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Abstract—By introducing programmability, automated
verification, and innovative debugging tools, Software-
Defined Networks (SDNs) are poised to meet the in-
creasingly stringent dependability requirements of today’s
communication networks. However, the design of fault-
tolerant SDNs remains an open challenge. This paper
considers the design of dependable SDNs through the
lenses of self-stabilization—a very strong notion of fault-
tolerance. In particular, we develop algorithms for an
in-band and distributed control plane for SDNs, called
Renaissance, which tolerate a wide range of (concurrent)
controller, link, and communication failures. Our self-
stabilizing algorithms ensure that after the occurrence of
an arbitrary combination of failures, (i) every non-faulty
SDN controller can eventually reach any switch in the
network within a bounded communication delay (in the
presence of a bounded number of concurrent failures) and
(ii) every switch is managed by at least one non-faulty
controller. We evaluate Renaissance through a rigorous
worst-case analysis as well as a prototype implementation
(based on OVS and Floodlight), and we report on our
experiments using Mininet.

I. INTRODUCTION

Context and Motivation. Software-Defined Networks
(SDNs) have emerged as a promising alternative to the
error-prone and manually configured traditional com-
munication networks. In particular, by outsourcing and
consolidating the control over the data plane elements,
SDNs support a programmatic verification and enable
new debugging tools.

However, while the literature articulates well the
benefits of the separation between control and data plane
and the need for distributing the control plane (e.g., for
performance and fault-tolerance), the question of how
connectivity between these two planes is maintained
(i.e., the communication channels from controllers to
switches and between controllers) has not received
much attention. Providing such connectivity, is critical
for ensuring the availability and robustness of SDNs.

Guaranteeing that each switch is managed, at any
time, by at least one controller is challenging espe-
cially if control is in-band, i.e., if control and data
traffic is forwarded along the same links and devices
and hence arrives at the same ports. In-band control

is desirable as it avoids the need to build, operate,
and ensure the reliability of a separate out-of-band
management network. Moreover, in-band management
can in principle improve the resiliency of a network, by
leveraging a higher path diversity (beyond connectivity
to the management port).

The goal of this paper is the design of a highly
fault-tolerant distributed and in-band control plane for
SDNs. In particular, we aim to develop a self-stabilizing
software-defined network: An SDN which recovers
from controller, switch, and link failures, as well
as a wide range of communication failures (such as
packet omissions, duplications, or reorderings). As such,
our work is inspired by Radia Perlman’s pioneering
work [23]: Perlman’s work envisioned a self-stabilizing
Internet and enabled today’s link state routing protocols
to be robust, scalable, and easy to manage. Perlman also
showed how to modify the ARPANET routing broadcast
scheme, so that it becomes self-stabilizing [24], and
provided a self-stabilizing spanning tree algorithm for
interconnecting bridges [25]. Yet, while the Internet
core is “conceptually self-stabilizing”, Perlman’s vision
remains an open challenge, especially when it comes
to recent developments in computer networks, such as
SDNs, for which we propose self-stabilizing algorithms.

Fault Model. We consider (i) fail-stop failures of con-
trollers, which failure detectors can observe, (ii) link
failures, and (iii) communication failures, such as packet
omission, duplication, and reordering. In particular, our
fault model includes up to κ link failures, for some
parameter κ ∈ Z+. In addition, to the failures captured
in our model, we also aim to recover from transient
faults, i.e., any temporary violation of assumptions ac-
cording to which the system and network were designed
to behave, e.g., the corruption of the packet forwarding
rules or malicious changes to the availability of links,
switches, and controllers. We assume that (an arbitrary
combination of) these transient faults can corrupt the
system state in unpredictable manners. In particular,
when modeling the system, we assume that these vi-
olations bring the system to an arbitrary state (while
keeping the program code intact). Starting from an
arbitrary state, the correctness proof of self-stabilizing
systems [11], [13] has to demonstrate the return to



correct behavior within a bounded period, which brings
the system to a legitimate state.

The Problem. This paper answers the following ques-
tion: How can all non-faulty controllers maintain
bounded (in-band) communication delays to any switch
as well as to any other controller? We interpret the
requirements for provable (in-band) bounded commu-
nication delays to imply (i) the absence of out-of-band
communications or any kind of external support, and
yet (ii) the possibility of fail-stop failures of controllers
and link failures, as well as (iii) the need for guaran-
teed bounded recovery time after the occurrence of an
arbitrary combination of failures. The studied problem
also considers the possibility of any transient violation
of the assumptions according to which the system was
designed to behave, which we call transient faults.

Our Contributions. We present an important module
for dependable networked systems: a self-stabilizing
software-defined network. In particular, we provide a
(distributed) self-stabilizing algorithm for decentralized
SDN control planes that, relying solely on in-band
communications, recover (from a wide spectrum of
controller, link, and communication failures as well
as transient faults) by re-establishing connectivity in
a robust manner. Concretely, we present a system,
henceforth called Renaissance1, which, to the best of
our knowledge, is the first to provide:

(1) A robust efficient and decentralized control plane:
We maintain short, O(D)-length control plane paths
in the presence of controller and link (at most κ
many) failures, as well as, communication failures,
where D ≤ N is the (largest) network diameter (when
considering any possible network topology changes over
time) and N is the number of nodes in the network.
More specifically, suppose that throughout the recovery
period the network topology was (κ+1)-edge-connected
and included at least one (non-failed) controller. We
prove that starting from a legitimate state, i.e., after
recovery, our self-stabilizing solution can: (i) Deal with
fail-stop failures of controllers: These failures require
the removal of stale information (related to unreachable
controllers) from the switch configurations. Cleaning
up stale information avoids inconsistencies and having
to store large amounts of history data. (ii) Deal with
link failures: Starting from a legitimate system state,
the controllers maintain an O(D)-length path to all
nodes (switches and other controllers), as long as at
most κ links fail. That is, after the recovery period the
communication delays are bounded.

(2) Recovery from transient faults: We show that our
control plane can even recover after the occurrence
of transient faults. That is, starting from an arbitrary

1The word renaissance means ‘rebirth’ (French) and it symbolizes
the ability to recover after the occurrence of transient faults.

state, the system recovers within time O(D2N) to a
legitimate state. Note that O(D2N) depicts the absolute
worst case, since recovery can be much faster depending
on the actual failures that occur in the network. In a
legitimate state, the number of packet forwarding rules
per switch is at most NC times the optimal, where NC

is (an upper bound on) the number of controllers.

While we are not the first to consider the design of
self-stabilizing systems which maintain redundant paths
also beyond transient faults, the challenge and novelty
of our approach comes from the specific restrictions
imposed by SDN (and in particular the switches). In this
setting not all nodes can compute and communicate, and
in particular, SDN switches can merely forward packets
according to the rules that are decided by other nodes,
the controllers. This not only changes the model, but
also requires different proof techniques, e.g., regarding
the number of resets and illegitimate rule deletions.

In order to validate and evaluate our model and algo-
rithms, we implemented a prototype of Renaissance in
Floodlight using Open vSwitch (OVS), complementing
our worst-case analysis. Our experiments in Mininet
demonstrate the feasibility of our approach, indicating
that in-band control can be bootstrapped and maintained
efficiently and automatically in the presence of failures.

Organization. We give an overview of our system
and the components it interfaces in Section II. The
model appears in Section III. Our algorithm is presented
(Section IV), analyzed (Section V), and validated (Sec-
tion VI). We discuss related work (Section VII) and
then conclude (Section VIII). Due to the page limit, the
proof details appear in [10].

II. THE SYSTEM IN A NUTSHELL

We provide an overview of the network architecture.
The network includes a set PC = {p1, . . . , pNC

}
of NC (remote) controllers, and a set PS =
{pNC+1, . . . , pNC+NS

} of the NS (packet forwarding)
switches, where i is the unique identifier of node
pi ∈ P = PC ∪PS . Each switch pi ∈ PS stores a set of
rules that the controllers install in order to define which
packets have to be forwarded to which ports. In the
out-of-band control scenario, a controller communicates
the forwarding rules via a dedicated management port
to the control module of the switch. In contrast, in
an in-band setting, the control traffic is interleaved
with the data plane traffic, which is the traffic be-
tween hosts (as opposed to controller-to-controller and
controller-to-switch traffic): switches can be connected
to hosts through data ports and may have additional
rules installed to correctly forward their traffic. We do
not assume anything about the hosts’ network service,
except for that their traffic may traverse the network.

2



Control module

Switch fabric

Abstract SDN switch

Internal link 
for in-band 

control
Forwarding 

rules

local
Mng. port

Controller
A

Updates
and stats

Abstract 
SDN 

Switch

Controller
BData (plane) links to neighbors

Abstract 
SDN 

Switch

Abstract 
SDN 

Switch

…

Host

Host

Host

… Data 
(plane) 
links to 
hosts

Fig. 1: Abstract SDN switch illustration.

In an in-band setting, control and data plane traffic
arrive through the same ports at the switch, which
implies a need for being able to demultiplex control
and data plane traffic: switches need to know whether
to forward (data) traffic out of another port or (control)
traffic to the control module. Thus, control plane packets
need to be logically distinguished from data plane traffic
by some tag (or another deterministic discriminator).

Figure 1 illustrates the switch model considered in
this paper. Our self-stabilizing control plane considers
a proposal for abstract switches that do not require
the extensive functionality that existing SDN switches
provide. An abstract switch can be managed either via
the management port or in-band. It stores forwarding
(match-action) rules. These rules are used to forward
data plane packets to ports leading to neighboring
switches, or to forward control packets (e.g., instructing
the control module to change existing rules) to the local
control module. Rules can also drop all the matched
packets. The match part of a rule can either be exact
match or optionally include wildcards.

Maintaining the forwarding rules with in-band con-
trol is the key challenge addressed in this paper: for
example, these rules must ensure (in a self-stabilizing
manner) that control and data packets are demultiplexed
correctly (e.g., using tagging). Moreover, it must be en-
sured that we do not end up with a set of misconfigured
forwarding rules that drop all arriving (data plane and
control plane) packets: in this case, a controller will
never be able to manage the switch anymore.

In the following, we will assume a local topology
discovery mechanism which reports to the controllers
the availability of their direct neighbors. Also, we
assume access to self-stabilizing protocols for the link
layer (and the transport layer) [14] that provide reli-
able, bidirectional FIFO-communication channels over
unreliable media that is prone to packet omission,
reordering, and duplication.

A. Switches and Rules

Let pj be a node and Nc(j) ⊆ P (communication
topology) be the set of directly attached neighboring
nodes of pj . At any given time, and for any given node
pi ∈ P , the set No(j) ⊆ Nc(j) (operational topology)
refers to pj’s directly connected nodes for which ports
are currently available for packet forwarding.

Suppose that pi ∈ PS is a switch that receives
a packet with psrc ∈ PC and pdest ∈ P as the
packet source, and destination respectively. We refer
to a rule (for packet forwarding at the switch) by a
tuple 〈k, i, src, dest, prt, j,metadata〉, where pk is the
controller that created this rule, prt ∈ {0, . . . , nprt} :
nprt ≥ κ+ 1 is a priority that pk assigns to this rule, κ
is a bound on the number of concurrently failing links,
pj ∈ Nc(i) is a port on which the packet can be sent
whenever pj ∈ No(i), and metadata is an (optional)
opaque data value. Our abstract switch considers only
rules that are installed on the switches indefinitely, i.e.,
until a controller explicitly requests to delete them,
rather than setting up rules with expiration timeouts.

Configuration Queries (via a Direct Neighbor):
As long as the system rules and operational links
support (bidirectional) packet forwarding between con-
troller pi and switch pj , the abstract switch allows
pi to access pj’s configuration remotely, i.e., via the
interfaces manager(j) (query and update), rules(j)
(query and update) as well as Nc(j) (query-only), where
manager(j) ⊆ PC is pj’s set of assigned managers and
rules(j) is pj’s rule set. Also, a switch pj , upon arrival
of a query of a controller pi, responds to pi with the
tuple 〈j,Nc(j),manager(j), rules(j)〉.

The abstract switch also allows controller pi to query
node pj via pj’s direct neighbor, pk as long as pi knows
pk’s local topology. In case pj is a switch, pi can also
modify pj’s configuration (via pj’s abstract switch) to
include a flow to pi (via pk) and then to add itself as
a manager of pj . We refer to this as the query (and
modify)-by-neighbor functionality.

The Switch Memory Management: The number
of rules and managers that each switch can store is
bounded by maxRules and maxManagers, respec-
tively. The abstract switch has a way to deal with
clogged memory by storing the rules and managers in
a FIFO manner (say, using local counters that serve as
timestamps in the meta-information (metadata) part of
each rule). Whenever a controller accesses a switch,
that switch refreshes these timestamps, i.e., all switch
configuration items related to this controller. When the
switch memory has more than maxRules rules, the
switch removes the rule that has the earliest timestamp
so that a new rule can be added. This mechanism
prioritizes newer rules (and manager information) that
controllers install. Note that, as long as a switch has
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sufficient memory to store the rules of all controllers
in PC , the above mechanism does not need to remove
any rule of controller pi ∈ PC after the first time that
pi has refreshed its rules on that switch. Similarly, we
assume that whenever the number of managers that a
switch stores exceeds maxManagers, the last to be
stored (or access) manager is removed so that a new
manager can be added.

Keeping the Switch Accessible: In order to render
the network self-stabilizing, we assume that the abstract
switch is self-stabilizing in a way that has the ability to
ensure that initial misconfigurations are removed even-
tually. A switch may initially store rules which block
any arriving packet, potentially making it unmanage-
able. The algorithm of the abstract switch can resolve
this situation by interpreting any arriving packet as a
control packet by default (if not matched otherwise).
We leverage the limited size of the switch memory
and disallow wildcarding on a specific field used for
control traffic, rendering it impossible to disallow all
control traffic given the limited number of rules. Even
if some rules block control packets, the abstract switch
algorithm can iterate over all possible header values
to find ones that are not blocked. Note that this also
prevents controller applications and user-level policies
(e.g., a firewall) from blocking all control to a switch.

B. Building Blocks

Our architecture relies on a fault-tolerant mechanism
for topology discovery. We use such a mechanism as an
external building block. Moreover, we require a notion
of resilient flows. We next discuss both these aspects.

1) Topology Discovery: The local topology informa-
tion in No(i) (operational topology) is liable to rapidly
change without notice. We consider a system that uses
an (ever running) failure detection mechanism, such as
the self-stabilizing Θ-failure detector [6]: it discovers
the switch neighborhood by identifying the failed/non-
failed status of its attached links and neighbors. This
mechanism reports the set of nodes Nc(i) ⊆ P (commu-
nication topology) which are directly connecting node
pi ∈ P and node pj , i.e., pj ∈ Nc(i).

2) Fault-resilient Flows: We use κ-fault-resilient
flows which are a reminiscent of the flows in [21]. The
idea is that the network can forward the data packets
along the shortest routes, and use alternative routes
in the presence of link failures, based on conditional
forwarding rules [7]; these failover rules provide a
backup for every link. The flows in [21] are computed
by constructing a directed acyclic graph for every des-
tination in the network topology, such that all edges
point to a neighbor that is closer to the destination. The
authors propose a loop-free routing algorithm, that bases
on shortest paths according to node identifiers.

Legal execution (LE)Recovery 
period

Arbitrary failures before 
the system starts

Execution’s 
starting state 

Failure 
model

Packet failures: omissions, duplications, reordering (assuming 
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Fig. 2: Failures (white boxes) and recovery guarantees
(gray boxes) of the proposed self-stabilizing SDN solution.

III. THE MODEL

We model the control plane as a message passing
system that has no notion of clocks (nor timeout mech-
anisms), as in the Paxos model [6], [20]. We borrow
from [6, Section 6] a technique for local link monitoring
(Section II-B1), which also addresses the need to detect
fail-stop failures. This technique assumes that between
the time in which a node completes one message round-
trip with a (non-failing) directly connected neighbor, it
cannot complete more than Θ−1 round-trips with all the
other directly connected (non-failing) neighbors, where
Θ is a constant. Apart from this failure detector (which
implies synchrony), we consider the control plane as an
asynchronous system. We model the nodes as automata
with input events that are either a packet reception or a
periodic timer (at an unknown rate), as well as output
events that send messages.

The state of a node consists of all its local variables
as well as all the packets in the incoming communi-
cation channels. A system state is the collection of the
states of all the nodes. A step starts with a node’s local
computations and ends with a single packet send or
receive operation. We refer to an alternating sequence of
states and steps as a (system) execution. We denote the
operational and connected communication topology as
Go = (P,Eo), and respectively, as Gc = (P,Ec), where
for x ∈ {o, c}, Ex = {(pi, pj) ∈ P × P : pj ∈ Nx(i)}.
We assume that, during the system run, there are no
more than κ link failures. We model as a transient fault
the events of a failure of more than κ links (or the
addition of new links) as well as switch fail-stop failures
(or the addition of switches to the network). Moreover,
the fail-stop failure of node pj is a transient fault that
results in the removal of (pi, pj) from the network
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and pj from Nc(i). A transient fault can also corrupt
the state of the nodes or the communication channels.
We model the rare occurrence of transient faults by
considering system executions in which transient faults
never happen. Our model permits any finite number of
transient faults before the system start. Namely, during
the system run, Gc does not change and it is (κ + 1)-
edge connected (cf. Figure 2).

Suppose that a κ-fault-resilient flow from pi to pj is
installed in the network. The term primary path refers
to the path along which the network forwards packets
from pi to pj in the absence of failures. We assume that
myRules() maintains rules for κ-fault-resilient flows;
their primary paths are also the shortest paths in Gc.

We define the system’s task by a set of system
runs called legal executions (LE) in which the task’s
requirements hold. I.e., each controller pi constructs a
κ-fault-resilient flow to every node pj ∈ P (either a
switch or controller). We say that a system state c is
legitimate, when every execution R (run) that starts from
c is in LE. A system is self-stabilizing [13] with relation
to task LE, when every (unbounded) system execution
(with an arbitrary starting system state) reaches a legit-
imate state with relation to LE (Figure 2).

IV. A SELF-STABILIZING SDN CONTROL PLANE

We present a self-stabilizing SDN control plane,
called Renaissance, that enables each controller to dis-
cover the network, remove any stale information in
the configuration of the discovered unmanaged switches
(e.g., rules of failed controllers), and construct a κ-fault-
resilient flow to any other node that it discovers.

Algorithm 1 creates an iterative process of topology
discovery that, first, lets each controller identify the set
of nodes that it is directly connected to; from there,
it finds the nodes that are directly connected to them;
and so on. This network discovery process is combined
with another process for bootstrapping communication
between any controller and any node in the network,
i.e., connecting each controller to its direct neighbors,
and then to their direct neighbors, and so on, until it is
connected to the entire reachable network.

A. Variables, Building Blocks, Interfaces

Before presenting our algorithm, we introduce some
notation, interfaces, and building blocks.

Local Variables. Each controller’s state includes
responses (line 2), which is the set of the most recent
query replies, and the tags (line 3), which are pi’s
current (currTag) and previous (prevTag) synchro-
nization round tags. Node pj’s response m(j) : pj ∈
P has the form 〈j, Nc(j), manager(j), rules(j)〉.
The code denotes by Nc(j) the neighborhood of pj ,

by manager(j) ⊆ PC the controllers of pj , and
by rules(j) ⊆ {〈k, j, src, dest, prt, z, tag〉 :
(pk, pj , pz, pdest ∈ P ) ∧ (psrc ∈ PC) ∧ prt ∈
{0, . . . , nprt} ∧ tag ∈ tagDomain} the rule set of pj
(cf. Section II-A). We assume that the size of responses
is bounded by maxResponses ≥ 2(NC +NS).

The Round Synchronization Mechanism. An SDN
controller accesses the abstract switch in synchronized
rounds. Each round has a unique tag that distinguishes
the given round from its predecessors. We assume
access to a self-stabilizing algorithm that generates
unique tags of bounded size from a finite domain of
tags, tagDomain. The algorithm provides a function
called nextTag() that, during a legal execution, re-
turns a unique tag. That is, immediately before calling
nextTag() there is no tag anywhere in the system that
has the returned value from that call. The function
nextTag() depends only on local variables, thus we
require that the round synchronization mechanism is
self-stabilizing to guarantee that nextTag() returns a
unique and maximum tag during a legal execution.
Given two tags, t1 and t2, we require that t1 = t2 holds
if, and only if, they have identical values. Note that
there are self-stabilizing algorithms [4] that during fair
executions provide unique tags. They recover within a
bounded number of synchronization rounds (whenever
the execution is legal with respect to the self-stabilizing
end-to-end protocol and in which all failing links and
nodes have been detected).

We use these tags for synchronizing the rounds in
which the controllers perform configuration updates and
queries. Namely, in the beginning of a round, controller
pi ∈ PC generates a new tag and stores that tag in
the variable currTag ← nextTag(). Controller pi
then attempts to install at every reachable switch pj ∈
PS a special meta-rule 〈i, j,⊥,⊥, nprt,⊥, tmetaRule〉,
which includes, in addition to pi’s identity, the tag
tmetaRule = currTag and has the lowest priority (be-
fore making any configuration update on that switch).
It then sends a query to all (possibly) reachable nodes
in the network and combines that query with the tag
tquery = currTag. The response to that query from
other controllers pj ∈ PC includes the query tag, tquery.
The response to the query from the switch pk ∈ PS

includes the tag tmetaRule of the most recently installed
meta-rule that pk has in its configuration. Once pi has
received a response with currTag from all reachable
nodes, it ends that round. In Section IV-B we explain
how Algorithm 1 treats packets with outdated tags.

Interfaces. Controller pi can send requests or queries
to any other node pj . The controllers send command
batches, which are sequences of commands. The special
metadata command 〈‘newRound’, tmetaRule〉 is always
the first command. We use it for starting a new round
(where tmetaRule = t is the round’s tag). This starting
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Algorithm 1: Self-stabilizing SDN, code for controller pi.
1 Symbols and operators: ‘•’ stands for ‘any sequence of values’, () is the empty sequence, ◦ (binary) is the sequence concatenation

operator and © (unary) concatenates a set’s items in an arbitrary order.
2 Local state: responses ⊆ {m(j) : pj ∈ P} has the most recently received query replies m(j), pj ∈ P , where m(j) := 〈j, Nc(j),

manager(j), rules(j)〉, Nc(j) is pj ’s neighborhood, manager(j) ⊆ PC has pj ’s controllers, and rules(j) ⊆ {〈k, j, src, dest,
prt, z, tag〉 : (pk , pj , pz , pdest ∈ P ) ∧ psrc ∈ PC ∧ prt ∈ {0, . . . , nprt} ∧ tag ∈ tagDomain} is pj ’s rule set;

3 currTag and prevTag are pi’s current, and respectively, previous synchronization round tags;
4 Interfaces (sections II-B2 and IV-A): myRules(G, j, tag): creates pi’s rules at switch pj according to G with tag tag;
5 Macros: res(x) = {〈•, rules(j)〉 ∈ responses : ∀r∈rules(j) r = 〈•, x〉} ∪ {〈i, Nc(i), ∅, ∅〉};
6 G(S) := ({pk : ∃〈j,Nc(j),•〉∈S : (k = j ∨ pk ∈ Nc(j))}, {(j, k) : ∃〈j,Nc(j),•〉∈S : (pk ∈ Nc(j))});
7 fusion := res(currTag) ∪ {〈k, •, prevTag〉 ∈ res(prevTag) : 〈k, •, currTag〉 /∈ res(currTag)};
8 pj →G pk := true if there is a path from pj to pk in G;

9 do forever begin
/* Remove replies from unreachable senders or not from round prevTag or currTag. */

10 responses← {〈k, •, rules〉 ∈ responses : k 6= i ∧ (∃x∈{currTag,prevTag}〈k, •, rules〉 ∈ res(x) ∧ pi →G(res(x))

pk ∧ 〈i, •, x〉 ∈ rules)} ∪ {〈i, Nc(i), ∅, ∅〉};
11 let (newRound,msg) := (false, ∅); /* newRound and msg get their default values */

/* a new round with a new tag; remove responses with tag currTag */
12 if (∀p` : pi →G(res(currTag)) p` =⇒ 〈`, •〉 ∈ res(currTag) then
13 (newRound, prevTag)← (true, currTag); currTag ← nextTag();
14 responses← responses \ {〈j, •〉 ∈ res(currTag) : pj ∈ P};

/* The reference tag, referTag, is currTag when a topology change is discovered */
15 if G(fusion) = G(res(prevTag)) then let referTag := prevTag else let referTag := currTag;
16 foreach pj ∈ PS : 〈j,Ngb,Mng,Rul〉 ∈ res(referTag) do /* manage switch pj’s rules */

/* pi is a manager; remove unreachable managers on new rounds and nodes with no rules */
17 let M := {pk ∈Mng : (∃r∈Rul r = 〈k, •〉) ∧ (¬newRound ∨ pi →G(res(prevTag)) pk)} ∪ {pi};
18 msg ← msg ∪ {(pj , 〈‘delMngr’, k〉) : pk ∈ (Mng \M)} ∪ {(pj , 〈‘addMngr’, i〉)};

/* Remove any pj’s rule that is associated with an unreachable node, pk */
19 msg ← msg ∪ {(pj , 〈‘delAllRules’, k〉) : (∃r∈Rul r = 〈k, •〉) ∧ pk /∈M};

/* pi refreshes all of its rules at switch pj according to referTag */
20 msg ← msg ∪ {(pj , 〈‘updateRules’,myRules(G(res(referTag)), j, currTag)〉)};
21 foreach pj : pi →G(fusion) pj do send (〈‘newRound’, currTag〉) ◦ [©m:(pj ,m)∈msg(m)] ◦ (〈‘query’, currTag〉) to pj ;

22 upon query reply m := 〈j, •, rls〉 from pj begin
23 if |responses ∪ {m}| > maxResponses then responses← {〈i, Nc(i), ∅, ∅〉}; /* C-reset */
24 if (∃r∈rls r = 〈•, currTag〉) then responses← (responses \ {〈j, •〉}) ∪ {m};
25 upon arrival of (• ◦ (〈‘query’, tag〉)) from pj do send 〈i, Nc(i),⊥, {〈j, i,⊥,⊥,⊥,⊥, tag〉}〉 to pj

command could be followed by a number of commands,
such as 〈‘delMngr’, k〉 for the removal of controller pk
from the management of switch pj , 〈‘addMngr’, k〉
for the addition of controller pk from the manage-
ment of switch pj , and 〈‘delAllRules’, k〉 for the
deletion of all of pk’s rules from pj’s configuration,
where pk ∈ PC \ {pi}. The rules’ update, done via
〈‘updateRules’, newRules〉, replaces all of pi’s rules
at switch pj (except for the special meta-rule).

These commands are to be followed by the round’s
query 〈‘query’, tquery〉, where tquery = t is the
query’s tag. The switch pj replies to a query by
sending m = 〈j,Nc(j), manager(j), rules(j)〉 to
pi, such that the rule set includes also the special
meta-rule 〈i, •, t〉 ∈ rules(j). Whenever pj ∈ PC is
another controller, the response to a query is simply
〈i,Nc(i),⊥, {〈j, i,⊥,⊥,⊥,⊥, tquery〉}〉 (line 25). Note
that controller pj ignores all other types of commands.
We use the interface function myRules(G, j, tag) (Sec-
tion II-B2) for creating the packet forwarding rules that
controller pi installs at switch pj when pi’s current view

on the network topology is G in round tag (line 4).

B. Description of Algorithm 1

Each controller associates independently each iter-
ation with a unique tag that synchronizes a round in
which the controller performs configuration updates and
queries. Controller pi maintains the variables currTag
and prevTag (line 3) of the round synchronization
procedure, which starts when pi queries all reachable
nodes and ends when it receives replies from all of
these nodes (cf. lines 6 and 8, 12–14, as well as,
Section III). When a query response arrives at pi, before
the update of the response set (line 24), pi checks that
there is sufficient storage space for the arriving response
(line 23). If space is lacking, pi performs what we call
a ‘C-reset’. Note that pi stores responses only for the
current round, currTag. Controller pi replies to other
controllers’ queries in line 25.

Controller pi ∈ PC keeps a local state of query re-
sponses (cf. Section II-A) from other nodes (line 2). The
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responses accumulate information about the network
topology according to which the switch configurations
are updated in each round. Algorithm 1’s do-forever
loop (lines 9–21) provides these functionalities.

Establishing communication between every con-
troller and every other node. A controller pi ∈ PC

can communicate and manage a switch pj ∈ PS only
after pi has installed rules at all the switches on a path
between pi and pj . This, of course, depends on whether
there are no permanent link failures on the path. In
order to discover these link failures, we use local mech-
anisms for link state monitoring (cf. Section II-B1).
The algorithm considers any permanent link failure as
a transient fault and we assume that Algorithm 1 starts
running only after the last occurrence of any transient
fault (cf. Figure 2). Thus, as soon as there is a flow
installed between pi and pj and there are no permanent
failures on the primary path (Section III), pi and pj can
exchange messages eventually.

The above iterative process of network topology
discovery and the process of rule installation consider
κ-fault-resilient flows (cf. Section II-B2 and myRules()
function in Section III). These flows are computed
through the interface myRules(G, j, tag) (line 4). Once
the entire topology is discovered, Algorithm 1 guaran-
tees the installation of a κ-fault-resilient flow between
pi and pj . Thus, once the system is in a legitimate state,
the availability of these flows implies that the system is
resilient to the occurrence of at most κ temporary link
failures (and recoveries) and pi can communicate with
any node in the network within a bounded time.

Topology discovery and dealing with unreachable
nodes. Algorithm 1 lets the controllers connect to each
other via κ-fault-resilient flows. Moreover, Algorithm 1
can detect situations in which controller pk /∈ PC is
not reachable from controller pi (line 10). The reason
is that pi is guaranteed to (i) discover the entire network
eventually, and (ii) communicate with any node in the
network. This means that pi eventually gets a response
from every node. Once that happens, the set of nodes
that respond to pi equals to the set of nodes that were
discovered by pi (line 12) and thus pi can restart the
process of discovering the network (lines13–14).

The start of a new (rediscovery) round, allows pi to
also remove information at the switches that is related
to any unreachable controller pk ∈ PC (assuming
that it has succeeded in discovering the network and
bootstrapped communication). During new rounds, pi
removes information related to pk from any switch pj
(lines 17–19); whether this information is a rule or
pk’s membership in pj’s management set. This stale
information clean-up eventually brings the system to a
legitimate state, as we will prove in Section V. The
do-forever loop of Algorithm 1 completes by sending

rule (line 20) and manager updates to every switch
that has a reply in responses, as well as querying
every reachable node, with the current synchronization
round’s tag (lines 21–21). Note that each of these
configuration updates are done via a single message that
aggregates all commands for a given destination.

V. CORRECTNESS PROOF

We prove Algorithm 1’s correctness by showing that
(i) when the system starts in an arbitrary state, it reaches
a legitimate state within a bounded period (Theorem
1), i.e., Figure 2’s recovery period is bounded. Also,
(ii) when starting from a legitimate state and letting a
bounded number of failures to occur, the system returns
to a legitimate state within a bounded period. Due to the
page limit, we present a proof sketch for Theorem 1.
The detailed proof appears in [10].

Refined model. We measure the recovery period of
Algorithm 1 in terms of frames. The first (asynchronous)
frame of run R is the shortest prefix R′ of R in
which every controller starts and ends at least one
complete round-trip with every node of its discovered
topology. The second frame in R is the first frame in
R′′, which is R’s suffix that starts after R′, and so
on. We denote by ∆ the recovery time of an end-to-
end channel [14] and the self-stabilizing algorithm for
unique label generation [4].

Definition 1 (Legitimate System State). We say that
c ∈ R is Algorithm 1’s legitimate state when: (1)
the controllers have the correct information about the
nodes in the network, (2) any controller is the manager
of every switch and only these controllers can be the
managers of any switch, (3) the rules installed in
the switches encode κ-fault-resilient flows between all
controllers and nodes, and (4) the end-to-end and round
synchronization protocols are in a legitimate state.

Theorem 1. Within ((∆+2)D+1)[(∆D+1)NS+NC+
1] frames in run R of Algorithm 1, the system reaches
a state csafe ∈ R that is legitimate (Definition 1).

Proof sketch: The proof follows by three claims.
In Claim 1 we show that each switch needs to store
a bounded number of rules and each controller needs
to store a bounded number of responses and performs
at most one C-reset (line 22). Then, we remark that the
system cannot reach a legitimate state before it removes
stale information from every switch configuration. Note
that failing controllers cannot remove stale information
that is associated with them and therefore non-failing
controllers have to remove this information for them.
Due to transient faults, it could be the case that a
controller removes erroneously information about an-
other non-failing controller. We refer to these ‘mistakes’
as illegitimate deletions of rules and note that they
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Fig. 3: Bootstrap time for Telstra (T), EBONE (E) and
Exodus (X) for 1 to 7 controllers.

occur when the (stale) information that a controller
has about the network topology differs from the actual
network topology, Gc. Due to stale information in the
communication channels, any given controller might
aggregate (possibly stale) information about the network
more than once and thus instruct the switches again to
delete illegitimately rules of other controllers. Thus, in
Claim 2 we show that the number of steps in which a
controller instructs the switches to perform illegitimate
deletions (due to stale information) is bounded by
D · (∆ + 1) + 1. Finally, in Claim 3 we show that
Algorithm 1 recovers from transient faults, i.e., within
((∆ + 2)D + 1)[(∆D + 1) ·NS + NC + 1] frames, R
has a period of (∆+2)D+1 frames in which there are
no C-resets and no illegitimate deletions and thus the
system reaches csafe.

Our proof also shows that, when starting from a
legitimate state and then letting a single link in the
network to be added or removed from Gc, the system
recovers within O(D) frames. The arguments here con-
sider the number of frames it takes for each controller
to notice the change and to update all the switches. By
similar arguments, we show that, within O(D) frames,
the system recovers after the addition or removal of at
most NC − 1 controllers in a legitimate system state.

VI. EVALUATION

We evaluate our approach and study Renaissance’s
performance. We implemented a prototype using Open
vSwitch (OVS) and Floodlight. The prototype source
code, once ready for release, will be made available [1].
We note that a comparison with the performance of
existing in-band control planes would not be mean-
ingful, since our approach is the first to consider self-
stabilization. If the control plane is not self-stabilizing,
then it cannot automatically recover from transient faults
(e.g., arbitrarily corrupted states). In this case, recovery
depends on external intervention.

Setup. The experiments are conducted using PCs with
Ubuntu 16.04.1 OS, Intel Core i7-2600K CPU at
3.40GHz (8CPUs) with 16GB RAM. The link status
detectors (for switches and controllers) are parametrized
with frequency θ = ∆(G) · 3, where ∆(G) is the
maximum node degree. If not stated otherwise, the con-
trollers issue requests and install flows once per second.
Paths are computed according to Breadth First Search
(BFS) and we use OpenFlow fast-failover groups for
backup paths. The hosts for traffic and RTT evaluation
are placed such that the distance between them is as
large as the network diameter.

How efficiently can Renaissance bootstrap an SDN
(resp. handle transient faults)? We first study how fast
we can establish a stable network starting from empty
switch configurations. Towards this end, we measure
how long it takes until all controllers in the network
reach a legitimate state in which each controller can
communicate with any other node in the network (by
installing packet-forwarding rules on the switches). For
the smaller networks (B4 [17] and Clos [3]), we use
3 controllers, and for the Rocketfuel networks [30],
[31] (Telstra, EBONE, and Exodus), we use up to 7
controllers. We note that figures 3, 5, 6, 7 are violin
plots [16]. A violin plot illustrates the first and third
quartile with a thick black line connecting them, the
median with a white dot, the boundary values at the
endpoints of a thin black line, and the kernel density
estimation with the plot’s vertical boundary (same on
both sides). The horizontal boundary only closes the
surface, which is colored for clarity.

We are indeed able to bootstrap in any of the
configurations studied in our experiments. In terms of
performance, as expected, the stabilization time is pro-
portional to the network diameter and also depends on
the number of controllers (Figure 3): more controllers
result in slightly longer stabilization times as there will
be more flows needed for each node in the network.

Note that the shown stabilization times only provide
qualitative insights: they are, up to a certain point, pro-
portional to the frequency at which controllers request
configurations and install flows (Figure 4).

How efficiently does Renaissance recover in the pres-
ence of benign failures (link and node failures)? We
consider different types of benign failures: controller
fail-stop, permanent switch-failure, and permanent link-
failure. The experiments start from a legitimate system
state, to which we apply these failures.

In the fail-stop failure experiments (figures 5 and 6),
we disconnect a single controller that is initially cho-
sen at random, and measure the recovery time (from
benign failures). The procedure is repeated for the
same controller for each measurement. We also measure
disconnecting 1-6 controllers simultaneously for the
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Fig. 5: Recovery time after fail-stop failure of a controller.

Rocketfuel (Telstra, EBONE and Exodus) networks,
while running 7 controllers. The multiple controllers
chosen for disconnection are also initially chosen at
random, and the same ones are used when repeating
the procedure for each measurement.

For the experiments for permanent link-failures
(Figure 7), we disconnect either a single link that has
maximal distance from all the controllers in the network
(the procedure is repeated for the same link for each
measurement), or, in case of multiple link failures, we
choose failed links at random (making sure we do not
disconnect the entire network). We find that the recovery
time (after a fail-stop failure of a controller) is roughly
linear in the number of nodes (Figure 5). The diameter
also affects the time, but only to a smaller extent. For
example, B4, which has a larger network diameter but
is smaller compared to Clos, has a smaller average
recovery time. The number of failed controllers (in
Figure 6) does not affect the time much, as expected.
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Fig. 6: Recovery time after fail-stop failure for 1-6 con-
trollers in Telstra (T), EBONE (E) and Exodus (X).
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Performance and transient behavior. Besides con-
nectivity, we are also interested in performance metrics
such as throughput and message loss during stabiliza-
tion, that is, recovery from transient faults that bring the
system to an arbitrary starting state. In particular, while
the recovery time (from benign failures) is quite fast,
involving the control plane is time-consuming and can
lead to packet reorderings and congestion. Accordingly,
we employ local fast failover mechanisms.

In the following, we measure the TCP throughput
between two hosts (placed at maximal distance from
each other), in the presence of a link-failure located as
close to the middle of the primary path. To generate
traffic, we use Iperf. A specific link to fail is chosen
such that it enables a backup path between the hosts.

The maximum link bandwidth is set to 1000 Mbits/s.
We conduct throughput measurements during a period
of 30 seconds. The link-failure occurs after 10 sec-
onds, and we expect a throughput drop due to the
traffic being rerouted to a backup path, which causes
TCP’s congestion control mechanism to reduce the
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Fig. 8: Throughput for the different networks. A single
link failure causes the drop after the 10th second.

transmission rate when packet loss or reorderings occur.
We note that our prototype utilizes packet tagging for
incremental update [27]. This helps to avoid another
drop in throughput as a result of the new paths being
installed in order to repair flows while destroying the
old backup paths.

We can see in Figure 8 that one throughput valley
occurs indeed (to around 750 - 800 mbits/s). This is in-
teresting, because, as we confirmed in additional exper-
iments (not shown here), a naive approach which does
not account for the multiple control planes and recov-
ery from benign failures, results in repeated rerouting
and hence repeated performance drops: The throughput
increases after the traffic is rerouted to a backup path
but drops once again after a few seconds, when the
network recovers from benign failures. Using per-packet
consistent paths and tagging forces the packets to only
use the new primary path once all the necessary rules
have been installed on the switches, which can reduce
packet loss and re-transmissions of packets.

VII. RELATED WORK

To the best of our knowledge, our paper is the first to
present a comprehensive model and rigorous approach
for the design of in-band decentralized control planes
providing self-stabilizing properties. As such, our ap-
proach complements much ongoing, often more applied,
related research. In particular, our control plane can be
used together with and support distributed systems, such
as ONOS [5], ONIX [19], ElastiCon [12], Beehive [32],
Kandoo [15], STN [9]. Our paper also provides missing
links for the interesting work by Akella and Krishna-
murthy [2], whose switch-to-controller and controller-
to-controller communication mechanisms rely on strong
primitives, such as consensus protocols, consistent snap-
shot and reliable flooding, which are not currently
available in OpenFlow switches. We also note that our
approach is not limited to a specific technology, but
offers flexibilities and can be configured with additional
robustness mechanisms, such as warm backups, local
fast failover [26], or alternatives spanning trees [8], [22].

Furthermore, there exists interesting work on boot-

strapping connectivity in an OpenFlow network [18],
[29] (that does not consider self-stabilization). In con-
trast to our paper, Sharma et al. [29] do not consider
how to support multiple controllers nor how to establish
the control network. Moreover, their approach relies on
switch support for traditional STP and requires modi-
fying DHCP on the switches. We do consider multiple
controllers and establish an in-band control network in
a self-stabilizing manner. Katiyar et al. [18] suggest
bootstrapping a control plane of SDN networks, sup-
porting multiple controller associations and also non-
SDN switches. However, the authors do not consider
fault-tolerance. We provide a very strong notion of fault-
tolerance, which is self-stabilization.

We are not the first to consider self-stabilization
in the presence of faults that are not just transient
faults (see [13], Chapter 6). Thus far, self-stabilizing
algorithms consider networks in which all nodes can
compute and communicate. In the context of the studied
problem, some nodes (the switches) can merely forward
packets according to rules that are decided by other
nodes (the controllers). To the best of our knowledge,
we are the first to demonstrate a rigorous proof for
the existence of self-stabilizing algorithms for an SDN
control plane. This proof uses a number of techniques
that are unique to the area, such as the one for assuring
a bounded number of resets and illegitimate deletions.
We reported on preliminary insights in a short paper on
Medieval [28]. However, Medieval is not self-stabilizing
because its design depends on the presence of non-
corrupted configuration data.

VIII. CONCLUSION

We understand our paper as a first step, and believe it
opens several interesting directions for future research.
In particular, while we have deliberately focused on
the more challenging in-band control scenario only,
we anticipate that our approach can also be used in
networks which combine both in-band and out-of-band
control, e.g., depending on the network sub-regions.
Moreover, while fundamental, our model is still simple
and could be extended, e.g., to account for the dynamics
of control and data plane traffic, e.g., by adjusting the
failure detector model accordingly or to establish the
backup routing paths for control traffic by considering
the data traffic dynamics. Finally, while our prototype
experiments demonstrate feasibility of our approach and
show promising results, it remains to conduct a more
rigorous practical evaluation. In order to facilitate future
research, we will release the prototype source code
together with this paper.
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