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Abstract. This paper initiates the study of self-adjusting distributed data struc-
tures or networks. In particular, we present SplayNets: a binary search tree based
network that is self-adjusting to the routing requests. We derive entropy bounds
on the amortized routing cost and show that our splaying algorithm has some
interesting properties.

1. Distributed Splay Trees. In the mid 80s, Sleator and Tarjan [1] introduced an ap-
pealing new paradigm to design efficient data structures: rather than optimizing tra-
ditional metrics such as the search tree depth in the worst-case, the authors proposed
to make data structures self-adjusting and considered the amortized cost as the perfor-
mance metric—the “average cost” per operation for a given sequence s of lookups. The
authors described splay trees, self-adjusting binary search trees in which frequently
accessed elements are moved closer to the root, improving the average access times
weighted by the elements’ popularity. The popularity distribution must not be known
in advance and may even change over time. We, in this paper, initiate the study of a
distributed generalization of splay trees as a network. We consider a distributed data
structure, e.g., a structured peer-to-peer (p2p) system or Distributed Hash Table (DHT),
where nodes (i.e., “peers”) that communicate more frequently should become topolog-
ically closer to each other (i.e., reducing the routing distance). This contrasts with most
of today’s structured peer-to-peer overlays whose topology is often optimized in terms
of static global properties only, such as the node degree or the longest routing path.

2. Model and Problem Definition. Given an arbitrary and unknown pattern of com-
munication (or routing) requests σ between a set of nodes V = {1, . . . , n}, we attend
to the problem of finding good communication networks G out of a family of allowed
networks G. Each topology G ∈ G is a graph G = (V,E), and we define a set of local
transformations on graphs in G to transform one member G′ ∈ G to another member
G′′ ∈ G. We seek to adapt our topologies smoothly over time, i.e., a changing com-
munication pattern leads to “local” changes of the communication graph over time.
We focus on the special case where G is the set of binary search trees (BST), hence-
forth simply called BST networks. Besides their simplicity, such networks are attrac-
tive for their low node degree and the possibility to route locally: given an destination
identifier (or address), each node can decide locally whether to forward the packet to
its left child, its right child, or its parent. The local transformations of BST networks
are called rotations. Let σ = (σ0, σ1 . . . σm−1) be a sequence of m communication
requests where σt = (u, v) ∈ V × V denotes that a packet needs to be sent from a
source u to a destination v. The cost of the network transformations at time t is de-
noted by ρ(A, Gt, σt) (or simply ρt) and captures the number of rotations performed to
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change Gt to Gt+1. We denote with dG(·) the distance function between nodes in G,
i.e., for two nodes v, u ∈ V we define dG(u, v) to be the number of edges of a shortest
path between u and v in G. For a given sequence of communication requests, the cost
for an algorithm is given by the number of transformations and the distance of the com-
munication requests plus one. For an algorithm A and given an initial network G0 with
node distance function d(·) and a sequence σ = (σ0, σ1 . . . σm−1) of communication
requests over time, we define the (average) cost of A as: Cost(A, G0, σ) =

1
m

∑m−1
t=0

(dGt(σt) + 1+ ρt). The amortized cost of A is defined as the worst possible cost of A,
i.e., maxG0,σ Cost(A, G0, σ).

3. SplayNets: Algorithm and Analysis. The main idea of our double splay
algorithm DS is to perform splay tree operations in subtrees covering the different
communication partners. Concretely, consider a communication request (u, v) from
node u to node v, and let αT (u, v) denote the least common ancestor of u and v in the
current BST network T . Furthermore, for an arbitrary node x, let T (x) denote the sub-
tree rooted at x. The formal listing of DS is shown in Algorithm 1:

Algorithm 1 Double Splay Algorithm DS

1: (* upon request (u, v) in T *)

2: w := αT (u, v)
3: T ′ := splay u to root of T (w)
4: splay v to the child of T ′(u)

Fig. 1. Double Splay Algorithm DS

When a request (u, v) occurs, DS first
simply splays u to the least common an-
cestor αT (u, v) of u and v, using the
classic splay operations Zig, ZigZig,
ZigZag from [1]. Subsequently, the
idea is to splay the destination node v to
the child of the least common ancestor
αT ′(u, v) of u and v in the resulting tree
T ′. The communication cost of DS can be upper bounded by the empirical entropy of
the sources and destinations of the requests. We can also provide a lower bound for any
BST network based on the conditional empirical entropy.

Theorem 1. Let σ be an arbitrary sequence of communication requests, then for any
initial BST T0, Cost(DS, T0, σ) ∈ O(H(X̂) +H(Ŷ )) where H(X̂) and H(Ŷ ) are the
empirical entropies of the sources and the destinations in σ, respectively.

Theorem 2. Given a request sequence σ, for any optimal BST network T :
Cost(⊥, T, σ) ∈ Ω(H(Ŷ |X̂) +H(X̂ |Ŷ )).

A simple corollary of the above results can be obtained when σ follows a product dis-
tribution (i.e., H(X̂|Ŷ ) = H(X̂)): DS is asymptotically optimal if σ follows a product
distribution. In our full paper, we will show that DS features several other desirable
properties and that it is optimal in some special cases like when σ forms a laminated set
or a BST. In addition we extend Theorem 2 to give more sophisticated lower bounds.

4. Discussion. We regard our work as a first step towards the design of novel distributed
data structures and networks which adapt dynamically to the demand.

Reference

1. Sleator, D., Tarjan, R.: Self-adjusting binary search trees. JACM 32(3), 652–686 (1985)


	Brief Announcement: SplayNets

