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Abstract—Task-based runtime systems are considered as one
of the options for dealing with the challenges of upcoming
parallel architectures. The greater flexibility of these runtime
systems can also be used to dynamically adjust the resources
allocated to the applications, adapting to the current load of
the system and the progress of the applications. In our work,
we have extended our implementation of the Open Community
Runtime to support dynamic adjustment of execution threads.
The runtimes communicate with an agent process, which collects
performance data, computes thread allocation, and instructs the
runtimes to make the required adjustments. We have tested
our solution under different scenarios, focusing on producer-
consumer applications, where the dynamic resource management
was used to keep the applications in sync, improving the overall
performance in some cases.
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I. INTRODUCTION

Traditionally, the goal of job scheduling in HPC was to
determine when a job should start and to select the right
nodes to place its processes. In such solutions, the degree of
parallelism is specified in the job description as the required
number of processes. Either whole compute nodes are used as
allocation unit, or it is assumed that a node has a certain num-
ber of slots (usually CPU cores) and that they can be used as
independent allocation units. Later, co-scheduling approaches
were developed, which consider multiple applications together,
factoring in their resource usage and possible interactions.
Such schedulers might decide to use a degree of parallelism
that is below the maximum for a particular application, in
order to (for example) reduce power usage or improve overall
efficiency of executing a whole pack of applications. This is
possible because performance scaling of many applications is
below linear and their power usage above linear (w.r.t. the
number of processes).

However, the process allocation in these cases tends to be
static — the number of processes and their placement does
not change. Big data applications often use more dynamic
approaches. For example, Spark can dynamically request re-
sources from the Mesos cluster manager, if it has a large
number of tasks to execute. The resource allocation can change
significantly during the lifetime of a job. Several programming
models have been proposed as an alternative in HPC to provide
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such flexibility, which cannot be provided by MPI. Although
there are also efforts to add such capability to MPL

Task-based runtime systems are one of the interesting re-
search directions. These systems decouple computation from
threads/processes. The work is performed by tasks, which
are scheduled by the runtime system. The runtime decides
when and where a task should be executed. This may also
include the ability of the runtime to move the task’s code
and data to a different compute node and execute it there.
This gives the runtime the potential ability to automatically
perform load-balancing or to allocate tasks to nodes where
they can be executed most efficiently in a heterogeneous
system. However, it also enables the runtime to adjust the
amount of resources used on a node. By not scheduling tasks
to a certain processor core, the runtime frees the core to be
used by another application.

In this paper, we investigate how much flexibility this
actually offers to the runtime in the terms of being able
to dynamically move resources of a single node between
applications. Using OCR-Vx [5], our implementation of the
Open Community Runtime [13], we have performed several
experiments executing multiple applications concurrently on a
single node. The runtime was extended with the capability to
quickly adjust the number of threads used for computation,
when instructed to do so. An agent process is used to collect
execution data from the applications and runtimes, make
dynamic scheduling decisions, and instruct the runtimes how
many threads they should use. The agent also tries to adapt
the number of threads for applications that do not fully use
CPU resources allocated to them.

The experiments show that these extensions introduce only
a small overhead and that the number of threads can indeed be
adjusted quickly, updating resource allocation with a frequency
on the order of seconds. In a producer-consumer scenario,
the dynamic thread management can be used to keep the
producer and the consumer progressing at the same rate. It
is possible even if the time per iteration is not constant, in
which case the static methods would fail. Keeping the producer
and the consumer in sync not only reduces the storage space
needed for the intermediate data, but it may also improve the
overall efficiency (and thus reducing the execution time) if the
applications are not able to fully use all resources of the node



on their own.

Our main contributions are the following: (1) We have
developed an architecture that allows threads to be allocated
to multiple OCR applications dynamically at runtime. (2)
We have designed and implemented several thread allocation
strategies. The strategy for producer-consumer applications
dynamically adapts to observed performance characteristics
of the applications. (3) We have evaluated our design using
a range of experiments using two applications — a seismic
simulation code and an artificial producer-consumer workload.

The rest of the paper is organized as follows. Related work
is discussed in Section II. Section III describes the architecture
of our solution, followed by the description of the thread
allocation strategies in Section IV. Experimental evaluation is
covered by Section V. The final section concludes the paper
and discusses future work.

II. RELATED WORK

Scheduling of MPI jobs is a widely studied field, both from
theoretical and practical points of view [7]. There are both
proprietary (e.g., IBM LSF or Altair PBS) and open-source
(Slurm, OpenLava, various Sun Grid Engine forks, etc.) job
schedulers available. Even though MPI does not support job
preemption, the problem has been studied on the theoretical
level [15]. However, the scheduled jobs have traditionally been
viewed as independent. A job gets exclusive access to its
allocated resources and does not interfere with other jobs.

Over time, new techniques were introduced to also deal with
jobs where the degree of parallelism is not strictly prescribed
by the job description, allowing tradeoffs to be made between
performance of a single job and overall system efficiency [2],
[3]. Power efficiency also became an important concern [9],
leading to specific techniques [12], [14], [16]. These solutions
are often referred to as co-scheduling — considering multiple
jobs together while making scheduling decisions.

Our work differs from these solutions in two ways. First,
using a task-based runtime system, we dynamically adjust the
number of resources (CPU cores) assigned to the application,
allowing us to make changes even on a sub-second scale.
Second, we support fine grained dependences between appli-
cations, allowing a pair of producer-consumer applications to
make progress at the same pace.

In some aspects, our work is closer to the way a scheduler
in an operating system works. The scheduler schedules threads
to CPU cores in a dynamic way, reacting to the current state
of the threads (whether they are blocked, how long they have
been allowed to work recently, etc.) and the system (overall
CPU load, availability and placement of memory pages, etc.).
Our scheduler works on a slightly larger time granularity,
but more importantly, it uses additional information about the
application to make scheduling decisions. At the moment, this
only includes the progress of producer/consumer applications,
but it is easily possible to use additional information provided
either by the application or the runtime system.

Other task-based runtime systems mostly do not provide
such functionality. StarPU [1] or OpenMP tasks do not con-

sider other applications. The Intel Threading Building Blocks
(TBB, [10]) has support for a resource management layer
(RML), which is responsible for assigning worker threads to
applications. However, the default RML does not consider
other applications. There is an ongoing effort to implement
such functionality in Charm++ [8].

Our work on the producer/consumer applications is closely
related to the work being done on in situ visualization and
analysis [6], [11]. We approach the problem from the perspec-
tive of a task-based runtime system, which gives us different
tools that can be used to achieve the same goal. On the
other hand, we would like to apply our work not just to in
situ analysis, but the more general situation where multiple
programs share the same resources. In situ analysis is a special
case, that may be worth giving it special treatment.

III. SYSTEM ARCHITECTURE

All work in an OCR application is done by tasks. The
tasks are defined by the application code along with their
dependences. Once all dependences of a task have been
fulfilled, it is ready to run. A task scheduler is responsible
for deciding when and where the tasks should be executed.
The scheduler is part of the OCR runtime.

The OCR application is linked with the OCR runtime
implementation. Each executing application runs as a single
(separate) process and the instance of the runtime is a part
of this process. The runtime uses multiple threads for com-
putation and control. By default, there are as many worker
threads as there are cores in the machine. To be more exact,
it is the number of “logical cores”. If hyper-threading or
similar technology is enabled, it is a multiple of the number of
physical cores. In the following text, let us assume that there
are 32 logical cores in our example machine.

If multiple OCR applications are executed concurrently,
each of them still uses 32 worker threads. The operating
system’s scheduler is then responsible for allocating these
threads to logical cores. Usually, such scheduler tries to be
fair, not favoring one application over the others. As a result,
if all of the OCR applications can utilize the full parallelism
(number of cores) available, they are assigned an equal share
of CPU time. Depending on the application and specific
circumstances, this may or may not be the right solution.

In a task-based parallel system, the application should be
written to be independent of the actual number of worker
threads. Ideally, an application should complete successfully
even with a single thread. In OCR, the tasks are required to
be non-blocking, which means that once a task is started, it
should run to completion no matter what the other tasks may
be doing. As a result, a correct OCR application should work
correctly even if there is only one worker thread. On the other
hand, such application may be able to use all 32 threads, but
not necessarily. To do that, the runtime would need to have
32 runnable tasks at any given point in time. This may not
always be the case. For example, an iterative code may provide
enough tasks during an iteration to fully utilize all 32 threads,
but if there is a barrier at the end of an iteration, there will be



a period when less than 32 tasks remain to be executed. For a
period of time, the number of busy threads may be dropping
from 32 to 1, until the last task is finished and the execution
can continue after the barrier.

A. Dynamic worker thread adjustment

There are different ways a runtime can deal with this
situation. The simplest approach is to keep all threads looking
for work. This means that to the operating system the threads
appear to be busy all the time and it keeps scheduling them
to CPU cores. A slight improvement is to have the threads
perform a yield if they cannot find any task to execute. This
tells the operating system that even though the thread is still
active, it does not need to proceed immediately and it would
be better to use the CPU core to run another thread. If a
worker thread cannot find a task to execute for a certain
amount of time, it is often blocked in a way that forces the
operating system to not schedule the thread at all. For example,
Intel TBB [10] uses a semaphore to block the thread and
then resumes it once work becomes available. In our OCR
implementation, we use a simpler approach, where such thread
sleeps for a pre-defined time interval (50ms at the moment).
Having the thread periodically wake up adds overhead, but our
experiments have shown that it is only minor.

So far, we have assumed that a runtime should use the
maximal number of available worker threads and that these
threads are only temporarily suspended (by sleeping) if there
is not enough work available. We have extended the task
scheduler to allow it to adjust the number of worker threads
upon request. Because repeatedly creating and destroying
threads would be wasteful, we do not change the actual number
of worker threads, but only block those that are not needed.
This reduces overhead and speeds up the adjustment, but it
also means that the runtime cannot use more than the initial
(created when the runtime is first started) number of threads
(32 in our examples). Since tasks cannot be preempted in our
runtime, a thread can only block when it is not executing a
task.

After a worker thread finishes executing a task, it checks
whether it should block. As this test happens after every task,
it needs to be fast. Therefore, we use just two atomic counters:
the number of running worker threads and the desired number
of worker threads. The thread compares the two counters. If
the desired number of threads is less than the actual number of
threads, the thread decrements the number of running threads
and blocks. In the actual implementation, care needs to be
taken to avoid race conditions, as multiple threads can reach
the decision point at the same time and the desired number
of threads can also be changed at any time. If the desired
number of threads is less than the number of running threads
and the difference is N, the first N threads that reach the
decision point (finish executing a task) block. So if all tasks
take 100ms, we have to wait at most 100ms for the thread
count to be adjusted.

A condition variable is used to block the threads. This way,
the operating system can see that the threads are blocked and

it does not schedule the threads. When the desired number of
threads is increased, the condition variable is signaled and the
threads wake up. Again, the threads need to check carefully
the actual number of worker threads to decide whether they
should actually start working or whether they need to block
again. A disadvantage of this solution is the fact that all
suspended threads are woken up once the desired number of
threads is increased. This adds some overhead, but on the other
hand makes the whole process simpler and the newly released
threads can start working quickly.

In our example, the desired number of threads can be
set to anything from O to 32. If O is specified, all worker
threads block and the application makes no progress. Clearly,
it should be possible to again increase the number of workers.
The blocked worker threads cannot do that. To perform
management tasks (not application tasks), our runtime uses
management threads. These threads are suspended most of the
time, allowing all CPU cores to be used for computation, but
they may wake up upon an event or using a timer.

B. Reporting and management thread

One of the management threads is used as an interface
between the OCR runtime and other processes. It periodically
publishes some basic performance data, like the number of
running worker threads or the number of executed tasks.
The ZeroMQ library (@MQ) is used for communication. The
management thread publishes the performance data, but it
also listens for commands. At the moment, there is just one
command available — adjusting the number of worker threads.
So, when the number of worker threads is set to 0, all of
the worker threads are blocked, but if the management thread
receives the command to increase the number of workers, it
sets the atomic counter which stores the desired number of
threads and signals the condition variable.

C. OCR agent

Each of the running OCR applications contains an instance
of the OCR runtime. It would be possible to allow the runtimes
to communicate in a peer-to-peer manner, but we have decided
to use a centralized solution. A dedicated OCR agent process
is started on the machine and all OCR runtimes report to the
agent, sending it the performance data and listening for its
commands. As the number of applications that run concur-
rently on a single machine would most likely be limited, we
believe that the added benefit of having all relevant information
in one place greatly outweigh any potential scalability issues.

The agent uses the information from the applications as an
input to its thread allocation strategy and then it tells each
application how many worker threads it has been assigned by
the strategy. The agent may use different strategies to achieve
different goals. These will be discussed in the next section.

The agent not only receives performance data from the OCR
applications, it also uses services of the operating system to
monitor the actual CPU usage of the applications. It is not
uncommon for an application that is given — for example — 16
threads to only actually produce CPU load equivalent to 12
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Fig. 1.  The architecture of the system, with two running applications.
The agent communicates with the runtime in both applications. It receives
information about the execution from the runtimes (number of tasks executed,
number of running threads, etc.) and it issues commands instructing the
runtimes to use a specified number of threads. The threads over this limit
are blocked. The task scheduler inside each of the runtimes schedules the
ready tasks of the application to the available (not blocked) threads. All of
the threads are scheduled to the CPU cores by the operating system. The
agent also periodically queries the operating system to check the actual CPU
load generated by the applications.

threads. This can be due to insufficient parallelism or because
the code inside the tasks does not fully use the CPU core that
it is running on. Some agent strategies use this information
to perform a “boost”. If we have two applications which only
use 12 cores when they are given 16 threads and we want to
run them at the same time to fully utilize our machine, giving
16 threads to each of them may not be sufficient. The total
load would be equivalent to 24 fully loaded cores, leaving
the equivalent of 8 cores idle. With oversubscription (boost),
assigning 20 threads to each application would most likely
increase their individual load, moving the total load up from
24 closer to the desired 32.
The overall architecture is shown in Figure 1.

IV. AGENT THREAD ALLOCATION STRATEGIES

Given that there is no limitation on when and how can
the number of threads be adjusted (besides the inability to
go beyond a fixed maximum), there are virtually limitless
possibilities for the design of the thread allocation strategy.
The ones we have designed are just examples of what can be
done and there is a lot of room for further improvement.

The first design decision was to have the strategies re-
evaluate thread allocation at fixed time intervals. In our
experiments (in Section V), we use 5 seconds, but we have
successfully tested configurations where the interval is just 0.5

seconds. That means that the number of threads assigned to
each runtime can change completely every 5 (or 0.5) seconds.

A. Even thread split strategy

The most obvious strategy is to split all threads evenly to
all running applications. For well scaling OCR applications
(the Seismic code used in our experiments is one example),
this works well. Every application is started as soon as the
job is submitted. The agent takes as many threads as there are
compute cores in the machine and splits them evenly among
all of the applications.

B. Simple unfair strategies

We have also tried two other configurations. In the first case,
one long running application was given priority and received
half of the cores, while the remaining (shorter) applications
split the other half among themselves. The second strategy
gave all cores to the application that started the last and
none to the rest. The last submitted application was therefore
allowed to finish first, then the second last, etc. This formed
a stack of applications. The results for all these strategies
were comparable. Keep in mind that this assumes that the
applications scale almost perfectly and that they can quickly
adapt to any number of threads (and use them efficiently).
The different strategies demonstrate how processes can be
dynamically prioritized according to different criteria.

C. Producer-consumer thread allocation strategy

Our main result is a strategy for producer-consumer ap-
plications, where one application generates a data item in
every iteration and another application consumes one item
(preserving the order in which they were generated) in every
iteration. Our goal was to keep the two applications synchro-
nized. Therefore, the strategy uses the number of items that
have been produced but not yet consumed (the queue length)
as the main input for its decisions. The target queue length is
configured when the agent starts, although it would be possible
to extend the interface to allow applications to control this
parameter. The applications use an extended OCR interface
to report the iteration they are in to their local runtime. The
runtime then sends the information to the agent.

The producer-consumer thread allocation strategy compares
the desired queue length with the actual queue length, which is
the difference between the iterations reported by the producer
and the consumer. Let us denote the target queue length as
N. If the producer is ahead by more than N/2 items, the
number of threads of the producer is set to 0 and the number
of threads of the consumer is set to the maximum. If the
consumer is ahead by more than N/2 items, the opposite
happens (consumer gets 0, producer gets the maximum). If
the difference is between —N/2 and N/2, each application
gets a proportionate share of the threads, so that the sum is
the maximal thread count of an application. As an example,
if the machine has 32 cores and the difference is O (the queue
length is exactly the desired target V), both the producer and
the consumer get 16 threads.



D. Oversubscription (thread boost)

This works well if the producer and the consumer scale
well. As this was not the case in our experiments, we have
added a “boost” feature, which further increases the number
of threads. Remember that it is possible to get any application
up to the maximal number of threads (e.g., 32) irrespective of
what was assigned to the other applications. As there will be
more threads than cores, the operating system would have to
step in and schedule the threads to the available cores, so it
won’t be possible for all threads to make constant progress.
But if the threads are not kept suspended for too long (which
the operating systems generally avoid), it is not a problem for
task-based models, since the active threads pick up the work
that was originally assigned to the now suspended threads.

We have experimented with a constant boost, which adds
a fixed number of threads to all applications with non-
zero allocation, and linear boost, which multiplies all thread
allocations by a constant ¢ > 1. Some of them worked
well in certain cases, but they had to be tuned (selecting the
right constants) for different workloads. We have therefore
moved to an adaptive boost, which monitors the CPU usage
of the process and adjusts the thread count based on these
observations (a reactive model). When an application is given
a certain number of threads and we measure the actual CPU
usage of the process. For each possible thread count, we store
the average CPU usage achieved. The original (unboosted)
thread count is then treated as a target load and we select the
number of threads that was historically able to achieve that
CPU load. So, if both producer and consumer get 16 threads,
but the producer is 100% efficient and the consumer only uses
75% of the allocated CPU power, they will actually get 16 and
22 threads respectively, because the historical data would show
that with 21 threads the consumer only loads 15.75 cores.

This method is only a rough approximation. It assumes that
the measured CPU is an accurate representation, but more
importantly that the performance can be estimated purely by
looking at the performance of the application in isolation,
only considering the allocated number of threads. The scaling
characteristics of the application may be much more compli-
cated, the application can work in several distinct phases with
different characteristics, it may be memory bound etc. While
there is a lot of room for improvement, the strategy turned out
to provide good performance in our experiments.

V. EXPERIMENTAL EVALUATION

The experiments were performed on a Linux server with
two Intel Xeon X5680 CPUs (6 cores and 12 MB cache per
CPU) and with 24 GB RAM. With hyper-threading enabled,
the machine supports up to 24 hardware threads. For our
experiments, we use two workloads. A seismic simulation and
a pair of producer-consumer applications.

A. Seismic

Seismic is a 2D grid simulation of seismic wave propagation
[4]. It is a simple iterative code, written from scratch as
a native OCR application. It has been highly tuned and

optimized, so it can run the computation in any degree of
parallelism efficiently when properly configured. It can also be
tweaked to increase computational complexity of the problem.
The original computation is rather simple, making it mostly
memory bound.

The Seismic workload is an example of a workload that
scales very well and which can be easily adjusted dynamically.
There are two fundamental reasons for this. First, it uses a
large number of relatively small tasks (64k tasks in total, run
time of a single task between 1ms and 16ms, depending on
configuration and system load), so if the runtime is asked to
decrease the number of threads, it can adapt quickly. Second,
the tasks use fine-grained synchronization. There is no barrier
at the end of an iteration. As a result, the runtime always has
tasks available to use all available threads. Also, if the number
of threads does not evenly divide the degree of parallelism
inside an iteration, no time is wasted waiting at the barrier for
the threads with more work to finish — the idle threads start
working on the next iteration right away.

TABLE 1
PERFORMANCE OF SEISMIC (1 SLOW, 7 FAST INSTANCES)

configuration time (s) | speedup
sequential 89.194 1.000
concurrent, no agent 85.390 1.045
concurrent, with agent 86.092 1.036

In our experiments, we have used one “slow” instance of
Seismic (around 9.3ms per task under ideal conditions) and
7 “fast” instances (1.1ms per task). The results are shown
in Table I. The “sequential” case means that the 8 instances
are executed one after the other. In the “concurrent” cases,
the slow instance starts first and after 10 seconds, the 7 fast
instances are started. Without the agent, the scheduling of the
instances is left completely to the operating system. With the
agent, it controls the thread allocation, trying to assign equal
number of threads to all instances. Our machine has 24 cores
and there are up to 8 instances, but as we have decided to
only use thread counts that are multiples of 2, when all 8
instances are running, each instance gets either 2 or 4 threads,
rather than 3. As a result, some of the fast instances finish
more quickly. To be more specific, the fast instances that get
4 threads need 31.43 seconds on average, while the average
execution time without the agent is 41.13 seconds, providing
a 30.9% speedup for the fast instances that get 4 threads. On
the other hand, the fast instances that only get two threads
are somewhat slower than if no agent is used. This is to be
expected, as the faster performance of some instances is not
due to higher efficiency, but due to the fact that they are given
more resources at the expense of others.

Overall, concurrent execution is more efficient than sequen-
tial, being 4.5% faster without the agent and 3.6% faster with
the agent. This means that the agent does add a little overhead.
On the other hand, it allows four of the fast instances to
finish much faster (30.9% speedup) than if there was no agent.
The main message of this experiment is that the number of
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Fig. 2. The time per iteration of the producer and the consumer, when the up-down mode is enabled in the producer.

threads used by the runtime can be adjusted dynamically by
the agent, with only very minor drop in efficiency, but it gives
the agent a way to significantly influence the performance of
the individual instances of the runtime (and application).

B. Producer-consumer

The second workload is an artificial producer-consumer
(P-C) workload. It consists of two OCR applications. Both
producer and consumer work in iterations, producing or con-
suming a single item at a time. A configurable number of
tasks is used to produce or consume a data item in parallel.
The producer saves the data to a file. The consumer reads
the file and processes it. If the file is not yet ready, the
consumer blocks and waits. The computational complexity is
defined by a parameter which defines how much computation
a single task of producer/consumer does. Furthermore, the
producer can be configured as up-down in order to simulate
dynamic performance variability of applications. In this case,
the complexity varies between iterations. For the first 20
iterations, it increases linearly from 0.1 to 4.1 of the baseline
complexity. It does the reverse for the next 20 iterations (going
from 4.1 to 0.1). This 40 iteration long cycle keeps repeating
until the end of the producer’s work. Figure 2(a) shown this
graphically based on measured execution times.

Even if the up-down mode is not used, the producer may be
faster or slower than the consumer. If it is slower, the consumer
starves — there is not always enough work available to keep the
consumer working. If the producer is faster than the consumer,
the consumer is always busy, but the producer may move ahead
of the consumer significantly. This means that the data in the
queue between the producer and the consumer needs to be
stored somewhere. If the data items are large and the queue is
long, it may require a considerable amount of space. With the

up-down producer, it is possible to encounter both situations
— starving consumer and a long queue.

Even though the data items are stored as files, making the
runtime and agent unaware of their existence, the applications
use our extension of the OCR API to notify the runtime about
their progress. The producer reports the number of iterations
that it just finished and the consumer reports the number of
iteration it is just about to start. This data is used by the thread
allocation strategy to make its decisions.

We have used three different configurations for the relative
speed of the producer and the consumer. The producer may
be faster or slower than the consumer, but the producer and
consumer can also be configured to require the same amount
of work for each iteration. We have tested two variants of the
fast producer experiment, with the up-down feature enabled
and disabled. The results can be seen in Table II.

1) Fast producer with up-down: In the first experiment,
we have used 240 tasks per iteration (both producer and
consumer), 100 iterations, the up-down producer, and the agent
was configured with the target queue size of 8. The producer
was set up to be faster than the consumer, except for the
slowest consumer iterations, where their performance (time
per iteration) was nearly identical. This can be seen in Figure
2(a), where the solid blue line (producer) barely grows above
the dashed orange line (consumer) in the first 55 iterations,
where the producer and consumer run in parallel. The data
was gathered without the agent, so the consumer speeds up
once the (fast) producer finishes. With the agent (see Figure
2(b)), the agent controls the performance so that on average the
time per iteration of the producer and the consumer is close.
But the cost (in CPU cycles) of the producer’s iterations is the
same as without the agent, so the two and a half “mountains”
still show up as “hills” when a similar is drawn from data



TABLE I
PERFORMANCE OF VARIOUS CONFIGURATIONS OF PRODUCER-CONSUMER

fast producer, up-down | fast prod., no up-down balanced slow producer
configuration time (s) speedup time (s) speedup time (s) | speedup | time (s) | speedup
sequential 359.61 1.00 304.13 1.00 247.82 1.00 289.68 1.00
concurrent, no agent 317.41 1.13 274.90 1.11 199.38 1.24 272.84 1.06
concurrent, with agent 316.20 1.14 269.46 1.13 200.91 1.23 268.91 1.08

gathered when the same workload is executed with the agent.

Figure 3 shows a different view of the same data. Rather
than showing time per iteration, we show progress — how many
iterations has the application finished at a given point in time.
Without the agent, the producer moves forward much faster
than the consumer. This not only means that the queue gets
longer (requiring more storage), but it also means that the
consumer spends longer time running alone, which is the most
likely reason for the lower performance compared to the setup
with the agent. The consumer cannot fully utilize the machine,
so the whole time it spends running alone, part of the CPU
resources is not used. Figure 4 shows the number of threads
assigned to the producer and the consumer, as well as the size
of the queue. One can see that the queue is kept around the
target of 8 threads. Also note that up to 40 threads are used
in total, due to the thread boost feature of the agent.

As one can see from the results in Table II, the sequential
execution is significantly slower than concurrent. This is due to
the fact that neither the producer nor the consumer is optimized
enough to fully use the whole machine. The best performance
is achieved with the agent, although the difference is small
(but statistically significant, with p < 0.01).

2) Fast producer without up-down: If we disable the up-
down feature of the producer, the time per iteration is constant
in both the producer and the consumer, with the producer being
around 1.9x faster than the consumer. The overall results of the
experiment are similar to the case when up-down is enabled, as
can be seen in Table II. Even in this setup, the use of the agent
is beneficial, improving the overall performance (the difference
is statistically significant, with p < 0.01).

We have also tried disabling the thread boosting feature of
the agent. In that case, performance is significantly reduced —
the execution takes 295.69 seconds, compared to 269.46 with
boost, only slightly faster than sequential execution (304.13).

3) Same speed of producer and consumer: For the next
experiment, we have not used the up-down feature of the
producer and adjusted the difficulty of the producer and con-
sumer to be the same. As a result, when executed sequentially,
the producer and consumer take the same amount of time.
Again, the results of the experiments are shown in Table II. In
this case, the best performance is achieved when the agent is
disabled. Due to the way the experiment is set up, the producer
and consumer stay in sync on their own, since the operating
system does a very good job of assigning both of them the
same amount of CPU time.

With the agent, some time is lost at the beginning, where the
agent slows the consumer down, until the desired queue length
(8 by default) is achieved. The similar problem is encountered

at the end, where the producer finishes but the consumer still
needs to process the 8 items (on average) in the queue. By
reducing the size of the queue from 8§ to 4, the performance is
improved, getting close to the performance without the agent.
This is the value shown in the table. Still, the configuration
with the agent lags behind the configuration without the agent
(again, the difference is small, but statistically significant, with
p < 0.01). With target queue length of 8, the execution time
increases by 5.59 seconds to 206.50 seconds.

4) Slow producer: In our last experiment, the producer is
slower compared to the consumer (the consumer is around
3.2x faster). The up-down is not used in the producer, as it
is not particularly interesting (the producer would be slower
nearly all the time anyway). As one can see in Table II, unlike
in the previous naturally balanced case, the agent is once again
beneficial. The performance with the agent is slightly better
(as before, the result is statistically significant, with p even
below 0.001). The likely reason for that is that without the
agent the consumer finishes too early in each iteration and is
then idle for the remainder of the iteration. As the producer
is unable to fully utilize the machine, some efficiency is lost.
This outweighs even the overhead added by the agent, making
the use of the agent the better option.

VI. CONCLUSION AND FUTURE WORK

We have explored the possibility of achieving a fine-grained
control of application execution by adjusting the number of
worker threads used by the task-based runtime system. It turns
out to be a viable option, introducing only a small overhead
and in some cases even improving the overall performance
by improving resource utilization. The producer-consumer
scenario has shown improved performance in all cases, except
for the naturally balanced scenario where the producer and
the consumer make progress at the same pace on their own.
Furthermore, the agent prevents the producer and consumer
from drifting apart, therefore significantly reducing the storage
requirements.

However, the biggest challenge would be applying these
node-level improvements on a cluster level. The number of
threads can be adjusted quickly because all data is available to
all threads, so tasks can be moved from the suspended threads
to the still active threads with minimal cost. In a distributed
memory setting, the cost is much higher. Our approach could
easily be used to improve performance within the individual
nodes, if the nodes are not used exclusively by just a single
job. With OCR, tasks can also be moved between the nodes,
so the techniques could be applied on the cluster level, but
the issues of data movement cost and scalability have to be
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Progress of the producer and consumer. The progress is shown as a number of completed iterations at a given time. By definition, the producer is

always ahead of the consumer, so the producer line is above the consumer line. The distance between the line at any given time is the length of the queue.
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Fig. 4. Thread counts and queue size. The figure shows the number of
threads assigned to the producer and consumer, as well as the total number
of threads (sum of the two). Even though the machine can only support 24
threads, up to 40 threads are actually used due to the “boost” feature of the
agent. The figure also shows that the queue size is kept around the target
of 8 items. Due to the way the data for this graph is acquired by the agent,
we do not have data points for the short period after the producer finishes
(295 seconds) until the consumer finishes (316 seconds). The agent becomes
inactive at that point, as no further coordination is needed. The consumer is
assigned the maximal number of threads to process the remaining items.

addressed. It is likely that the reactive model that we used
for the producer-consumer strategy would have to be replaced
by a more sophisticated predictive model, which would allow
planning the data movement in advance.
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