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Abstract. Task-based runtime systems have gained a lot of interest in recent years since 

they support separating the specification of parallel computations from the concrete mapping 
onto a parallel architecture. This separation of concerns is considered key to coping with the 
increased complexity, performance variability, and heterogeneity of future parallel systems and 
to facilitating portability of applications across different architectures. In this paper we present 
our work on a programming framework that enables the expression of pipeline patterns at a 
high-level of abstraction by adding pragma directives to sequential C++ codes. Such high-level 
abstractions are then transformed to a runtime coordination layer, which utilizes different task-
based runtime systems including StarPU and OCR to realize efficient parallel execution on 
single-node multi-core architectures. We describe the major aspects of our approach for 
mapping pipeline patterns to task-based runtimes and present experimental results for a real-
world face-detection application indicating that a performance competitive with low-level 
programming approaches can be achieved.  
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1 Introduction 

Many recent research efforts have focused on the use of dynamic task-based runtime 
systems (e.g., StarPU [1], HPX [2], OCR [3]) to realize efficient applications on 
increasingly complex parallel architectures. Commonly, these approaches represent 
an application as a directed acyclic graph (DAG) where nodes represent 
computational tasks, and edges represent dependences between tasks. From such a 
representation, a runtime system can dynamically determine tasks that can be 
executed in parallel and use sophisticated scheduling algorithms to map these tasks to 
available execution units of the target system. With such an approach, programmers 
usually only specify what can be potentially executed in parallel, while deferring to 
the runtime how parallel execution is organized on a specific parallel architecture. 
Separating the specification of parallelism from its implementation enables the 
runtime system to better adapt an application to a specific parallel architecture taking 
into account changing performance characteristics of execution units or dynamically 
changing workloads.    

While task-based runtime systems offer the required flexibility to deal with 
emerging and future architectures, they are often at a very low level of abstraction and 
consequently very complex and difficult to use directly for application development. 
Usually programmers are required to rewrite their applications in a task-parallel way, 
identifying the individual tasks, describing dependences between them and selecting a 
suitable scheduling strategy to achieve efficient execution.  



In our work we aim at raising the level of abstraction when dealing with task-parallel 
programming of modern hardware. We have developed a programming framework 
that supports expression of high-level pipeline patterns within sequential C/C++ codes 
while automatically generating a low-level task-parallel program for efficient 
execution on different parallel architectures using either the StarPU or OCR runtime 
system. Initially we have developed the support for high-level pipeline patterns within 
the European PEPPHER project [4][15], which relied on a direct transformation of 
annotated C++ code to the StarPU runtime system. In our recent work we have 
redesigned our system to support different low-level task-based runtime systems 
through the introduction of an intermediate runtime coordination layer (RCL) which 
decouples our programming system from the concrete underlying low-level runtime. 

Specifically this paper makes the following contributions: (1) a programming 
system that maps high-level pipeline patterns to a task-based runtime system hiding 
the details of parallel execution from the user while providing some means for 
influencing the degree of parallelism; (2) an intermediate runtime coordination layer 
(RCL) that utilizes application-specific knowledge to control how tasks are submitted 
to a lower-level runtime system; (3) a discussion of the major issues in targeting 
different runtime systems like StarPU and OCR from the RCL and the major 
differences between those runtimes; and (4) an experimental evaluation of our 
framework using a real-world face-detection application showing that performance 
comparable to much more complex, low-level programming approaches can be 
achieved. 

The remainder of the paper is organized as follows: Section 2 discusses related 
work. Section 3 provides an overview of our programming framework and outlines 
pipeline patterns. Section 4 describes the runtime coordination layer and presents the 
main issues in targeting StarPU and OCR, respectively. Section 5 presents 
experimental results followed by a conclusion and discussion of future directions in 
Section 6.  

2 Related Work 

Addressing the challenges of programming increasingly complex parallel 
architectures, a variety of dynamic task-based runtime systems and programming 
approaches have been developed [1][2][3][5][6][7][8][9][10]. We discuss some of 
these systems below. 

StarPU [1] is an asynchronous task-based runtime system and programming library 
for heterogeneous systems. StarPU introduces codelets that abstract tasks and allow 
programmers to provide different implementation variants of a computational kernel 
(e.g. for CPUs or GPUs). Moreover, StarPU provides data management facilities that 
automate the data transfer between processing units. StarPU automatically determines 
data dependences by analyzing task arguments and supports various scheduling 
strategies for deciding when and where to execute tasks taking into account historic 
performance data, resource readiness, and data availability.  

The Open Community Runtime (OCR) [3] is an open specification for a low-level, 
event-driven, asynchronous, task-based runtime system designed for extreme scale 



parallel computing. A parallel application in OCR is expressed as a DAG where 
nodes represent tasks (or events) and edges dependences. Event-driven tasks (EDTs) 
are decoupled from their actual loci of execution, which are determined dynamically 
by the runtime system. Events are used to control the execution and synchronization 
of tasks. The data in OCR is organized in data blocks, which describe data 
independently from their actual physical memory location. This allows OCR to 
dynamically relocate tasks and data in order to improve locality, optimize 
performance and support fault tolerance. As opposed to StarPU, which automatically 
infers dependences between tasks, in OCR all dependences between tasks need to be 
explicitly specified.   

OmpSs [5] extends OpenMP with support for asynchronous task-parallel 
execution. The OmpSs memory model assumes a shared address space to enable 
automatic data movement across the system. It provides support for multiple 
implementation variants of tasks when targeting heterogeneous systems. Many 
features introduced in OmpSs have been adopted by the OpenMP standard [6]. 

Legion [7] is a data-centric, task-based programming system that supports dynamic 
hierarchical data partitioning based on the concept of logical regions. Tasks are bound 
to regions and may access regions with different privileges and subject to different 
data coherence modes. Legion provides a mapping interface that enables 
programmers to control the mapping of tasks and data regions in order to optimize an 
application for a specific architecture. 

 The HPX runtime system [2] is a C++-based implementation of a task-based 
programming model within an active global address space, which supports migration 
of objects between the nodes of clusters.  

Most of the mentioned runtime systems are being used directly by application 
programmers, leading to a low-level programming methodology similar or even more 
complex than the dominating MPI model. While for some runtime systems also high-
level approaches exist (e.g., the Regent language targeting Legion, or OpenMP 
tasking extensions), none of the discussed runtimes currently supports high-level 
patterns comparable to our pipeline patterns.  

Thread Building Blocks (TBB) [8] is a task-based C++ template library. It provides 
support for parallel patterns (including pipelines) and concurrent data structures that 
hide some of the complexity of parallel programming. TBB’s task-based approach 
utilizes work-stealing task schedulers to map tasks and perform load balancing among 
processing resources. While TBB is a template library and provides an integrated 
scheduler, our approach relies on annotating sequential C++ codes and allows 
targeting different low-level runtime systems transparently.   

3 High-Level Parallel Pipeline Patterns  

We provide a set of preprocessing directives that enable expression of pipeline 
patterns at a high level of abstraction in sequential C/C++ codes and a transformation 
system and runtime layer for executing pipelines on top of task-parallel runtime 
systems. 



3.1 Overview of the Programming Framework 

Figure 1 provides an overview of our programming framework. We support 
applications written in C/C++ with extensions for high-level pipeline patterns. A 
source-to-source compiler translates sequential C++ code with pipeline patterns to an 
explicitly parallel representation that utilizes the Runtime Coordination Layer (RCL) 
for managing execution on top of a task-based runtime system (OCR or StarPU). 
  

Figure 1. Programming framework (left), face detection pipeline (right) 

Currently our framework targets single-node multicore systems. Support for 
heterogeneous architectures (e.g., CPU/GPU systems) is currently restricted to the 
StarPU runtime. The framework also provides hooks for interfacing it with an 
external autotuner [16] to support tuning of application-specific parameters like stage 
replication factors and runtime-specific parameters like the number of worker threads 
or the scheduling strategy [11]. 

3.2 High-Level Pipeline Patterns 

A pipeline consists of several interconnected stages, where data items flowing 
through the pipeline are processed at every stage. Usually, stages are connected via 
buffers from which stages access the data. While buffered pipelines require additional 
memory, they allow to decouple stages, to mitigate relative performance differences, 
and to better control parallel execution and pipeline throughput. In our approach 
buffers between stages are hidden from the user and generated automatically by the 
compiler. 

A pipeline is constructed with the pipeline pragma directive from while-loops. The 
stage directive is used to indicate that one or more function calls correspond to a 
pipeline stage and may be omitted if a stage contains only a single function call. For 
each stage function multiple implementation variants may be provided (e.g., a CPU or 
a GPU variant). An external XML-based descriptor has to be provided for each stage 
function comprising its interface specification, the intent of function arguments (read, 
write, readwrite), and information about available implementation variants. 

Within the stage directive a replication factor R may be specified, indicating that R 
instances of a stage should be generated, operating in parallel on different data items. 

Parallel	Hardware 

Applications 

+ language extensions for high-level parallel patterns 
+ libraries, … 

Task-based Runtime System 

StarPU OCR … 

Runtime Coordination Layer 

Application/Pattern-specific information 

Compilation/Transformation 

#pragma pipeline 
while ( inputstream >> file ) { 
    read( file, image ); 
    convert( image, outimage ); 
    #pragma stage replicate(2) 
    detect( outimage, faces ); 
    annotate( image, faces ); 
    write( file, image ); 
} 

   R 
   RW 
   W 



The specification of replication factors enables users to control the degree of parallelism. 
The stage directive may also be used to merge multiple function calls into a single 
stage in order to increase the computational granularity of stages.   

Figure 1 shows a face detection pipeline. Images are read from disk (read stage), 
converted to a grayscale (convert stage) and analyzed for human faces (detect stage). 
The detect stage, which is the computationally most intensive one, is replicated 2 
times. In the annotate stage a rectangle is drawn around each detected face. Finally, 
the resulting image is written to the disk in the write stage. External XML descriptors 
for stages are not shown. 

4 Runtime Coordination Layer 

The primary objective of the RCL is to provide an abstraction of the underlying low-
level runtime system in order to simplify the compilation process and to facilitate 
retargeting the programming framework to different task-based runtime systems.  

The RCL utilizes an object-oriented representation of patterns and aims at 
exploiting pattern-specific knowledge available in the high-level code in order to 
optimize task-parallel execution. The main objectives of RCL are: (1) to manage the 
details of submitting tasks to the low-level runtimes, (2) to manage data transfers 
between pipeline stages, and (3) to control the degree of parallelism by restricting the 
number of tasks concurrently submitted to the low-level runtime. 

4.1 Representation of Pipeline Patterns in RCL 

During the transformation process, the compiler analyzes each pipeline and generates 
code that constructs a corresponding object-oriented representation of the pipeline. 
The compiler automatically derives the stage interconnections by analyzing the data 
flow between stages and the intent (read, write, or readwrite) of the arguments of 
each stage function. Stage interconnections provide the basis for automatically 
generating buffers between stages and for setting up explicit task dependences as 
required by OCR.  

For each type of data item that is being processed in a pipeline, a data descriptor is 
generated, comprising the details of how these items are represented (e.g., size and 
location in memory) and managed. From these data descriptors corresponding data 
handling code for the different low-level runtimes is generated.  

Similarly, since for each invocation of a stage function a task needs to be submitted 
to the low-level runtime system, the RCL generates corresponding task descriptors. A 
task descriptor comprises all information needed to create a concrete task for a low-
level runtime system. Besides information about data consumed and produced by a 
pipeline stage, the task descriptor captures the stage dependences, and contains 
pointers to one or more implementation variants of the stage function. Task 
descriptors are then used by RCL classes to dynamically generate tasks for the 
concrete underlying runtime system. 



4.2 Execution of Pipelines with RCL 

The compiler generates for each pipeline RCL code that executes the pipeline in an 
asynchronous fashion. For each pipeline stage the following stage mechanism is 
executed by a so-called runner: (1) if all required input data of the stage are available, 
the data are acquired from the corresponding buffers; otherwise the stage mechanism 
waits (sleeps) until data becomes available; (2) using the information in the associated 
task descriptor, a task is generated and submitted asynchronously to the underlying 
runtime system (StarPU or OCR); (3) when the task finishes execution, the runner is 
notified, resumes execution, and the generated output is pushed to the corresponding 
output buffer(s). If the output buffer of a stage is full, the runner will wait (sleep) until 
there is a free slot in the target output buffer.  

 
Figure 2. RCL and Low-Level Runtime System 

Figure 2 sketches how the first three stages of the face detection pipeline are 
managed by the RCL. For each stage, the stage mechanism is executed by a runner, 
submitting for each instance of a stage a task to the low-level runtime system. In case 
of a replicated stage (e.g., the detect stage), a runner is generated for each stage 
replica. The low-level runtime system schedules the execution of tasks to worker 
threads. 

The number of tasks submitted to the low-level runtime at the same time (and 
potentially running in parallel) is controlled by stage replication factors and buffer 
sizes. If a stage is replicated R times, then R stage objects are generated, executing the 
above-mentioned stage mechanism in parallel. Consequently, for replicated stages 
task are submitted in parallel to the underlying runtime system. As all replicas of a 
stage share input and output buffers, buffers have been implemented such that they 
can be accessed efficiently in parallel while maintaining ordering of data items to 
preserve the original semantics of the application. RCL buffers have been 
implemented on top of concurrent queues supporting fifo, filo, and priority ordering.  

Another way to control the degree of parallelism is via the sizes of buffers. If the 
output buffer of a stage is full, the stage will wait (sleep) until there is a free slot in 
the target output buffer. Consequently, the size of buffers not only determines the 
memory footprint but also the number of tasks that are being submitted to the runtime. 



For each type of data item processed corresponding data representations for the low-
level runtime systems are derived based on the associated data descriptor. Both OCR 
and StarPU require that data consumed or produced by a task is contiguous in 
memory and that the access mode (intent) is explicitly specified (read, write, 
readwrite). We avoid explicit copying of data and handle all data transfers between 
stages only by means of manipulating pointers (i.e., data items in buffers are 
represented by pointers to corresponding data descriptors).  

The RCL provides special classes for dynamically generating tasks from task 
descriptors associated with the stages. Depending on whether the targeted low-level 
runtime system relies on an explicit or an implicit task dependence mechanism, the 
dynamic conversion of task descriptors to concrete tasks is different. While OCR 
requires that all task dependences be explicitly specified using events, StarPU 
implicitly determines task dependences by analyzing the dataflow between tasks.  

Also, the stage mechanism in RCL needs to be aware of when a low-level runtime 
task has finished, so it can push results to the output buffer. For this purpose, StarPU 
provides either the starpu_task_wait() routine to wait for a specific task to finish, or 
callback functions to be executed after the task has finished. In the current version of 
the RCL we rely on the first mechanism. In OCR no such functionality is provided, 
and additional OCR tasks are used to inform RCL about task execution state.  

Finally, the stage mechanism (i.e., the runners) is also implemented differently. 
While for StarPU runners are implemented as separate C++ threads, for OCR the 
runners are realized as OCR helper tasks since OCR routines are not safely callable 
from outside of OCR tasks. Consequently, when OCR is targeted, the generated RCL 
program will start with the OCR mainEdt() and not with the standard C++ main(). 

4.3 Task Generation for StarPU 

For each instance of a stage, RCL generates a task for StarPU. A StarPU task is 
described by a codelet which usually comprises a pointer to the stage function, a set 
of handles for all data items consumed and produced, and information about 
performance models used for scheduling decisions. 

In order to enable StarPU to analyze data dependences between tasks, all the input 
and output data of a kernel has to be registered with StarPU using data handles 
generated from RCL data descriptors. If the access mode of a stage argument is read 
or readwrite, RCL passes a pointer to the argument to StarPU, otherwise it acquires a 
pointer from StarPU. Registering data also allows StarPU to automatically manage 
data transfers across different execution units, e.g., from CPU to GPU memory.  

For each stage the RCL uses a separate C++ thread (runner) to execute the stage 
mechanism. Once all input data are available, data handles are registered with StarPU 
and the generated task is submitted asynchronously to StarPU by calling 
starpu_task_submit() followed by starpu_task_wait() to wait until the task has 
finished. Upon task completion, input data of the task are deregistered and output data 
pushed to the output buffer(s) allowing subsequent stages to continue executing.  
The StarPU runtime system provides different scheduling strategies and for the 
experiments reported in this paper we have used the HEFT scheduling strategy [1], 
which relies on performance models built from historic execution data of tasks. 



4.4 Task Generation for OCR 

The OCR task-parallel model relies on event driven tasks (EDTs), which are 
connected via events with other tasks, to represent a parallel application as a task 
graph (DAG) that is dynamically scheduled for parallel execution by the runtime 
system. EDTs operate on contiguous, relocatable blocks of data, called data blocks, 
which are managed by the runtime system. An EDT may have multiple pre-slots for 
input data and one post-slot for the output. Instances of EDTs are created from EDT 
templates, which comprise information about the function an EDT executes, its 
parameters, and its dependences.  

As opposed to StarPU where dependences between tasks are automatically 
determined, OCR requires all dependences to be explicitly specified. Once all data 
blocks an EDT depends on are available, a task becomes runnable and will eventually 
be executed on some execution unit selected by the runtime and run to completion 
regardless of the behavior of other tasks. The RCL provides the OCRRuntime class 
that comprises a set of EDT templates used to orchestrate the execution of pipelines, 
as well as for calling ocrShutodown() when an application terminates.  

Due to restrictions of OCR (OCR owns the main()) the generated RCL program 
does not start with the standard main function but with the OCR mainEdt() function. 
Also, because calling OCR routines from outside of OCR tasks is not possible, we 
utilize for each stage instance an OCR helper task to run the stage mechanism and to 
submit tasks for executing the stage function. The helper task creates OCR data 
blocks for all data items (by calling ocrDbCreate()), an executor EDT 
(ocrEdtCreate()) to execute the stage function, and it sets up dependences 
(ocrAddDependence()) between the data blocks and the executor EDT. It then calls 
corresponding OCR routines to satisfy all the dependences of the executor EDT, 
which then becomes runnable and is eventually run by the OCR runtime executing the 
stage function. Upon completion, another helper task will be generated managing the 
execution of the next stage instance. 

5 Evaluation 

For evaluation we use the face detection application outlined previously in Figure 2. 
The application utilizes routines from the OpenCV library [12], which have been 
slightly reengineered to conform to the tasking model. For the measurements, the 
application processes a set of 500 images of 360p resolution, each containing an 
arbitrary number of faces.  

We present speedup measurements on a machine with 2 octa-core Intel Xeon E5-
2650 CPUs (2.0 GHz, 128GB RAM). We compare our high-level pipeline code using 
either StarPU or OCR runtime to a sequential C++ version, hand coded StarPU and 
OCR versions, and a TBB version that uses the pipeline algorithm of TBB. 
Additionally, we evaluated the impact of stage replication factors on the overall 
pipeline performance.  We have used GCC 5.3.0 compiler, OpenCV version 3.3.1, 
StarPU 1.2.4, TBB 4.2, and our own OCR implementation [13][14]. 
 



 
 

Figure 3. Speedup of face detection pipeline over sequential C++ on 16 cores (left) 
and impact of replication factors (right) 

Figure 3 (left) shows the speedup on 16 cores for different versions over the 
sequential C++ version (red bar), which is the same as the high-level pipeline code 
without pragma directives. Our high-level pipeline code on top of StarPU (blue bar) 
achieved a speedup of 9.9 and on top of OCR (green bar) a speedup of 13.1. 
Interestingly, the highest performance was achieved for OCR when replicating the 
convert and annotate stage 5 times each and detect stage 16 times, while for StarPU 
when replicating only the detect stage 16 times.  

The hand-coded StarPU and OCR versions (StarPU/OCR Direct), which have been 
parallelized manually, achieved speedups of 9.1 and 14.2, respectively. The TBB 
version, which uses the TBB pipeline algorithm achieved a speedup of 14. These 
comparisons show that the performance achievable with our high-level patterns is 
very close (in case of StarPU even better) to hand-coded versions that utilize the low-
level runtimes directly or to TBB, which is a highly optimized template.  

Our high-level pipeline code has 50 lines of code (4 lines/pragmas more than the 
sequential C++ version), the TBB version has 85 lines, the hand coded StarPU 
version 294 lines, and the hand coded OCR version 209 lines. These line counts do 
not include the used OpenCV functions, which were the same for all these versions. 

Figure 3 (right) shows how replicating only the detect stage affects the overall 
performance. As can be seen, in this configuration our high-level pipeline code 
performs best with a replication factor of 16 using StarPU and of 18 using OCR.   

6 Conclusions and Future Work 

In this paper we have presented our work on a programming framework that supports 
high-level pipeline patterns within sequential C++ codes, which are transformed by 
our source-to-source compiler to an intermediate runtime coordination layer (RCL) 
that realizes task-parallel execution on top of the StarPU or OCR runtime system. Our 
experiments with a face detection application show that performance competitive with 
much more complex low-level programming approaches can be achieved.  
 Our future work will focus on improving the tuning support for our framework 
(e.g. tuning of stage replication factors) and on support for heterogeneous systems.  
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