle, P. Papadimitriou, A. Feldmann, R. Bless,
A. Greenhalgh, A. Wundsam, M. Kind, O. Maennel, and L. Mathy.
Network virtualization architecture: Proposal and initial proto-
type. In Proc. ACM VISA, 2009.

[9] G. Schaffrath, S. Schmid, I. Vaishnavi, A. Khan, and A. Feldmann.
A resource description language with vagueness support for multi-
provider cloud networks. In Proc. ICCCN, 2012.

[10] G. Schaffrath, S. Schmid, and A. Feldmann. Optimizing long-lived
cloudnets with migrations. In Proc. 5th IEEE/ACM UCC, 2012.

[11] K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual network
embedding with coordinated node and link mapping. In Proc.
IEEE INFOCOM, 2009.

[12] J. Fan and M. H. Ammar. Dynamic topology configuration in
service overlay networks: A study of reconfiguration policies. In
Proc. IEEE INFOCOM, 2006.

[13] S. Zhang, Z. Qian, J. Wu, and S. Lu. An opportunistic resource
sharing and topology-aware mapping framework for virtual net-
works. In Proc. IEEE INFOCOM, 2012.

[14] A. Belbekkouche, M. Hasan, and A. Karmouch. Resource discov-
ery and allocation in network virtualization. IEEE Communications
Surveys Tutorials, (99):1–15, 2012.

[15] A. Haider, R. Potter, and A. Nakao. Challenges in resource alloca-
tion in network virtualization. In Proc. ITC Specialist Seminar on
Network Virtualization, 2009.

Received: March 8, 2013

Preview on issue 5/2013

The topic of the next issue is “Open Source Software” (Guest Editor: D. Riehle) and will contain
the following articles:

• A. Wassermann: Community and Commercial Strategies in Open Source Software

• W. Mauerer: Open Source Engineering Processes

• N. Kimmelmann: An Open Source Career? Relevant Competencies for Successful Open
Source Developers

• St. Koch: Open Source Community Processes: Implications on Micro and Macro Level

• J. M. Gonzalez-Barahona and Gr. Robles: Trends in Free, Libre, Open Source Software
Communities: From Volunteers to Companies

Johannes Grassler studies applied computer sci-
ence at Beuth-Hochschule für Technik Berlin. He
is a student worker with FG INET since February
2011. Before that, he worked for several years at
Google and Kabel Deutschland. His professional
interests include Unix systems programming and
network virtualization.

Address: TU Berlin & T-Labs, Ernst Reuter
Platz 7, 10587 Berlin, Germany,
e-mail: jgrassler@net.t-labs.tu-berlin.de

Dr. Gregor Schaffrath studied computer sci-
ence at University of Saarland (minor: Physics).
He worked for several years at IFI Zurich, be-
fore becoming a PhD student at FG INET (T-
Labs). His research interests include network vir-
tualization and network-based intrusion detec-
tion.

Address: TU Berlin & T-Labs, Ernst Reuter
Platz 7, 10587 Berlin, Germany,
e-mail: grsch@net.t-labs.tu-berlin.de

Dr. Stefan Schmid studied computer science at
ETH Zurich (minor: micro/macro economics,
internship: CERN) and received his PhD de-
gree from the Distributed Computing Group
(Prof. Roger Wattenhofer), also at ETH Zurich.
Subsequently, he worked with Prof. Christian
Scheideler at the Chair for Efficient Algorithms at
the Technical University of Munich (TUM) and
at the Chair for Theory of Distributed Systems at
Uni Paderborn. He is now a senior research sci-
entist at Telekom Innovation Laboratories Berlin.
Stefan Schmid is interested in distributed systems,
and especially in the design of robust and dy-
namic networks.

Address: TU Berlin & T-Labs, Ernst Reuter
Platz 7, 10587 Berlin, Germany,
e-mail: stefan@net.t-labs.tu-berlin.de

162

http://velocityconf.com/velocity2009/public/schedule/detail/8523
http://velocityconf.com/velocity2009/public/schedule/detail/8523
mailto:jgrassler@net.t-labs.tu-berlin.de
mailto:grsch@net.t-labs.tu-berlin.de
mailto:stefan@net.t-labs.tu-berlin.de


T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Ein Unternehmen von De Gruyter 

www.degruyter.com/oldenbourg 

www.degruyter.com/oldenbourg 

Ein Unternehmen von De Gruyter 

http://www.degruyter.com/oldenbourg
http://www.degruyter.com/oldenbourg


T
h

is
 a

rtic
le

 is
 p

ro
te

c
te

d
 b

y
 G

e
rm

a
n

 c
o

p
y
rig

h
t la

w
. Y

o
u

 m
a
y
 c

o
p

y
 a

n
d

 d
is

trib
u

te
 th

is
 a

rtic
le

 fo
r y

o
u

r p
e
rs

o
n

a
l u

s
e
 o

n
ly

. O
th

e
r u

s
e
 is

 o
n

ly
 a

llo
w

e
d

 w
ith

 w
ritte

n
 p

e
rm

is
s
io

n
 b

y
 th

e
 c

o
p

y
rig

h
t h

o
ld

e
r. 

Ein Unternehmen von De Gruyter 

www.degruyter.com/oldenbourg 

http://www.degruyter.com/oldenbourg

	1 Introduction 
	Contribution 

	2 Architecture 
	The Road to CloudNets 
	Economical Roles 

	2.1 Architecture & Prototype 
	Specification and Specificity 
	Plugins 
	Prototype 
	Testbed 
	The Embedding Plugin 


	3 PIP and VNP Roles 
	Graph Serialization 
	3.1 The PIP 
	Substrate 
	3.1.1 Cloud Operating System 
	Automated VM Provisioning 
	VM Image Caching 
	Customer Console Access to VNodes 
	Automated Link Provisioning 
	3.1.2 Negotiation and Provisioning Interface 

	3.2 The VNP 
	Substrate 
	Negotiation and Provisioning Interface 


	4 Life of a CloudNet Request 
	Incoming CloudNet Request 
	Substrate Synchronization 
	Solution of VNP-level MIP 
	Partial Graph Generation 
	Serialization and Transmission 
	Formulation and Solution 
	Bootup and Handoff 
	Performance 


	References

