
On the Benefit of Collocation

in Virtual Network Embeddings

Carlo Fuerst, Stefan Schmid, Anja Feldmann
Telekom Innovation Laboratories & TU Berlin, Germany

Abstract—This paper attends to the problem of optimizing the
resource allocation in data centers or cloud networks. Our work
is motivated by the observation that existing virtual network
(VNet) embedding algorithms typically waste link resources by
embedding communicating virtual nodes to remote locations in
the substrate. A simple alternative VNet embedding algorithm
LOCO is proposed which seeks to automatically collocate com-
municating virtual nodes. We compare the performance of LOCO

to the SecondNet [4] algorithm in different scenarios, and find
that LOCO can often improve the resource efficiency.

I. INTRODUCTION

Network virtualization is a new networking paradigm which

combines node virtualization (e.g., VMWare, Xen, KVM) with

link virtualization (e.g., OpenFlow, VLANs, MPLS). Essen-

tially, a virtual network (VNet) specifies a graph consisting of

virtual nodes (or virtual machines (VMs)) connected by virtual

links. Both the virtual nodes and links come with resource

requirements (e.g., memory, CPU, bandwidth). A major chal-

lenge of this paradigm regards the resource allocation: Given

the VNet specifications, where to efficiently embed VNets on

the substrate network (e.g., a physical infrastructure like a

datacenter or an ISP network, or again a VNet)?

This paper attends to the VNet embedding problem and

argues that prohibiting virtual node collocations upfront, as

done by most current algorithms in the literature, can be

suboptimal. Rather, the possibility to specify which elements

of a virtual network can be collocated is an effective way

to increase the resource efficiency: collocation-enabled algo-

rithms can often embed more VNets. To confirm our claim,

we propose a very simple embedding algorithm called LOCO

which automatically groups virtual nodes to be mapped to the

same substrate node. We show that given appropriate isolation

mechanisms are in place (e.g., by mapping VM computations

to different cores), LOCO yields an improved link resource

allocation and achieves a higher number of embeddable VNets

compared to the state-of-the-art SecondNet [4] embedding

algorithm.

II. VIRTUAL NETWORK EMBEDDING MODEL

We attend to the standard virtual network embedding prob-

lem in the literature (e.g., [2], [3], [6], [7]) where we are

given (as input) a VNet topology and a substrate graph, and

we should compute an allocation of the VNet on the substrate.

Formally, a virtual network, or short VNet, is essentially

a graph G = (V,E) (the guest graph) where V represents

the set of virtual nodes or virtual machines (VMs) and E

represents communication links. Both the nodes v ∈ V (G)

and the links e ∈ E(G) may come with certain resource

requirements. For example, a node v ∈ V (G) may request

a certain amount of RAM or CPU, and a link e ∈ E(G)
may request a certain amount of bandwidth. We will denote

the resource requirements of a node or link by r(v) and r(e)
respectively. A VNet G must be realized, i.e. embedded on

a given substrate network which can again be modeled as a

graph H = (V,E) (the host graph). The nodes and links of

the substrate network have certain capacities, which we will

denote by c(v) and c(e), respectively.

There are different ways to embed a VNet G on a substrate

H . While virtual nodes v ∈ V (G) are typically mapped to

exactly one substrate node v′ ∈ V (H), a virtual link e ∈ E(G)
can be mapped to one or even a linear combination of paths

in H . We say that an embedding of a set of VNets is valid if

the the allocations on all substrate nodes and links does not

exceed the corresponding capacities.

Of course, the more substrate edges involved in the real-

ization of a virtual link, the higher the embedding costs. We

define the embedding cost as follows:

Definition 2.1 (Embedding Costs): Let Π(e) =
{π1, π2, . . .} for some e ∈ E(G) denote the set of substrate

paths over which e is realized (i.e., embedded). Let f(π) for

some π ∈ Π(e) denote the fraction of flow over path π, and

let λ(e) denote the length of e in terms of number of hops.

The cost of embedding a VNet G = (V,E) on a substrate H

is defined as

Cost =
∑

e∈E(G)

∑

π∈Π(e)

f(π) · λ(e)

In other words, the allocation cost is simply the weighted

distance of the different paths used by the virtual edges.

We, in this paper, will focus on embeddings where virtual

links can only be mapped to a single path. Although it is easy

to generalize our results to embeddings with parallel paths,

we believe that a single path model has several advantages,

especially in QoS environments where packet delays and

orders should be predictable well.

III. THE LOCO ALGORITHM

We now introduce our simple algorithm LOCO that lever-

ages the potential of node collocation. Unlike many existing

algorithms, LOCO does not separate the node and link map-

ping into two stages, but rather alternates between mapping

2

single virtual nodes and virtual links. That is, LOCO computes

locations for virtual nodes one after another and in a breadth-

first and “graph-isomorphism” [5] aware manner. In doing so,

LOCO does not only take into account substrate node capaci-

ties, but also substrate link capacities. This avoids collocating

subgraphs whose edge cut exceeds bandwidth constraints. We

will refer to this strategy as forward checking.

In order to embed a virtual network G (the “guest graph”),

first an arbitrary (in our simulations: random) start node

s ∈ V (G) is mapped to an arbitrary (or random) substrate

node (i.e., on the “host graph”) with sufficient capacity. (Note

that there may be smarter strategies to select the first location,

but we stick to this simple scheme as it already yields good

results.) Subsequently, LOCO maintains the following data

structures: a set M of already mapped virtual nodes (initially,

M = {s}), and an array P of pending virtual nodes which

still need to be mapped (initially, P = (Γ(s)) where Γ(s)
denotes the neighbors of s). After mapping a new virtual node

u ∈ P , LOCO moves u to M and maps all virtual links {u, v}
which connect this node u to all already mapped virtual nodes

v ∈ M . Nodes neighboring to u which are not part of M or

P yet are put into the pending node array P . This is repeated

until all nodes are mapped.

Concretely, LOCO sorts the pending nodes in decreasing

order of maximal capacity of an incident virtual link connect-

ing the pending node so any mapped node. Ties are broken

by preferring nodes with minimal virtual node capacities. The

intuition behind this approach is that if links with capacities

are mapped first, the cost benefits are potentially higher and

dead ends can be detected faster. Similarly, mapping nodes

with lower demand first has the advantage of being able to

collocate more virtual nodes.

In case of embedding failure, LOCO performs a simple

heuristic and backtracks over all alternative substrate nodes

on which s could be embedded. Although it may yield earlier

and/or better solutions, we do not backtrack over other nodes

to avoid high runtimes.

Algorithm 1 The LOCO Algorithm

Require: VNet G = (V,E), M = {s} for some s ∈ V (G),
P = (Γ(s))
while |P | > 0 do

sort P (* decreasing link capacities *)

choose u = P [0] (* next node to map *)

map u (* forward checking *)

map {u, v} ∀ v ∈ M , where {u, v} ∈ E(G)
M = M ∪ {u} and P = P \ {u}

end while

if (embedding failed), backtrack on s

Let us now elaborate more on the node and link mapping

functions. Both mappings are essentially breadth-first-search

based. When mapping a pending virtual node u with the

corresponding virtual link {u, v} connecting it to a mapped

virtual node v, we first check whether the substrate node on

1

2 3

4 5 6 7

Mapped to a

Mapped to b

Fig. 1. Illustration of forward checking.

which v is hosted still has sufficient capacity to host also u. If

this is fulfilled, we additionally perform the following forward

checking: We verify whether there are substrate links left on

that substrate node which have sufficient resources to embed

the links incident to v (or, if there is capacity to even host

neighbors of v, the corresponding links).

Figure 1 illustrates the need for forward checking: Here, a

virtual tree network should be embedded on a fat-tree substrate

topology, where all substrate nodes can host three virtual

nodes, and all substrate link can host three virtual links. Say

node s is Node 1 which is mapped to a Node a. Obviously,

Node 2 and Node 3 can also be mapped to Node a since this

does not violate resource constraints. Subsequently, three leaf

nodes are mapped to a substrate node, and the fourth leaf node

cannot be mapped, since Node a and the link which connects

Node a are already fully utilized. Therefore, a naive algorithm

would run into backtracking and face a similar problem for

a different substrate node. Forward checking avoids this by

verifying that all adjacent virtual links can be embedded before

we map a virtual node to a substrate node. This allows the

mapping of Node 1 and Node 2 to the same substrate node, but

interdicts the mapping of Node 3 to the same substrate node:

This would require mapping four virtual links to the substrate

link connecting the substrate node to a switch. Node 4 could

however be collocated with Node 1 and Node 2, since they

only have two virtual links to virtual nodes which are mapped

to different locations.

IV. EVALUATION

This section reports on our simulation results in different

scenarios. We implemented a discrete event simulator (in

Ruby) for LOCO. For comparison, we used the SecondNet1

implementation which is publicly available.

Setup We will focus on a fat-tree substrate topology [1]

with 128 nodes and 80 switches, but similar results can be

expected in other symmetric or container-based data center

topologies such as BCube, DCell or MDCube where LOCO

computes local allocations. To model virtual network requests,

as a simplification, we use jobs from the Google cluster

data set.2 Interestingly, this data set also contains informa-

tion on which virtual nodes should not be collocated: the

different-machine constraint flag indicates that a

1See http://www.stanford.edu/ shyang/Site/vdcalloc.zip.
2See http://code.google.com/p/googleclusterdata/. Un-

fortunately, the data contains only node resource information.

3

task must be scheduled to execute on a different machine

than any other currently running tasks in the job. We observe

that over 90% of all nodes do allow for node collocation. In

the following, in order to focus on the collocation benefits

more generally, we will simply assume all VNet nodes can

be collocated. Moreover, we observe that about 80% of the

jobs consist of 21 nodes or less. Since our substrate is smaller

then the cell on which the data set was generated, we decided

to reduce the limit the size of our requests to [3, 10]. This a

similar to the the setting in other VNet embedding papers. [2]

Since the data set does not provide task connectivity in-

formation, two canonic VNet topologies are considered: the

master-slave (or star) network and the clique (“full-mesh”)

network. To investigate also the performance of the algorithms

on topologies with a low maximum degree, for comparison,

we also include random binary trees in the input sequence.

Moreover, VNet elements request resources uniformly at ran-

dom from {1, 2, 4}. The substrate has homogenous resources

on all substrate links and substrate nodes.

We model a challenging situation where the VNet demand

roughly matches resource supply. This situation allows us to

study the influences of existing embeddings on the incoming

requests that cannot completely fill the gaps of previously

rejected VNets. To achieve this, we create a sequence of VNets

S = (G1, G2, . . . , Gn), where each VNet is randomly chosen

from the above described requests and resources. To initially

fill the substrate, we initially embed a maximal set of random

VNets. Whenever a VNet expires, we immediately schedule

a next VNet request if the total amount of requests virtual

node resources would be otherwise lower than the overall node

resources in the substrate.

Resource Efficiency Figure 2 provides a general overview

of the utilization results, under different substrate node and

link capacities. We find that SecondNet typically yields rel-

atively good embeddings only if the substrate link capacities

are at least twice as high as the node capacities. Obviously,

a similar phenomenon can be expected from any embedding

algorithm which avoids collocation and hence incurs higher

communication costs.

While LOCO and SecondNet exhibit a similar dependency

on link resources, LOCO benefits relatively more from higher

node resources—although these indirectly increase the amount

of virtual networks.

Regarding the variance, we find that lower resources typ-

ically lead to higher fluctuations. This can be explained by

the stress put on the network by our VNet arrival sequence

which always seeks to keep the load high. The more resources

are available, the smaller the probability that an unfortunately

placed VNet blocks a significant share of the network.

V. CONCLUSION

This paper has studied the potential benefit of collocating

virtual nodes (with a focus on data center networks). We

presented a simple algorithm LOCO that reveals potential

benefits of node collocation. Obviously node collocation is not

✵

✵�
✁

✶

✵

✵�
✁

✶

✵

✵�
✁

✶

✵

✵
�✁

✶

✵

✵
�✁

✶

✵

✵
�✁

✶

✵

✵�
✁

✶

✵

✵�
✁

✶

✵

✵�
✁

✶

✵

✵�
✁

✶

✵

✵�
✁

✶

✵

✵�
✁

✶

✂✄ ☎✆✝✞ ✟✠✡✠✟☛☞✌ ✽ ☎✆✝✞ ✟✠✡✠✟☛☞✌ ✹ ☎✆✝✞ ✟✠✡✠✟☛☞✌

✸
✍
✎
✏✑
✒
✓
✔
✕
✔
✓
✏✖
✗

✘
✙
✎
✏✑
✒
✓
✔
✕
✔
✓
✏✖
✗

✚
✎
✏✑
✒
✓
✔
✕
✔
✓
✏✖
✗

✛
✎
✏✑
✒
✓
✔
✕
✔
✓
✏✖
✗

Fig. 2. Embedding efficiency (y - axis) of LOCO (grey, higher) vs SecondNet
(grey, higher) under different node and link capacities. The x - axis shows
discretised time

suitable for all use-cases. For example customers with strin-

gent requirements on fault-tolerant embeddings will not allow

that, e.g., all data mirrors are hosted on the same physical

disk. Nevertheless, by allowing the customer to specify which

of her virtual nodes may be collocated with other nodes, we

can create a monetary advantage for the VNet provider (or

even the flexible customers).

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In Proc. ACM SIGCOMM, pages 63–74,
2008.

[2] K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual network
embedding with coordinated node and link mapping. In Proc. INFOCOM

2009 and IEEE/ACM Trans. Netw. (ToN) 2012, 2012.
[3] M. K. Chowdhury and R. Boutaba. A survey of network virtualization.

Elsevier Computer Networks, 54(5), 2010.
[4] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and

Y. Zhang. SecondNet: A data center network virtualization architecture
with bandwidth guarantees. In Proc. 6th CoNEXT, 2010.

[5] J. Lischka and H. Karl. A virtual network mapping algorithm based on
subgraph isomorphism detection. In Proc. VISA, pages 81–88, 2009.

[6] A. Ludwig, S. Schmid, and A. Feldmann. The price of specificity in
the age of network virtualization (short paper). In Proc. 5th IEEE/ACM

UCC, 2012.
[7] G. Schaffrath, S. Schmid, and A. Feldmann. Optimizing long-lived

cloudnets with migrations. In Proc. 5th IEEE/ACM UCC, 2012.

