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Abstract. Given a model and a specification, the fundamental model-checking
problem asks for algorithmic verification of whether the model satisfies the speci-
fication. We consider graphs and Markov decision processes (MDPs), which are
fundamental models for reactive systems. One of the very basic specifications
that arise in verification of reactive systems is the strong fairness (aka Streett)
objective. Given different types of requests and corresponding grants, the objective
requires that for each type, if the request event happens infinitely often, then
the corresponding grant event must also happen infinitely often. All ω-regular
objectives can be expressed as Streett objectives and hence they are canonical in
verification. To handle the state-space explosion, symbolic algorithms are required
that operate on a succinct implicit representation of the system rather than explic-
itly accessing the system. While explicit algorithms for graphs and MDPs with
Streett objectives have been widely studied, there has been no improvement of the
basic symbolic algorithms. The worst-case numbers of symbolic steps required
for the basic symbolic algorithms are as follows: quadratic for graphs and cubic
for MDPs. In this work we present the first sub-quadratic symbolic algorithm
for graphs with Streett objectives, and our algorithm is sub-quadratic even for
MDPs. Based on our algorithmic insights we present an implementation of the
new symbolic approach and show that it improves the existing approach on several
academic benchmark examples.

1 Introduction

In this work we present faster symbolic algorithms for graphs and Markov decision
processes (MDPs) with strong fairness objectives. For the fundamental model-checking
problem, the input consists of a model and a specification, and the algorithmic verification
problem is to check whether the model satisfies the specification. We first describe the
specific model-checking problem we consider and then our contributions.
Models: Graphs and MDPs. Two standard models for reactive systems are graphs and
Markov decision processes (MDPs). Vertices of a graph represent states of a reactive
system, edges represent transitions of the system, and infinite paths of the graph represent
non-terminating trajectories of the reactive system. MDPs extend graphs with probabilis-
tic transitions that represent reactive systems with uncertainty. Thus graphs and MDPs
are the de-facto model of reactive systems with nondeterminism, and nondeterminism
with stochastic aspects, respectively [18,3].
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Specification: Strong Fairness (aka Streett) Objectives. A basic and fundamental property
in the analysis of reactive systems is the strong fairness condition, which informally
requires that if events are enabled infinitely often, then they must be executed infinitely
often. More precisely, the strong fairness conditions (aka Streett objectives) consist
of k types of requests and corresponding grants, and the objective requires that for
each type if the request happens infinitely often, then the corresponding grant must
also happen infinitely often. After safety, reachability, and liveness, the strong fairness
condition is one of the most standard properties that arise in the analysis of reactive
systems, and chapters of standard textbooks in verification are devoted to it (e.g., [18,
Chapter 3.3], [31, Chapter 3], [2, Chapters 8, 10]). Moreover, all ω-regular objectives can
be described by Streett objectives, e.g., LTL formulas and non-deterministic ω-automata
can be translated to deterministic Streett automata [33] and efficient translation has
been an active research area [15,22,27]. Thus Streett objectives are a canonical class of
objectives that arise in verification.
Satisfaction. The basic notions of satisfaction for graphs and MDPs are as follows: For
graphs the notion of satisfaction requires that there is a trajectory (infinite path) that
belongs to the set of paths described by the Streett objective. For MDPs the satisfaction
requires that there is a policy to resolve the nondeterminism such that the Streett objective
is ensured almost-surely (with probability 1). Thus the algorithmic model-checking
problem of graphs and MDPs with Streett objectives is a core problem in verification.
Explicit vs Symbolic Algorithms. The traditional algorithmic studies consider explicit
algorithms that operate on the explicit representation of the system. In contrast, implicit
or symbolic algorithms only use a set of predefined operations and do not explicitly access
the system [19]. The significance of symbolic algorithms in verification is as follows: to
combat the state-space explosion, large systems must be succinctly represented implicitly
and then symbolic algorithms are scalable, whereas explicit algorithms do not scale as it
is computationally too expensive to even explicitly construct the system.
Relevance. In this work we study symbolic algorithms for graphs and MDPs with Streett
objectives. Symbolic algorithms for the analysis of graphs and MDPs are at the heart
of many state-of-the-art tools such as SPIN, NuSMV for graphs [26,17] and PRISM,
LiQuor, Storm for MDPs [28,16,21]. Our contributions are related to the algorithmic
complexity of graphs and MDPs with Streett objectives for symbolic algorithms. We
first present previous results and then our contributions.
Previous Results. The most basic algorithm for the problem for graphs is based on
repeated SCC (strongly connected component) computation, and informally can be
described as follows: for a given SCC, (a) if for every request type that is present in
the SCC the corresponding grant type is also present in the SCC, then the SCC is
identified as “good”, (b) else vertices of each request type that has no corresponding
grant type in the SCC are removed, and the algorithm recursively proceeds on the
remaining graph. Finally, reachability to good SCCs is computed. The current best-
known symbolic algorithm for SCC computation requires O(n) symbolic steps, for
graphs with n vertices [24], and moreover, the algorithm is optimal [14]. For MDPs, the
SCC computation has to be replaced by MEC (maximal end-component) computation,
and the current best-known symbolic algorithm for MEC computation requires O(n2)
symbolic steps. While there have been several explicit algorithms for graphs with Streett
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objectives [25,12], MEC computation [8,9,10], and MDPs with Streett objectives [7],
as well as symbolic algorithms for MDPs with Büchi objectives [11], the current best-
known bounds for symbolic algorithms with Streett objectives are obtained from the
basic algorithms, which are O(n · min(n, k)) for graphs and O(n2 · min(n, k)) for
MDPs, where k is the number of types of request-grant pairs.

Our Contributions. In this work our main contributions are as follows:
– We present a symbolic algorithm that requires O(n ·

√
m log n) symbolic steps, both

for graphs and MDPs, where m is the number of edges. In the case k = O(n), the
previous worst-case bounds are quadratic (O(n2)) for graphs and cubic (O(n3)) for
MDPs. In contrast, we present the first sub-quadratic symbolic algorithm both for
graphs as well as MDPs. Moreover, in practice, since most graphs are sparse (with
m = O(n)), the worst-case bounds of our symbolic algorithm in these cases are
O(n ·

√
n log n). Another interesting contribution of our work is that we also present

an O(n ·
√
m) symbolic steps algorithm for MEC decomposition, which is relevant

for our results as well as of independent interest, as MEC decomposition is used in
many other algorithmic problems related to MDPs. Our results are summarized in
Table 1.

– While our main contribution is theoretical, based on the algorithmic insights we also
present a new symbolic algorithm implementation for graphs and MDPs with Streett
objectives. We show that the new algorithm improves (by around 30%) the basic
algorithm on several academic benchmark examples from the VLTS benchmark
suite [20].

Table 1: Symbolic algorithms for Streett objectives and MEC decomposition.

Symbolic Operations

Problem Basic Algorithm Improved Algorithm Reference

Graphs with Streett O(n ·min(n, k)) O(n
√
mlog n) Theorem 2

MDPs with Streett O(n2 ·min(n, k)) O(n
√
mlog n) Theorem 4

MEC decomposition O(n2) O(n
√
m) Theorem 3

Technical Contributions. The two key technical contributions of our work are as follows:
– Symbolic Lock Step Search: We search for newly emerged SCCs by a local graph

exploration around vertices that lost adjacent edges. In order to find small new SCCs
first, all searches are conducted “in parallel”, i.e., in lock-step, and the searches stop
as soon as the first one finishes successfully. This approach has successfully been
used to improve explicit algorithms [25,13,9,7]. Our contribution is a non-trivial
symbolic variant (Section 3) which lies at the core of the theoretical improvements.

– Symbolic Interleaved MEC Computation: For MDPs the identification of vertices
that have to be removed can be interleaved with the computation of MECs such
that in each iteration the computation of SCCs instead of MECs is sufficient to
make progress [7]. We present a symbolic variant of this interleaved computation.
This interleaved MEC computation is the basis for applying the lock-step search to
MDPs.
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2 Definitions
2.1 Basic Problem Definitions

Markov Decision Processes (MDPs) and Graphs. An MDP P = ((V,E), (V1, VR), δ)
consists of a finite directed graph G = (V,E) with a set of n vertices V and a set of
m edges E, a partition of the vertices into player 1 vertices V1 and random vertices
VR, and a probabilistic transition function δ. We call an edge (u, v) with u ∈ V1 a
player 1 edge and an edge (v, w) with v ∈ VR a random edge. For v ∈ V we define
In(v) = {w ∈ V | (w, v) ∈ E} and Out(v) = {w ∈ V | (v, w) ∈ E}. The probabilistic
transition function is a function from VR to D(V ), where D(V ) is the set of probability
distributions over V and a random edge (v, w) ∈ E if and only if δ(v)[w] > 0. Graphs
are a special case of MDPs with VR = ∅.
Plays and Strategies. A play or infinite path in P is an infinite sequence ω =
〈v0, v1, v2, . . .〉 such that (vi, vi+1) ∈ E for all i ∈ N; we denote by Ω the set of
all plays. A player 1 strategy σ : V ∗ · V1 → V is a function that assigns to every finite
prefix ω ∈ V ∗ ·V1 of a play that ends in a player 1 vertex v a successor vertex σ(ω) ∈ V
such that (v, σ(ω)) ∈ E; we denote by Σ the set of all player 1 strategies. A strategy
is memoryless if we have σ(ω) = σ(ω′) for any ω, ω′ ∈ V ∗ · V1 that end in the same
vertex v ∈ V1.
Objectives. An objective φ is a subset of Ω said to be winning for player 1. We
say that a play ω ∈ Ω satisfies the objective if ω ∈ φ. For a vertex set T ⊆ V
the reachability objective is the set of infinite paths that contain a vertex of T , i.e.,
Reach(T ) = {〈v0, v1, v2, . . .〉 ∈ Ω | ∃j ≥ 0 : vj ∈ T}. Let Inf(ω) for ω ∈ Ω de-
note the set of vertices that occur infinitely often in ω. Given a set TP of k pairs
(Li, Ui) of vertex sets Li, Ui ⊆ V with 1 ≤ i ≤ k, the Streett objective is the
set of infinite paths for which it holds for each 1 ≤ i ≤ k that whenever a ver-
tex of Li occurs infinitely often, then a vertex of Ui occurs infinitely often, i.e.,
Streett(TP) = {ω ∈ Ω | Li ∩ Inf(ω) = ∅ or Ui ∩ Inf(ω) 6= ∅ for all 1 ≤ i ≤ k}.
Almost-Sure Winning Sets. For any measurable set of playsA ⊆ Ω we denote by Prσv (A)
the probability that a play starting at v ∈ V belongs to A when player 1 plays strategy σ.
A strategy σ is almost-sure (a.s.) winning from a vertex v ∈ V for an objective φ if
Prσv (φ) = 1. The almost-sure winning set 〈〈1〉〉as (P, φ) of player 1 is the set of vertices
for which player 1 has an almost-sure winning strategy. In graphs the existence of an
almost-sure winning strategy corresponds to the existence of a play in the objective, and
the set of vertices for which player 1 has an (almost-sure) winning strategy is called the
winning set 〈〈1〉〉 (P, φ) of player 1.
Symbolic Encoding of MDPs. Symbolic algorithms operate on sets of vertices, which are
usually described by Binary Decision Diagrams (BDDs) [29,1]. In particular Ordered
Binary Decision Diagrams [6] (OBDDs) provide a canonical symbolic representation
of Boolean functions. For the computation of almost-sure winning sets of MDPs it is
sufficient to encode MDPs with OBDDs and one additional bit that denotes whether a
vertex is in V1 or VR.
Symbolic Steps. One symbolic step corresponds to one primitive operation as supported
by standard symbolic packages like CUDD [34]. In this paper we only allow the same
basic set-based symbolic operations as in [32,23,5,11], namely set operations and the
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following one-step symbolic operations for a set of vertices Z: (a) the one-step pre-
decessor operator Pre(Z) = {v ∈ V | Out(v) ∩ Z 6= ∅}; (b) the one-step successor
operator Post(Z) = {v ∈ V | In(v) ∩ Z 6= ∅}; and (c) the one-step controllable prede-
cessor operator CPreR(Z) = {v ∈ V1 | Out(v) ⊆ Z} ∪ {v ∈ VR | Out(v) ∩ Z 6= ∅} ;
i.e., the CPreR operator computes all vertices such that the successor belongs to Z with
positive probability. This operator can be defined using the Pre operator and basic set
operations as follows: CPreR(Z) = Pre(Z) \ (V1 ∩Pre(V \Z)) . We additionally allow
cardinality computation and picking an arbitrary vertex from a set as in [11].
Symbolic Model. Informally, a symbolic algorithm does not operate on explicit repre-
sentation of the transition function of a graph, but instead accesses it through Pre and
Post operations. For explicit algorithms, a Pre/Post operation on a set of vertices (resp.,
a single vertex) requires O(m) (resp., the order of indegree/outdegree of the vertex)
time. In contrast, for symbolic algorithms Pre/Post operations are considered unit-cost.
Thus an interesting algorithmic question is whether better algorithmic bounds can be
obtained considering Pre/Post as unit operations. Moreover, the basic set operations
are computationally less expensive (as they encode the relationship between the state
variables) compared to the Pre/Post symbolic operations (as they encode the transi-
tions and thus the relationship between the present and the next-state variables). In all
presented algorithms, the number of set operations is asymptotically at most the num-
ber of Pre/Post operations. Hence in the sequel we focus on the number of Pre/Post
operations of algorithms.
Algorithmic Problem. Given an MDP P (resp. a graph G) and a set of Streett pairs TP,
the problem we consider asks for a symbolic algorithm to compute the almost-sure
winning set 〈〈1〉〉as (P,Streett(TP)) (resp. the winning set 〈〈1〉〉 (G,Streett(TP))), which
is also called the qualitative analysis of MDPs (resp. graphs).

2.2 Basic Concepts related to Algorithmic Solution

Reachability. For a graph G = (V,E) and a set of vertices S ⊆ V the set
GRAPHREACH(G,S) is the set of vertices of V that can reach a vertex of S within G,
and it can be identified with at most |GRAPHREACH(G,S)\S|+1 many Pre operations.
Strongly Connected Components. For a set of vertices S ⊆ V we denote by G[S] =
(S,E ∩ (S × S)) the subgraph of the graph G induced by the vertices of S. An induced
subgraph G[S] is strongly connected if there exists a path in G[S] between every pair of
vertices of S. A strongly connected component (SCC) of G is a set of vertices C ⊆ V
such that the induced subgraph G[C] is strongly connected and C is a maximal set in V
with this property. We call an SCC trivial if it only contains a single vertex and no edges;
and non-trivial otherwise. The SCCs of G partition its vertices and can be found in
O(n) symbolic steps [24]. A bottom SCC C in a directed graph G is an SCC with no
edges from vertices of C to vertices of V \ C, i.e., an SCC without outgoing edges.
Analogously, a top SCC C is an SCC with no incoming edges from V \ C. For more
intuition for bottom and top SCCs, consider the graph in which each SCC is contracted
into a single vertex (ignoring edges within an SCC). In the resulting directed acyclic
graph the sinks represent the bottom SCCs and the sources represent the top SCCs. Note
that every graph has at least one bottom and at least one top SCC. If the graph is not
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strongly connected, then there exist at least one top and at least one bottom SCC that are
disjoint and thus one of them contains at most half of the vertices of G.
Random Attractors. In an MDP P the random attractor AttrR(P,W ) of a set of vertices
W is defined as AttrR(P,W ) =

⋃
j≥0 Zj where Z0 =W and Zj+1 = Zj ∪CPreR(Zj)

for all j > 0. The attractor can be computed with at most |AttrR(P,W ) \W |+ 1 many
CPreR operations.
Maximal End-Components. Let X be a vertex set without outgoing random edges, i.e.,
with Out(v) ⊆ X for all v ∈ X ∩ VR. A sub-MDP of an MDP P induced by a vertex
set X ⊆ V without outgoing random edges is defined as P [X] = ((X,E ∩ (X ×
X), (V1 ∩X,VR ∩X), δ). Note that the requirement that X has no outgoing random
edges is necessary in order to use the same probabilistic transition function δ. An end-
component (EC) of an MDP P is a set of verticesX ⊆ V such that (a)X has no outgoing
random edges, i.e., P [X] is a valid sub-MDP, (b) the induced sub-MDP P [X] is strongly
connected, and (c) P [X] contains at least one edge. Intuitively, an end-component is
a set of vertices for which player 1 can ensure that the play stays within the set and
almost-surely reaches all the vertices in the set (infinitely often). An end-component is a
maximal end-component (MEC) if it is maximal under set inclusion. An end-component
is trivial if it consists of a single vertex (with a self-loop), otherwise it is non-trivial. The
MEC decomposition of an MDP consists of all MECs of the MDP.
Good End-Components. All algorithms for MDPs with Streett objectives are based
on finding good end-components, defined below. Given the union of all good end-
components, the almost-sure winning set is obtained by computing the almost-sure
winning set for the reachability objective with the union of all good end-components
as the target set. The correctness of this approach is shown in [7,30] (see also [3,
Chap. 10.6.3]). For Streett objectives a good end-component is defined as follows. In the
special case of graphs they are called good components.

Definition 1 (Good end-component). Given an MDP P and a set TP = {(Lj , Uj) |
1 ≤ j ≤ k} of target pairs, a good end-component is an end-component X of P
such that for each 1 ≤ j ≤ k either Lj ∩ X = ∅ or Uj ∩ X 6= ∅. A maximal good
end-component is a good end-component that is maximal with respect to set inclusion.

Lemma 1 (Correctness of Computing Good End-Components [30, Corollary 2.6.5,
Proposition 2.6.9]). For an MDP P and a set TP of target pairs, let X be the set
of all maximal good end-components. Then 〈〈1〉〉as

(
P,Reach(

⋃
X∈X X)

)
is equal to

〈〈1〉〉as (P, Streett(TP)).

Iterative Vertex Removal. All the algorithms for Streett objectives maintain vertex sets
that are candidates for good end-components. For such a vertex set S we (a) refine
the maintained sets according to the SCC decomposition of P [S] and (b) for a set of
vertices W for which we know that it cannot be contained in a good end-component,
we remove its random attractor from S. The following lemma shows the correctness of
these operations.

Lemma 2 (Correctness of Vertex Removal [30, Lemma 2.6.10]). Given an MDP
P = ((V,E), (V1, VR), δ), let X be an end-component with X ⊆ S for some S ⊆ V .
Then
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(a) X ⊆ C for one SCC C of P [S] and
(b) X ⊆ S \ AttrR(P ′,W ) for each W ⊆ V \X and each sub-MDP P ′ containing X .

Let X be a good end-component. Then X is an end-component and for each index j,
X ∩ Uj = ∅ implies X ∩ Lj = ∅ . Hence we obtain the following corollary.

Corollary 1 ([30, Corollary 4.2.2]). Given an MDP P , letX be a good end-component
with X ⊆ S for some S ⊆ V . For each i with S ∩ Ui = ∅ it holds that X ⊆
S \ AttrR(P [S], Li ∩ S).

For an index j with S ∩ Uj = ∅ we call the vertices of S ∩ Lj bad vertices. The
set of all bad vertices BAD(S) =

⋃
1≤i≤k{v ∈ Li ∩ S | Ui ∩ S = ∅} can be computed

with 2k set operations.

3 Symbolic Divide-and-Conquer with Lock-Step Search
In this section we present a symbolic version of the lock-step search for strongly con-
nected subgraphs [25]. This symbolic version is used in all subsequent results, i.e., the
sub-quadratic symbolic algorithms for graphs and MDPs with Streett objectives, and for
MEC decomposition.
Divide-and-Conquer. The common property of the algorithmic problems we consider
in this work is that the goal is to identify subgraphs of the input graph G = (V,E) that
are strongly connected and satisfy some additional properties. The difference between
the problems lies in the required additional properties. We describe and analyze the
Procedure LOCK-STEP-SEARCH that we use in all our improved algorithms to effi-
ciently implement a divide-and-conquer approach based on the requirement of strong
connectivity, that is, we divide a subgraph G[S], induced by a set of vertices S, into
two parts that are not strongly connected within G[S] or detect that G[S] is strongly
connected.
Start Vertices of Searches. The input to Procedure LOCK-STEP-SEARCH is a set of
vertices S ⊆ V and two subsets of S denoted by HS and TS . In the algorithms that call
the procedure as a subroutine, vertices contained in HS have lost incoming edges (i.e.,
they were a “head” of a lost edge) and vertices contained in TS have lost outgoing edges
(i.e., they were a “tail” of a lost edge) since the last time a superset of S was identified as
being strongly connected. For each vertex h of HS the procedure conducts a backward
search (i.e., a sequence of Pre operations) within G[S] to find the vertices of S that can
reach h; and analogously a forward search (i.e., a sequence of Post operations) from
each vertex t of TS is conducted.
Intuition for the Choice of Start Vertices. If the subgraph G[S] is not strongly connected,
then it contains at least one top SCC and at least one bottom SCC that are disjoint. Further,
if for a superset S′ ⊃ S the subgraph G[S′] was strongly connected, then each top SCC
of G[S] contains a vertex that had an additional incoming edge in G[S′] compared to
G[S], and analogously each bottom SCC of G[S] contains a vertex that had an additional
outgoing edge. Thus by keeping track of the vertices that lost incoming or outgoing
edges, the following invariant will be maintained by all our improved algorithms.

Invariant 1 (Start Vertices Sufficient). We haveHS , TS ⊆ S. Either (a)HS∪TS = ∅
and G[S] is strongly connected or (b) at least one vertex of each top SCC of G[S] is
contained in HS and at least one vertex of each bottom SCC of G[S] is contained in TS .
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Procedure LOCK-STEP-SEARCH(G, S, HS , TS )
/* Pre and Post defined w.r.t. to G */

1 foreach v ∈ HS ∪ TS do Cv ← {v}
2 while true do
3 H ′S ← HS , T ′S ← TS

4 foreach h ∈ HS do /* search for top SCC */
5 C′h ← (Ch ∪ Pre(Ch)) ∩ S
6 if |C′h ∩H ′S | > 1 then H ′S ← H ′S \ {h}
7 else
8 if C′h = Ch then return (Ch, H ′S , TS)
9 Ch ← C′h

10 foreach t ∈ TS do /* search for bottom SCC */
11 C′t ← (Ct ∪ Post(Ct)) ∩ S
12 if |C′t ∩ T ′S | > 1 then T ′S ← T ′S \ {t}
13 else
14 if C′t = Ct then return (Ct, H ′S , T ′S)
15 Ct ← C′t

16 HS ← H ′S , TS ← T ′S

Lock-Step Search. The searches from the vertices of HS ∪ TS are performed in lock-step,
that is, (a) one step is performed in each of the searches before the next step of any
search is done and (b) all searches stop as soon as the first of the searches finishes. This is
implemented in Procedure LOCK-STEP-SEARCH as follows. A step in the search from a
vertex t ∈ TS (and analogously for h ∈ HS) corresponds to the execution of the iteration
of the for-each loop for t ∈ TS . In an iteration of a for-each loop we might discover
that we do not need to consider this search further (see the paragraph on ensuring strong
connectivity below) and update the set TS (via T ′S) for future iterations accordingly.
Otherwise the set Ct is either strictly increasing in this step of the search or the search
for t terminates and we return the set of vertices in G[S] that are reachable from t. So the
two for-each loops over the vertices of TS and HS that are executed in an iteration of the
while-loop perform one step of each of the searches and the while-loop stops as soon as a
search stops, i.e., a return statement is executed and hence this implements properties (a)
and (b) of lock-step search. Note that the while-loop terminates, i.e., a return statement
is executed eventually because for all t ∈ TS (and resp. for all h ∈ HS) the sets Ct are
monotonically increasing over the iterations of the while-loop, we have Ct ⊆ S, and if
some set Ct does not increase in an iteration, then it is either removed from TS and thus
not considered further or a return statement is executed. Note that when a search from a
vertex t ∈ TS stops, it has discovered a maximal set of vertices C that can be reached
from t; and analogously for h ∈ HS . Figure 1 shows a small intuitive example of a call
to the procedure.

Comparison to Explicit Algorithm. In the explicit version of the algorithm [25,7] the
search from vertex t ∈ TS performs a depth-first search that terminates exactly when
every edge reachable from t is explored. Since any search that starts outside of a bottom
SCC but reaches the bottom SCC has to explore more edges than the search started
inside of the bottom SCC, the first search from a vertex of TS that terminates has exactly
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Fig. 1: An example of symbolic lock-step search showing the first three iterations of
the main while-loop. Note that during the second iteration, the search started from t1 is
disregarded since it collides with t2. In the subsequent fourth iteration, the search started
from t2 is returned by the procedure.
explored (one of) the smallest (in the number of edges) bottom SCC(s) of G[S]. Thus
on explicit graphs the explicit lock-step search from the vertices of HS ∪ TS finds
(one of) the smallest (in the number of edges) top or bottom SCC(s) of G[S] in time
proportional to the number of searches times the number of edges in the identified SCC.
In symbolically represented graphs it can happen (1) that a search started outside of
a bottom (resp. top) SCC terminates earlier than the search started within the bottom
(resp. top) SCC and (2) that a search started in a larger (in the number of vertices) top or
bottom SCC terminates before one in a smaller top or bottom SCC. We discuss next how
we address these two challenges.
Ensuring Strong Connectivity. First, we would like the set returned by Procedure LOCK-
STEP-SEARCH to indeed be a top or bottom SCC of G[S]. For this we use the following
observation for bottom SCCs that can be applied to top SCCs analogously. If a search
starting from a vertex of t1 ∈ TS encounters another vertex t2 ∈ TS , t1 6= t2, there
are two possibilities: either (1) both vertices are in the same SSC or (2) t1 can reach t2
but not vice versa. In Case (1) the searches from both vertices can explore all vertices
in the SCC and thus it is sufficient to only search from one of them. In Case (2) the
SCC of t1 has an outgoing edge and thus cannot be a bottom SCC. Hence in both cases
we can remove the vertex t1 from the set TS while still maintaining Invariant 1. By
Invariant 1 we further have that each search from a vertex of TS that is not in a bottom
SCC encounters another vertex of TS in its search and therefore is removed from the set
TS during Procedure LOCK-STEP-SEARCH (if no top or bottom SCC is found earlier).
This ensures that the returned set is either a top or a bottom SCC.1

Bound on Symbolic Steps. Second, observe that we can still bound the number of
symbolic steps needed for the search that terminates first by the number of vertices in
the smallest top or bottom SCC of G[S], since this is an upper bound on the symbolic
steps needed for the search started in this SCC. Thus provided Invariant 1, we can
bound the number of symbolic steps in Procedure LOCK-STEP-SEARCH to identify
a vertex set C ( S such that C and S \ C are not strongly connected in G[S] by
O((|HS |+ |TS |) ·min(|C|, |S \C|)). In the algorithms that call Procedure LOCK-STEP-
SEARCH we charge the number of symbolic steps in the procedure to the vertices in the

1 To improve the practical performance, we return the updated sets HS and TS . By the above
argument this preserves Invariant 1.
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smaller set of C and S \ C; this ensures that each vertex is charged at most O(log n)
times over the whole algorithm. We obtain the following result (proof in Appendix A).

Theorem 1 (Lock-Step Search). Provided Invariant 1 holds, Procedure LOCK-STEP-
SEARCH(G, S, HS , TS) returns a top or bottom SCC C of G[S]. It uses O((|HS | +
|TS |) ·min(|C|, |S \C|)) symbolic steps if C 6= S and O((|HS |+ |TS |) · |C|) otherwise.

4 Graphs with Streett Objectives

Basic Symbolic Algorithm. Recall that for a given graph (with n vertices) and a Streett
objective (with k target pairs) each non-trivial strongly connected subgraph without bad
vertices is a good component. The basic symbolic algorithm for graphs with Streett
objectives repeatedly removes bad vertices from each SCC and then recomputes the
SCCs until all good components are found. The winning set then consists of the vertices
that can reach a good component. We refer to this algorithm as STREETTGRAPHBASIC.
For the pseudocode and more details see Appendix B.

Proposition 1. Algorithm STREETTGRAPHBASIC correctly computes the winning set
in graphs with Streett objectives and requires O(n ·min(n, k)) symbolic steps.

Improved Symbolic Algorithm. In our improved symbolic algorithm we replace the
recomputation of all SCCs with the search for a new top or bottom SCC with Proce-
dure LOCK-STEP-SEARCH from vertices that have lost adjacent edges whenever there
are not too many such vertices. We present the improved symbolic algorithm for graphs
with Streett objectives in more detail as it also conveys important intuition for the MDP
case. The pseudocode is given in Algorithm STREETTGRAPHIMPR.
Iterative Refinement of Candidate Sets. The improved algorithm maintains a set goodC
of already identified good components that is initially empty and a setX of candidates for
good components that is initialized with the SCCs of the input graph G. The difference
to the basic algorithm lies in the properties of the vertex sets maintained in X and
the way we identify sets that can be separated from each other without destroying a
good component. In each iteration one vertex set S is removed from X and, after the
removal of bad vertices from the set, either identified as a good component or split into
several candidate sets. By Lemma 2 and Corollary 1 the following invariant is maintained
throughout the algorithm for the sets in goodC and X .

Invariant 2 (Maintained Sets). The sets in X ∪ goodC are pairwise disjoint and for
every good component C of G there exists a set Y ⊇ C such that either Y ∈ X or
Y ∈ goodC.

Lost Adjacent Edges. In contrast to the basic algorithm, the subgraph induced by a set S
contained in X is not necessarily strongly connected. Instead, we remember vertices of S
that have lost adjacent edges since the last time a superset of S was determined to induce
a strongly connected subgraph; vertices that lost incoming edges are contained inHS and
vertices that lost outgoing edges are contained in TS . In this way we maintain Invariant 1
throughout the algorithm, which enables us to use Procedure LOCK-STEP-SEARCH with
the running time guarantee provided by Theorem 1.
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Algorithm STREETTGRAPHIMPR: Improved Alg. for Graphs with Streett Obj.

Input :graph G = (V,E) and Streett pairs TP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉 (G, Streett(TP))

1 X ← ALLSCCS(G); goodC← ∅
2 foreach C ∈ X do HC ← ∅; TC ← ∅
3 while X 6= ∅ do
4 remove some S ∈ X from X
5 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

6 while B 6= ∅ do
7 S ← S \B
8 HS ← (HS ∪ Post(B)) ∩ S
9 TS ← (TS ∪ Pre(B)) ∩ S

10 B ←
⋃

1≤i≤k:Ui∩S=∅(Li ∩ S)

11 if Post(S) ∩ S 6= ∅ then /* G[S] contains at least one edge */
12 if |HS |+ |TS | = 0 then goodC← goodC ∪ {S}
13 else if |HS |+ |TS | ≥

√
m/ logn then

14 delete HS and TS

15 C ← ALLSCCS(G[S])
16 if |C| = 1 then goodC← goodC ∪ {S}
17 else
18 foreach C ∈ C do HC ← ∅; TC ← ∅
19 X ← X ∪ C

20 else
21 (C, HS , TS)←LOCK-STEP-SEARCH(G, S, HS , TS)
22 if C = S then goodC← goodC ∪ {S}
23 else /* separate C and S \ C */
24 S ← S \ C
25 HC ← ∅; TC ← ∅
26 HS ← (HS ∪ Post(C)) ∩ S
27 TS ← (TS ∪ Pre(C)) ∩ S
28 X ← X ∪ {S} ∪ {C}

29 return GRAPHREACH(G,
⋃

C∈goodC C)

Identifying SCCs. Let S be the vertex set removed from X in a fixed iteration of
Algorithm STREETTGRAPHIMPR after the removal of bad vertices in the inner while-
loop. First note that if S is strongly connected and contains at least one edge, then it is a
good component. If the set S was already identified as strongly connected in a previous
iteration, i.e., HS and TS are empty, then S is identified as a good component in line 12.
If many vertices of S have lost adjacent edges since the last time a super-set of S was
identified as a strongly connected subgraph, then the SCCs of G[S] are determined as in
the basic algorithm. To achieve the optimal asymptotic upper bound, we say that many
vertices of S have lost adjacent edges when we have |HS |+ |TS | ≥

√
m/ log n, while

lower thresholds are used in our experimental results. Otherwise, if not too many vertices
of S lost adjacent edges, then we start a symbolic lock-step search for top SCCs from
the vertices of HS and for bottom SCCs from the vertices of TS using Procedure LOCK-
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STEP-SEARCH. The set returned by the procedure is either a top or a bottom SCC C
of G[S] (Theorem 1). Therefore we can from now on consider C and S \ C separately,
maintaining Invariants 1 and 2.
Algorithm STREETTGRAPHIMPR. A succinct description of the pseudocode is as follows:
Lines 1–2 initialize the set of candidates for good components with the SCCs of the
input graph. In each iteration of the main while-loop one candidate is considered and the
following operations are performed: (a) lines 5–10 iteratively remove all bad vertices;
if afterwards the candidate is still strongly connected (and contains at least one edge),
it is identified as a good component in the next step; otherwise it is partitioned into
new candidates in one of the following ways: (b) if many vertices lost adjacent edges,
lines 13–19 partition the candidate into its SCCs (this corresponds to an iteration of the
basic algorithm); (c) otherwise, lines 20–28 use symbolic lock-step search to partition
the candidate into one of its SCCs and the remaining vertices. The while-loop terminates
when no candidates are left. Finally, vertices that can reach some good component are
returned. We have the following result (proof in Appendix B).

Theorem 2 (Improved Algorithm for Graphs). Algorithm STREETTGRAPHIMPR
correctly computes the winning set in graphs with Streett objectives and requires
O(n ·

√
m log n) symbolic steps.

5 Symbolic MEC Decomposition

In this section we present a succinct description of the basic symbolic algorithm for
MEC decomposition and then present the main ideas for the improved algorithm.
Basic symbolic algorithm for MEC decomposition. The basic symbolic algorithm for
MEC decomposition maintains a set of identified MECs and a set of candidates for
MECs, initialized with the SCCs of the MDP. Whenever a candidate is considered, either
(a) it is identified as a MEC or (b) it contains vertices with outgoing random edges,
which are then removed together with their random attractor from the candidate, and
the SCCs of the remaining sub-MDP are added to the set of candidates. We refer to the
algorithm as MECBASIC.

Proposition 2. Algorithm MECBASIC correctly computes the MEC decomposition of
MDPs and requires O(n2) symbolic steps.

Improved symbolic algorithm for MEC decomposition. The improved symbolic algo-
rithm for MEC decomposition uses the ideas of symbolic lock-step search presented
in Section 3. Informally, when considering a candidate that lost a few edges from the
remaining graph, we use the symbolic lock-step search to identify some bottom SCC. We
refer to the algorithm as MECIMPR. Since all the important conceptual ideas regarding
the symbolic lock-step search are described in Section 3, we relegate the technical details
to Appendix C. We summarize the main result (proof in Appendix C).

Theorem 3 (Improved Algorithm for MEC). Algorithm MECIMPR correctly com-
putes the MEC decomposition of MDPs and requires O(n ·

√
m) symbolic steps.
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6 MDPs with Streett Objectives

Basic Symbolic Algorithm. We refer to the basic symbolic algorithm for MDPs
with Streett objectives as STREETTMDPBASIC, which is similar to the algorithm for
graphs, with SCC computation replaced by MEC computation. The pseudocode of
Algorithm STREETTMDPBASIC together with its detailed description is presented in
Appendix D.

Proposition 3. Algorithm STREETTMDPBASIC correctly computes the almost-sure
winning set in MDPs with Streett objectives and requires O(n2 ·min(n, k)) symbolic
steps.

Remark. The above bound uses the basic symbolic MEC decomposition algorithm.
Using our improved symbolic MEC decomposition algorithm, the above bound could be
improved to O(n ·

√
m ·min(n, k)).

Improved Symbolic Algorithm. We refer to the improved symbolic algorithm for
MDPs with Streett objectives as STREETTMDPIMPR. First we present the main ideas
for the improved symbolic algorithm. Then we explain the key differences compared to
the improved symbolic algorithm for graphs. A thorough description with the technical
details and proofs is presented in Appendix D.

– First, we improve the algorithm by interleaving the symbolic MEC computation
with the detection of bad vertices [7,30]. This allows to replace the computation
of MECs in each iteration of the while-loop with the computation of SCCs and an
additional random attractor computation.
• Intuition of interleaved computation. Consider a candidate for a good end-

component S after a random attractor to some bad vertices is removed from
it. After the removal of the random attractor, the set S does not have random
vertices with outgoing edges. Consider that further BAD(S) = ∅ holds. If S is
strongly connected and contains an edge, then it is a good end-component. If S
is not strongly connected, then P [S] contains at least two SCCs and some of
them might have random vertices with outgoing edges. Since end-components
are strongly connected and do not have random vertices with outgoing edges,
we have that (1) every good end-component is completely contained in one of
the SCCs of P [S] and (2) the random vertices of an SCC with outgoing edges
and their random attractor do not intersect with any good end-component (see
Lemma 2).

• Modification from basic to improved algorithm. We use these observations to
modify the basic algorithm as follows: First, for the sets that are candidates
for good end-components, we do not maintain the property that they are end-
components, but only that they do not have random vertices with outgoing
edges (it still holds that every maximal good end-component is either already
identified or contained in one of the candidate sets). Second, for a candidate set
S, we repeat the removal of bad vertices until BAD(S) = ∅ holds before we
continue with the next step of the algorithm. This allows us to make progress
after the removal of bad vertices by computing all SCCs (instead of MECs)

13



of the remaining sub-MDP. If there is only one SCC, then this is a good end-
component (if it contains at least one edge). Otherwise (a) we remove from each
SCC the set of random vertices with outgoing edges and their random attractor
and (b) add the remaining vertices of each SCC as a new candidate set.

– Second, as for the improved symbolic algorithm for graphs, we use the symbolic
lock-step search to quickly identify a top or bottom SCC every time a candidate
has lost a small number of edges since the last time its superset was identified as
being strongly connected. The symbolic lock-step search is described in detail in
Section 3.

Using interleaved MEC computation and lock-step search leads to a similar algorith-
mic structure for Algorithm STREETTMDPIMPR as for our improved symbolic algorithm
for graphs (Algorithm STREETTGRAPHIMPR). The key differences are as follows: First,
the set of candidates for good end-components is initialized with the MECs of the input
graph instead of the SCCs. Second, whenever bad vertices are removed from a candidate,
also their random attractor is removed. Further, whenever a candidate is partitioned into
its SCCs, for each SCC, the random attractor of the vertices with outgoing random edges
is removed. Finally, whenever a candidate S is separated into C and S \ C via symbolic
lock-step search, the random attractor of the vertices with outgoing random edges is
removed from C, and the random attractor of C is removed from S.

Theorem 4 (Improved Algorithm for MDPs). Algorithm STREETTMDPIMPR cor-
rectly computes the almost-sure winning set in MDPs with Streett objectives and requires
O(n ·

√
m log n) symbolic steps.

7 Experiments

We present a basic prototype implementation of our algorithm and compare against the
basic symbolic algorithm for graphs and MDPs with Streett objectives.
Models. We consider the academic benchmarks from the VLTS benchmark suite [20],
which gives representative examples of systems with nondeterminism, and has been used
in previous experimental evaluation (such as [4,11]).
Specifications. We consider random LTL formulae and use the tool Rabinizer [27] to
obtain deterministic Rabin automata. Then the negations of the formulae give us Streett
automata, which we consider as the specifications.
Graphs. For the models of the academic benchmarks, we first compute SCCs, as all
algorithms for Streett objectives compute SCCs as a preprocessing step. For SCCs of
the model benchmarks we consider products with the specification Streett automata,
to obtain graphs with Streett objectives, which are the benchmark examples for our
experimental evaluation. The number of transitions in the benchmarks ranges from 300K
to 5Million.
MDPs. For MDPs, we consider the graphs obtained as above and consider a fraction of
the vertices of the graph as random vertices, which is chosen uniformly at random. We
consider 10%, 20%, and 50% of the vertices as random vertices for different experimental
evaluation.
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Fig. 2: Results for graphs with Streett objectives.

(a) 10% random vertices (b) 20% random vertices

(c) 50% random vertices
Fig. 3: Results for MDPs with Streett objectives.

Experimental evaluation. In the experimental evaluation we compare the number of
symbolic steps (i.e., the number of Pre/Post operations2) executed by the algorithms,
the comparison of running time yields similar results and is provided in Appendix E.
As the initial preprocessing step is the same for all the algorithms (computing all SCCs
for graphs and all MECs for MDPs), the comparison presents the number of symbolic
steps executed after the preprocessing. The experimental results for graphs are shown in
Figure 2 and the experimental results for MDPs are shown in Figure 3 (in each figure
the two lines represent equality and an order-of-magnitude improvement, respectively).

2 Recall that the basic set operations are cheaper to compute, and asymptotically at most the
number of Pre/Post operations in all the presented algorithms.
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Discussion. Note that the lock-step search is the key reason for theoretical improvement,
however, the improvement relies on a large number of Streett pairs. In the experimental
evaluation, the LTL formulae generate Streett automata with small number of pairs,
which after the product with the model accounts for an even smaller fraction of pairs as
compared to the size of the state space. This has two effects:

– In the experiments the lock-step search is performed for a much smaller parameter
value (O(log n) instead of the theoretically optimal bound of

√
m/ log n), and leads

to a small improvement.
– For large graphs, since the number of pairs is small as compared to the number of

states, the improvement over the basic algorithm is minimal.
In contrast to graphs, in MDPs even with small number of pairs as compared to the state-
space, the interleaved MEC computation has a notable effect on practical performance,
and we observe performance improvement even in large MDPs.

8 Conclusion

In this work we consider symbolic algorithms for graphs and MDPs with Streett ob-
jectives, as well as for MEC decomposition. Our algorithmic bounds match for both
graphs and MDPs. In contrast, while SCCs can be computed in linearly many symbolic
steps no such algorithm is known for MEC decomposition. An interesting direction
of future work would be to explore further improved symbolic algorithms for MEC
decomposition. Moreover, further improved symbolic algorithms for graphs and MDPs
with Streett objectives is also an interesting direction of future work.
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15. Chatterjee, K., Gaiser, A., Kretı́nský, J.: Automata with generalized rabin pairs for probabilis-
tic model checking and LTL synthesis. In: CAV. pp. 559–575 (2013)

16. Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time analysis of
reactive systems. In: QEST. pp. 131–132 (2006)

17. Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic model checker.
International Journal on Software Tools for Technology Transfer (STTT) 2(4), 410–425
(2000)

18. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge, MA,
USA (1999)

19. Clarke, E., Grumberg, O., Peled, D.: Symbolic model checking. In: Model Checking. MIT
Press (1999)

20. CWI/SEN2 and INRIA/VASY: The VLTS Benchmark Suite, http://cadp.inria.fr/
resources/vlts

21. Dehnert, C., Junges, S., Katoen, J., Volk, M.: A Storm is coming: A modern probabilistic
model checker. In: CAV. pp. 592–600 (2017)
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Appendix

A Details of Section 3: Symbolic Lock-Step Search

Proof (of Theorem 1).

Strong connectivity. We want to show that C ← LOCK-STEP-SEARCH(G, S, HS , TS)
is a top or bottom SCC of G[S] given Invariant 1 is satisfied. By the invariant at least
one vertex of each top SCC of G[S] is contained in HS and at least one vertex of each
bottom SCC of G[S] is contained in TS . Suppose C is the set obtained from a search
conducted by Post operations that started from within a bottom SCC C̃ of G[S]. Since C̃
is a bottom SCC and we update the search by executing Post operations (and moreover
intersect with S at every update), we have C ⊆ C̃. Further, since C̃ is an SCC, the
updates with Post eventually cover all vertices of C̃, which gives us C = C̃. A set Ct
constructed with Post operations whose start vertex t is not contained in a bottom SCC
of G[S] can not yield the set C since eventually it contains a bottom SCC of G[S], and
by Invariant 1 this SCC contains a candidate in TS ; therefore |Ct ∩ TS | > 1 is satisfied
at some point in the construction of Ct and then search is canceled by removing t from
TS ; note that a search starting from a bottom SCC can be canceled only if another vertex
of the bottom SCC remains in TS . By the symmetric argument for searches conducted
by Pre operations that started from a vertex of a top SCC we have that the returned set
C is either a top or a bottom SCC of G[S].
Bound on symbolic steps. Consider (one of) the smallest top or bottom SCCs C̃ ofG[S].
Suppose w.l.o.g. that C̃ is a bottom SCC. By Invariant 1 there is a search, conducted by
Post operations, that starts from a vertex t ∈ TS within C̃ and that is not canceled, and
therefore this search terminates after at most |C̃| many Post operations. Other searches
may terminate earlier but this gives an upper bound of O((|HS | + |TS |) · |C̃|) on the
number of symbolic steps until the lock-step search terminates. Finally, consider the
returned set C ← LOCK-STEP-SEARCH(G, S, HS , TS). There are two possible cases:
either (i) S = C, which implies C = C̃ so the number of symbolic steps can be bounded
by O((|HS |+ |TS |) · |C|), or (ii) S 6= C. In the second case, since C̃ is (some) smallest
SCC, C is an SCC, and S \ C contains at least one SCC, we have |C̃| ≤ |C| and
|C̃| ≤ |S \ C|, and hence we can bound the number of symbolic steps in this case by
O((|HS |+ |TS |) ·min(|C|, |S \ C|)). ut

B Details of Section 4: Graphs with Streett Objectives

B.1 Basic Symbolic Algorithm for Graphs with Streett Objectives

The pseudocode of the basic symbolic algorithm for graphs with Streett objectives is
given in Algorithm STREETTGRAPHBASIC.

The basic symbolic algorithm for Streett objectives on graphs finds good components
as follows. The algorithm maintains two sets of vertex sets: goodC contains identified
good components and is initially empty; X contains candidates for good components and
is initialized with the SCCs of the input graph G. The sets in X are strongly connected
subgraphs of G throughout the algorithm. In each iteration of the while-loop one of
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Algorithm STREETTGRAPHBASIC: Basic Algorithm for Graphs with Streett Obj.

Input :graph G = (V,E) and Streett pairs TP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉 (G, Streett(TP))

1 X ← ALLSCCS(G); goodC← ∅
2 while X 6= ∅ do
3 remove some S ∈ X from X
4 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

5 if B 6= ∅ then
6 S ← S \B
7 X ← X ∪ ALLSCCS(G[S])

8 else
9 if Post(S) ∩ S 6= ∅ then /* G[S] contains at least one edge */

10 goodC← goodC ∪ {S}

11 return GRAPHREACH(G,
⋃

C∈goodC C)

the candidate sets S maintained in X is considered. If the set S does not contain bad
vertices and contains at least one edge, then it is a good component and added to goodC.
Otherwise, the set of bad vertices B in S is removed from S; the subgraph induced by
S′ = S \B might not be strongly connected but every good component contained in S′

must still be strongly connected, therefore the maximal strongly connected subgraphs
of G[S′] are added to X as new candidates for good components. By Lemma 2 and
Corollary 1 this procedure maintains the property that every good component of G is
completely contained in one of the vertex sets of goodC or X . Further in each iteration
either (a) vertices are removed or separated into different vertex sets or (b) a new good
component is identified. Thus after at most O(n) iterations the set X is empty and all
good components of G are contained in goodC. Furthermore, whenever bad vertices
are removed from a given candidate set, the number of target pairs this candidate set
intersects is reduced by one. Thus each vertex is considered in at most O(k) iterations
of the main while-loop. Finally, the set of vertices that can reach a good component is
determined (by O(n) Pre operations) and output as the winning set. Since computing
SCCs can be done in O(n) symbolic steps, the total number of symbolic steps of the
basic algorithm is bounded by O(n ·min(n, k)).

B.2 Improved Symbolic Algorithm for Graphs with Streett Objectives

Lemma 3 (Invariants of Improved Algorithm for Graphs). Invariant 1 and Invari-
ant 2 are preserved throughout Algorithm STREETTGRAPHIMPR, i.e., they hold before
the first iteration, after each iteration, and after termination of the main while-loop.
Further, Invariant 1 is preserved during each iteration of the main while-loop.

Proof.

Invariant 1. Whenever a new candidate S is added as a result from ALLSCCS, it is
strongly connected, and we set HS = TS = ∅; this in particular implies that the invariant
is satisfied after the initialization of the algorithm.
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By induction and Theorem 1, the invariant is satisfied whenever Procedure LOCK-
STEP-SEARCH returns a candidate C and we set HC = TC = ∅.

Now consider an update of a candidate S where some subset B is deleted from it and
assume the invariant holds before the update. In these cases we update HS and TS by
settingHS ← (HS∪Post(B))∩S and TS ← (TS∪Pre(B))∩S. This adds the vertices
that remain in S and have an edge from a vertex of B to HS and those with an edge to B
to TS . Suppose a new top (resp. bottom) SCC S̃ ⊆ S emerges in S by the removal of B
from S. Then some vertex of S̃ had an outgoing edge to B (resp. an incoming edge from
B) and thus is contained in the updated set TS (resp. HS), maintaining the invariant.
This happens whenever we remove BAD(S) from S, and whenever we subtract a result
from Procedure LOCK-STEP-SEARCH C from S.

Invariant 2 – Disjointness. The sets in X ∪ goodC are pairwise disjoint at the ini-
tialization since goodC is initialized as ∅. Furthermore, whenever a set S is added to
goodC in an iteration of the main while-loop, a superset S̃ ⊇ S is removed from X in
the same iteration of the while-loop. Therefore by induction the disjointness of the sets
in X ∪ goodC is preserved.

Invariant 2 – Containment of good components. At initialization, X contains all
SCCs of the input graph G. Each good component C of G is strongly connected, so
there exists an SCC Y ⊇ C such that Y ∈ X for each good component C.

Consider a set S ∈ X that is removed from X at the beginning of an iteration of
the main while-loop. Consider further a good component C of G such that C ⊆ S. We
require that a set Y ⊇ C is added to either X or goodC in this iteration of the main
while-loop.

First, whenever we remove BAD(S) from S, by Corollary 1 we maintain the fact
that C ⊆ S. Second, G[S] contains an edge since C ⊆ S. Finally, one of the three cases
happens:

Case (1): If |HS |+ |TS | = 0, then the set S ⊇ C is added to goodC.

Case (2): If |HS |+ |TS | ≥
√
m/ log n, then the algorithm computes the SCCs of G[S].

Since C ⊆ S is strongly connected, it is completely contained in some SCC Y of G[S],
and Y is added either to X or to goodC.

Case (3): If 0 < |HS | + |TS | <
√
m/ log n, then the algorithm either adds S ⊇ C

to goodC, or partitions S into S̃ and S \ S̃. Suppose the latter case happens, then
by Theorem 1 we have that S̃ is an SCC of G[S]. Further, since C ⊆ S is strongly
connected, it is completely contained in some SCC of G[S]. Therefore either C ⊆ S̃ or
C ⊆ (S \ S̃), and both S̃ and S \ S̃ are added to X .

By the above case analysis we have that a set Y ⊇ C is added to either X or goodC in
the iteration of the main while-loop, and thus the invariant is preserved throughout the
algorithm. ut

Proof (of Theorem 2).

Correctness. Whenever a candidate set S is added to goodC, it contains an edge by the
check at line 11, and BAD(S) = ∅ by the check at line 6. Furthermore, (a) at line 12, S
is strongly connected by Invariant 1, (b) at line 16, S is strongly connected by the result
of ALLSCCS, and (c) at line 22, S is strongly connected by Theorem 1. Therefore we
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have that whenever a candidate set is added to goodC, it is indeed a good component
(soundness).

Finally, by soundness, Invariant 2, the termination of the algorithm (shown below),
and the fact that X = ∅ at the termination of the algorithm, we have that goodC contains
all good components of G (completeness).

Symbolic steps analysis. By [24], the initialization with the SCCs of the input graph
takes O(n) symbolic steps. Furthermore, the reachability computation in the last step
takes O(n) Pre operations.

In each iteration of the outer while-loop, a set S is removed from X and either (a) a
set S′ ⊆ S is added to goodC and no set is added to X or (b) at least two sets that are
(proper subsets of) a partition of S are added to X . Both can happen at most O(n) times,
thus there can be at most O(n) iterations of the outer while-loop. The Pre and Post
operations at lines 11, 26, and 27 can be charged to the iterations of the outer while-loop.

An iteration of the inner while-loop (lines 6-10) is executed only if some vertices B
are removed from S; the vertices of B are then not considered further. Thus there can, in
total, be at most O(n) Pre and Post operations over all iterations of the inner while-loop.

Note that every vertex in each of HS and TS can be attributed to at least one unique
implicit edge deletion since we only add vertices to HS resp. TS that are successors resp.
predecessors of vertices that were separated from S (or deleted from the maintained
graph). Whenever the case |HS | + |TS | ≥

√
m/ log n occurs, for all subsets C ⊆ S

that are then added to X , we initialize HC = TC = ∅. Therefore the case |HS |+ |TS | ≥√
m/ log n can happen at most O(

√
m log n) times throughout the algorithm since

there are at most m edges that can be deleted, and hence in total takes O(n ·
√
m log n)

symbolic steps.
It remains to bound the number of symbolic steps in Procedure LOCK-STEP-SEARCH.

LetC be the set returned by the procedure; we charge the symbolic steps in this call of the
procedure to the vertices of the smaller set of C and S \C. By Theorem 1 we have either
(a) C = S, the number of symbolic steps in this call is bounded by O(

√
m/ log n · |C|),

and the set S is added to goodC or (b) min(|C|, |S \ C|) ≤ |S|/2 and the number of
symbolic steps in this call is bounded by O(

√
m/ log n ·min(|C|, |S \ C|)). Case (a)

can happen at most once for the vertices of C, and for case (b) note that the size of a set
containing a specific vertex can be halved at most O(log n) times; thus we charge each
vertex at most O(log n) times. Hence we can bound the total number of symbolic steps
in all calls to the procedure by O(n ·

√
m log n). ut

C Details of Section 5: Symbolic MEC Decomposition

C.1 Basic Symbolic Algorithm for MEC decomposition

Recall that an end-component is a set of vertices that (a) has no random edges to vertices
not in the set and its induced sub-MDP is (b) strongly connected and (c) contains at least
one edge.

Algorithm MECBASIC computes all maximal end-components of a given MDP and
is formulated as to highlight the similarities to the algorithms for graphs and MDPs
with Streett objectives. The algorithm maintains two sets, the set goodC of identified
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Algorithm MECBASIC: Basic Algorithm for Maximal End-Components

Input : an MDP P = (G = (V,E), (V1, VR))
Output : the set of maximal end-components of P

1 goodC← ∅
2 X ← ALLSCCS(G)
3 while X 6= ∅ do
4 remove some S ∈ X from X
5 rout← S ∩ VR ∩ Pre(V \ S)
6 if rout 6= ∅ then
7 S ← S \ AttrR(G, rout)
8 X ← X ∪ ALLSCCS(G[S])

9 else
10 if Post(S) ∩ S 6= ∅ then /* G[S] contains at least one edge */
11 goodC← goodC ∪ {S}

12 return goodC

maximal end-components that is initially empty and the set X of candidates for maximal
end-components that is initialized with the SCCs of the MDP. In each iteration of
the while-loop one set S is removed from X and either (1a) identified as a maximal
end-component and added to goodC or (1b) removed because the induced sub-MDP
does not contain an edge or (2) it contains vertices with outgoing random edges. In the
latter case these vertices rout are identified and their random attractor is removed from
S. After this step the sub-MDP induced by the remaining vertices of S might not be
strongly connected any more. Therefore the SCCs of this sub-MDP are determined and
added to X as new candidates for maximal end-components. Note that this maintains
the invariants that (i) each set in X induces a strongly connected subgraph and (ii) each
end-component is a subset of one set in either goodC or X . By (i) a set in X is an
end-component if it does not have outgoing random edges and the induced sub-MDP
contains an edge, i.e., in particular this holds for the sets added to goodC (soundness).
By (ii) and X = ∅ at termination of the while-loop the algorithm identifies all maximal
end-components of the MDP (completeness). Since both (1) and (2) can happen at
most O(n) times, there are O(n) iterations of the while-loop. In each iteration the most
expensive operations are the computation of a random attractor and of SCCs, which can
both be done in O(n) symbolic steps. Thus Algorithm MECBASIC correctly computes
all maximal end-components of an MDP and takes O(n2) symbolic steps.

C.2 Improved Symbolic Algorithm for MEC decomposition

Informal description. We show how to determine all maximal end-components (MECs)
of an MDP in O(n

√
m) symbolic operations. The difference to the basic algorithm

lies in the way strongly connected parts of the MDP are identified after the deletion
of vertices that cannot be contained in a MEC. For this the symbolic lock-step search
from Section 3 is used whenever not too many edges have been deleted since the last
re-computation of SCCs.

23



Let P be the given MDP and G = (V,E) its underlying graph. The algorithm
maintains two sets of vertex sets: the set goodC of already identified MECs that is
initialized with the empty set and the set X that is initialized with the SCCs of G and
contains vertex sets that are candidates for MECs. The algorithm preserves the following
invariant for the goodC and X over the iterations of the while-loop and returns the set
goodC when the set X is empty after an iteration of the while-loop.

Invariant 4 (Maintained Sets). The sets in X ∪ goodC are pairwise disjoint and for
every maximal end-component X of G there exists a set Y ⊇ X such that either Y ∈ X
or Y ∈ goodC.

For each vertex set S in X additionally a subset TS of S is maintained that contains
vertices that have lost outgoing edges since the last time a superset of S was identified
as strongly connected. We use the following restrictions of Invariant 1 and Theorem 1
(presented in Section 3) to bottom SCCs only.

Invariant 5 (Start Vertices BSCC). Either (a) TS is empty and G[S] is strongly con-
nected or (b) at least one vertex of each bottom SCC of G[S] is contained in TS .

Theorem 5 (Lock-Step Search BSCC). Provided Invariant 5 holds, Procedure LOCK-
STEP-SEARCH(G, S, ∅, TS) returns a bottom SCC C ⊆ S of G[S] in O(|TS | · |C|)
symbolic steps.

Proof. The proof of Theorem 5 is a straightforward simplification of the proof of
Theorem 1 located in Appendix A. ut

Initially the sets TS are empty. The algorithm maintains Invariant 5 for all S ∈ X .
This will ensure the correctness and the number of symbolic steps of Procedure LOCK-
STEP-SEARCH (Section 3) as called by the algorithm.

In each iteration of the while-loop one vertex set S is removed from X and processed.
First the random vertices of S with edges to vertices of V \ S are identified and their
random attractor is removed from S. After this step, there are no random vertices with
edges from S to V \ S. The predecessors of the removed vertices that are contained in S
are added to TS and additionally TS is updated to only include vertices that are still in S.
This preserves Invariant 5 (see also [30, Lemma 4.5.2]). The number of symbolic steps
for the attractor computation can be charged to the removed vertices and is therefore
bounded by O(n) in total.

If afterwards G[S] does not contain an edge anymore, then S is not considered
further and the algorithm continues with the next iteration. Otherwise one of three cases
happens.
Case (1): If TS is empty, then by Invariant 5 G[S] is strongly connected, contains at
least one edge and does not contain a random vertex with edges to V \ S, i.e., S is an
end-component, and by Invariant 4 it is a MEC. In this case the algorithm adds the set S
to goodC, which preserves both invariants and can happen at most O(n) times.
Case (2): If there are at least

√
m vertices in TS , then the set TS is deleted and as in

the basic algorithm all SCCs of G[S] are computed and add to X as new candidates for
MECs. For each of the SCCs C a set TC is initialized with the empty set. As a vertex is
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Algorithm MECIMPR: Improved Algorithm for Maximal End-Components

Input : an MDP P = (G = (V,E), (V1, VR))
Output : the set of maximal end-components of P

1 X ← ALLSCCS(G); goodC← ∅
2 foreach C ∈ X do
3 TC ← ∅
4 while X 6= ∅ do
5 remove some S ∈ X from X
6 rout← S ∩ VR ∩ Pre(V \ S)
7 A← AttrR(G, rout)
8 S ← S \A
9 TS ← (TS ∪ Pre(A)) ∩ S

10 if Post(S) ∩ S 6= ∅ then /* G[S] contains at least one edge */
11 if |TS | = 0 then
12 goodC← goodC ∪ {S}
13 else if |TS | ≥

√
m then

14 delete TS

15 C ← ALLSCCS(G[S])
16 if |C| = 1 then
17 goodC← goodC ∪ {S}
18 else
19 foreach C ∈ C do
20 TC ← ∅
21 X ← X ∪ C

22 else
23 C ←LOCK-STEP-SEARCH(G, S, ∅, TS)
24 if Post(C) ∩ C 6= ∅ then /* G[C] contains at least one edge

*/
25 goodC← goodC ∪ {C}
26 S ← S \ C
27 TS ← (TS ∪ Pre(C)) ∩ S
28 X ← X ∪ {S}

29 return goodC
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added to a set TS only if one of its incoming edges is removed by the algorithm, Case (2)
can happen only O(

√
m) times over the whole algorithm. Thus the total number of

symbolic steps for this case is O(n
√
m). Note that the Invariants 5 and 4 are preserved.

Case (3): If TS contains less than
√
m vertices, then Procedure LOCK-STEP-SEARCH(G,

S, ∅, TS) is called. By Invariant 5 and Theorem 5 the procedure returns a bottom SCC C
of G[S] in O(|TS | · |C|) many symbolic steps. Since there are no random edges between
S and V \ S in P and C has no outgoing edges in G[S], we have that C is an end-
component if it contains at least one edge. By Invariant 4 it is also a MEC and is correctly
added to goodC. As the sets in goodC are not considered further by the algorithm, we
can charge the symbolic steps of Procedure LOCK-STEP-SEARCH to the vertices of C.
Thus this part takes at most O(n

√
m) symbolic steps over the whole algorithm. The

vertices of S \ C are added back to X , which preserves Invariant 4. The predecessors
of C in S \ C are added to TS\C and vertices of C are removed from TS\C , which
preserves Invariant 5.

By the above case analysis we have that each vertex set that is added to goodC is
indeed a MEC (soundness). By Invariant 4 and X = ∅ at termination of the algorithm
we further have completeness. In each iteration either S does not contain an edge and is
not considered further, a set is added to goodC (and not contained in X after that) or
case (2) happens. Thus there are at most O(n+

√
m) iterations of the algorithm. The

symbolic operations we have not yet accounted for in the analysis of the number of
symbolic steps are of O(1) per iteration. Hence Algorithm MECIMPR takes O(n

√
m)

symbolic steps and correctly computes the MECs of the given MDP P .

Lemma 6 (Invariants of Improved Algorithm for MEC). Invariant 5 and Invariant 4
are preserved throughout Algorithm MECIMPR, i.e., they hold before the first iteration,
after each iteration, and after termination of the main while-loop. Further, Invariant 5 is
preserved during each iteration of the main while-loop.

Proof.

Invariant 5. The proof of maintaining Invariant 5 in Algorithm MECIMPR is
a straightforward simplification of the proof of maintaining Invariant 1 in Algo-
rithm STREETTGRAPHIMPR (located in Appendix B).

Invariant 4 – Disjointness. The sets in X ∪ goodC are pairwise disjoint at the ini-
tialization since goodC is initialized as ∅. Furthermore, whenever a set S is added to
goodC in an iteration of the main while-loop, a superset S̃ ⊇ S is removed from X in
the same iteration of the while-loop. Therefore by induction the disjointness of the sets
in X ∪ goodC is preserved.

Invariant 4 – Containment of maximal end-components. At initialization,X contains
all SCCs of G. Each maximal end-component X of P = (G = (V,E), (V1, VR), δ) is
strongly connected, so there exists an SCC Y ⊇ X of G such that Y ∈ X .

Consider a set S ∈ X that is removed from X at the beginning of an iteration of the
main while-loop. Consider further a maximal end-component X of P such that X ⊆ S.
We require that a set Y ⊇ X is added to either X or goodC in this iteration of the main
while-loop.
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First, after we remove AttrR(G,S ∩ VR ∩ Pre(V \ S)) from S, we maintain the fact
that X ⊆ S by Lemma 2. Second, G[S] contains an edge since X ⊆ S. Finally, one of
the three cases happens:
Case (1): If |TS | = 0, then the set S ⊇ X is added to goodC.
Case (2): If |TS | ≥

√
m, then the algorithm computes the SCCs of G[S]. Since X ⊆ S

is strongly connected, it is completely contained in some SCC Y of G[S], and Y is
added to X .
Case (3): If 0 < |TS | <

√
m, then the algorithm partitions S into C and S \ C. By

Theorem 5 we have that C is a (bottom) SCC of G[S]. Since X ⊆ S is strongly
connected, it is completely contained in some SCC of G[S]. Therefore either X ⊆ C or
X ⊆ (S \ C). The set S \ C is added to X . If X ⊆ C, then in particular G[C] contains
an edge, and C is added to goodC.
By the above case analysis we have that a set Y ⊇ X is added to either X or goodC in
the iteration of the main while-loop. ut

Proof (of Theorem 3).
Correctness. A candidate set can be added to goodC in three cases. When S is added
to goodC at line 12 (resp. at line 17), then it contains an edge by the check at line 10,
it is strongly connected by |TS | = 0 and Invariant 5 (resp. by the result of ALLSCCS),
and it has no random vertices with edges to V \ S by the random attractor removal at
lines 6-9. When C is added at line 25, then it contains an edge by the check at line 24, it
is strongly connected by Theorem 5, it contains no random vertices with edges to V \ S
by the random attractor removal at lines 6-9, and it contains no random vertices with
edges to S \ C by the fact that C is a bottom SCC of G[S] (see Theorem 5). Therefore
we have that whenever a candidate set is added to goodC, it is an end-component, and
by induction and Invariant 4 we have that it is a maximal end-component (soundness).

Finally, by soundness, Invariant 4, the termination of the algorithm (shown below),
and the fact that X = ∅ at the termination of the algorithm, we have that goodC contains
all the maximal end-components of P (completeness).
Symbolic steps analysis. By [24], the initialization with the SCCs of a given MDP takes
O(n) symbolic steps.

In each iteration of the outer while-loop, a set S is removed from X and (a) S is
added to goodC, or (b) at least two sets that are (subsets of) a partition of S are added
to X , or (c) S is partitioned into two sets, one of them may be added to goodC and
the other is added to X . All three cases can happen at most O(n) times, so there can
be at most O(n) iterations of the outer while-loop. The Pre and Post operations at
lines 6, 9, 10, 24, and 27 can be charged to the iterations of the outer while-loop.

Each CPreR operation executed as a part of the random attractor computation at
line 7 adds at least one vertex to A, and the vertices of A are then not considered any
further in the algorithm. Therefore there can, in total, be at most O(n) CPreR operations
over all attractor computations at line 7.

Note that every vertex in each of TS can be attributed to at least one unique implicit
edge deletion since we only add vertices to TS that are predecessors of the vertices
that were separated from S (or deleted from the maintained graph). Whenever the case
|TS | ≥

√
m occurs, for all subsets C ⊆ S that are then added to X , we initialize

27



TC = ∅. Therefore, the case |TS | ≥
√
m can happen at most O(

√
m) times throughout

the algorithm since there are at most m edges that can be deleted. By [24] we have a
bound O(n) for one iteration, so we can bound the total number of symbolic steps in all
iterations of this case by O(n ·

√
m).

It remains to bound the number of symbolic steps in Procedure LOCK-STEP-SEARCH.
Let C be the set returned by LOCK-STEP-SEARCH(G, S, ∅, TS). By Theorem 5 and
the fact that |TS | <

√
m, the number of symbolic steps in this call is bounded by

O(
√
m · |C|), and the set C is not considered further in the algorithm after this call.

Hence we can bound the total number of symbolic steps in all calls of the procedure by
O(n ·

√
m). ut

D Details of Section 6: MDPs with Streett Objectives

D.1 Basic Symbolic Algorithm for MDPs with Streett Objectives

Algorithm STREETTMDPBASIC: Basic Algorithm for MDPs with Streett Obj.

Input :MDP P = ((V,E), (V1, VR), δ) and pairs TP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉as (P, Streett(TP))

1 X ← ALLMECS(P ); goodEC← ∅
2 while X 6= ∅ do
3 remove some S ∈ X from X
4 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

5 if B 6= ∅ then
6 S ← S \ AttrR(P [S], B)
7 X ← X ∪ ALLMECS(P [S])

8 else goodEC← goodEC ∪ {S}

9 return 〈〈1〉〉as

(
P,Reach(

⋃
X∈goodEC X)

)
The pseudocode of the basic symbolic algorithm for MDPs with Streett objectives

is given in Algorithm STREETTMDPBASIC. The key differences compared to Algo-
rithm STREETTGRAPHBASIC are as follows: (a) SCC computation is replaced by MEC
computation; (b) along with the removal of bad vertices, their random attractor is also
removed; and (c) removing the attractor ensures that the check required for trivial SCCs
for graphs (line 9) is not required any further.

To compute the almost-sure winning set for MDPs with Streett objectives, we first
find all (maximal) good end-components and then solve almost-sure reachability with
the union of the good end-components as target set as the last step of the algorithm.
This is correct by Lemma 1. Towards finding all good end-components, the algorithm
maintains two sets, the set goodEC of identified good end-components that is initially
empty and the set X of end-components that are candidates for good end-components
that is initialized with the MECs of the MDP. In each iteration of the while-loop one
set S is removed from the set of candidates X and the set of bad vertices BAD(S) of
S is determined. If BAD(S) is empty, then S is a good end-component and added to
goodEC. Otherwise the random attractor of BAD(S) in P [S] is removed from S, which
by Corollary 1 does not remove any vertices that are in a good end-component. The
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remaining vertices of S have no outgoing random edges and thus still induce a sub-MDP
but the sub-MDP might not be strongly connected any more. Then the MECs of this
sub-MDP are added to X . These operations maintain the invariants that (i) each set
in X is an end-component and (ii) each good end-component is a subset of one set in
either goodEC or X . By (i) a set in X is a (maximal) good end-component if it does
not contain any bad vertices, i.e., in particular this holds for the sets added to goodEC
(soundness). By (ii) and X = ∅ at termination of the while-loop the algorithm identifies
all (maximal) good end-components of the MDP (completeness). Since in each iteration
of the while-loop either (1) a set is removed from X and added to goodEC or (2) bad
vertices are removed from a set and not considered further by the algorithm, there can
be at most O(n) iterations of the while-loop. Furthermore, whenever bad vertices are
removed, then the number of target pairs a given candidate set intersects is reduced by
one. Thus each vertex is considered in at most O(k) iterations of the while-loop. The
most expensive operation in the while-loop is the computation of the MECs. Denoting
the number of symbolic steps for the MEC computation with O(MEC), the number of
symbolic steps of Algorithm STREETTMDPBASIC is O(min(n, k) · MEC) (assuming
that the number of symbolic steps for the almost-sure reachability computation is lower
than that).

D.2 Improved Symbolic Algorithm for MDPs with Streett Objectives

We present the technical details regarding the improved symbolic algorithm for MDPs
with Streett objectives. The main ideas of the algorithm are presented in Section 6. The
pseudocode is given in Algorithm STREETTMDPIMPR.

The following invariant is maintained throughout Algorithm STREETTMDPIMPR
for the sets in goodEC and X .

Invariant 7 (Maintained Sets). The sets in X ∪ goodEC are pairwise disjoint and for
every good end-component C of G there exists a set Y ⊇ C such that either Y ∈ X or
Y ∈ goodEC.

Furthermore, the algorithm maintains the invariant that each candidate for a good
end-component S ∈ X contains no random edges to vertices not in S.

Invariant 8 (No Random Outgoing Edges). Given an MDP P and its underlying
graph G = (V,E), for each set S ∈ X there are no random vertices in S with edges to
vertices in V \ S.

Finally, for each candidate set S ∈ X the algorithm remembers sets HS and TS
of vertices that have lost incoming resp. outgoing edges since the last time a superset
of S was identified as being strongly connected. The algorithm maintains Invariant 1
and therefore it can use Procedure LOCK-STEP-SEARCH together with its correctness
guarantee and bound on symbolic steps provided by Theorem 1.

Lemma 9 (Invariants of Improved Algorithm for MDPs). Invariant 1, Invariant 7,
and Invariant 8 are preserved throughout Algorithm STREETTMDPIMPR, i.e., they hold
before the first iteration, after each iteration, and after termination of the main while-loop.
Further, Invariant 1 is preserved during each iteration of the main while-loop.
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Algorithm STREETTMDPIMPR: Improved Alg. for MDPs with Streett Obj.

Input :MDP P = ((V,E), (V1, VR), δ) and pairs TP = {(Li, Ui) | 1 ≤ i ≤ k}
Output : 〈〈1〉〉as (P, Streett(TP))

1 X ← ALLMECS(P ); goodEC← ∅
2 foreach C ∈ X do HC ← ∅; TC ← ∅
3 while X 6= ∅ do
4 remove some S ∈ X from X
5 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

6 while B 6= ∅ do
7 A← AttrR(P [S], B)
8 S ← S \A
9 HS ← (HS ∪ Post(A)) ∩ S

10 TS ← (TS ∪ Pre(A)) ∩ S
11 B ←

⋃
1≤i≤k:Ui∩S=∅(Li ∩ S)

12 if Post(S) ∩ S 6= ∅ then /* P [S] contains at least one edge */
13 if |HS |+ |TS | = 0 then goodEC← goodEC ∪ {S}
14 else if |HS |+ |TS | ≥

√
m/ logn then

15 delete HS and TS

16 C ← ALLSCCS(P [S])
17 if |C| = 1 then goodEC← goodEC ∪ {S}
18 else
19 foreach C ∈ C do
20 rout← C ∩ VR ∩ Pre(S \ C)
21 A← AttrR(P [C], rout)
22 C ← C \A
23 HC ← Post(A) ∩ C
24 TC ← Pre(A) ∩ C
25 X ← X ∪ {C}

26 else
27 (C, HS , TS)←LOCK-STEP-SEARCH(G, S, HS , TS)
28 if C = S then goodEC← goodEC ∪ {S}
29 else /* separate C and S \ C */
30 routC ← C ∩ VR ∩Pre(S \C)/* empty if C bottom SCC */

AC ← AttrR(P [C], routC)/* = AttrR(P [S], S \ C) ∩ C */
AS ← AttrR(P [S], C)

31 C ← C \AC

32 S ← S \AS

33 HC ← Post(AC) ∩ C
34 TC ← Pre(AC) ∩ C
35 HS ← (HS ∪ Post(AS)) ∩ S
36 TS ← (TS ∪ Pre(AS)) ∩ S
37 X ← X ∪ {S} ∪ {C}

38 return 〈〈1〉〉as

(
P,Reach(

⋃
C∈goodEC C)

)
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Proof.
Invariant 1. The proof is a minor extension of the maintenance proof for Algo-
rithm STREETTGRAPHIMPR that is given in Appendix B. In terms of strong connectivity
of a candidate S and the maintenance of the sets HS and TS , the only difference to
the graph case is that after an SCC C is computed by ALLSCCS or Procedure LOCK-
STEP-SEARCH, another subset of vertices A (vertices with outgoing random edges and
their random attractor) is removed from C. In this case the invariant is maintained by
initializing HC resp. TC with the vertices of C \A with edges from resp. to vertices of
A, i.e., HC ← Post(A) ∩ C and TC ← Pre(A) ∩ C.
Invariant 7 – Disjointness. The sets in X ∪ goodEC are pairwise disjoint at the ini-
tialization since goodEC is initialized as ∅. Furthermore, whenever a set S is added to
goodEC in an iteration of the main while-loop, a superset S̃ ⊇ S is removed from X in
the same iteration of the while-loop. Therefore by induction the disjointness of the sets
in X ∪ goodEC is preserved.
Invariant 7 – Containment of good end-components. At initialization, X contains all
MECs of the input MDP P = (G = (V,E), (V1, VR), δ). Each good end-component
C of P is an end-component, so there exists a MEC Y ⊇ C such that Y ∈ X for each
good end-component C.

Consider a set S ∈ X that is removed from X at the beginning of an iteration of the
main while-loop. Consider further a good end-component C of P such that C ⊆ S. We
require that a set Y ⊇ C is added to either X or goodEC in this iteration of the main
while-loop.

First, whenever we remove AttrR(P [S],BAD(S)) from S, by Corollary 1, we main-
tain the fact that C ⊆ S. Second, P [S] contains an edge since C ⊆ S. Finally, one of
the three cases happens:
Case (1): If |HS |+ |TS | = 0, then the set S ⊇ C is added to goodEC.
Case (2): If |HS |+ |TS | ≥

√
m/ log n, then the algorithm computes the SCCs of P [S].

If S itself is the (sole) SCC of P [S], then it is added to goodEC. Otherwise, sinceC ⊆ S
is strongly connected, it is completely contained in some SCC Y of P [S]. Furthermore,
since C has no outgoing random edges, by Lemma 2 it is contained in Y even after we
remove AttrR(P [Y ], Y ∩ VR ∩ Pre(S \ Y )) from it. Finally, Y is added to X .
Case (3): If 0 < |HS | + |TS | <

√
m/ log n, then the algorithm either adds S ⊇ C to

goodEC, or partitions S into S̃ and S \ S̃. Suppose the latter case happens, then by
Theorem 1 we have that S̃ is an SCC of P [S]. Further, sinceC ⊆ S is strongly connected,
it is completely contained in some SCC of P [S]. Therefore either C ⊆ S̃ or C ⊆ (S \ S̃).
If C ⊆ S̃, then by Lemma 2 after the removal of AttrR(P [S̃], S̃ ∩ VR ∩ Pre(S \ S̃))
from S̃ we maintain that C ⊆ S̃. If C ⊆ (S \ S̃), then by Lemma 2 after the removal of
AttrR(P [S], S̃) from (S \ S̃) we maintain that C ⊆ (S \ S̃). Finally, both S̃ and S \ S̃
are added to X .
By the above case analysis we have that a set Y ⊇ C is added to either X or goodEC
in the iteration of the main while-loop.
Invariant 8. Given an MDP, the set X is initialized with the MECs of the MDP, and by
definition they have no random outgoing edges. Therefore the invariant holds before the
first iteration of the main while-loop.
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Consider a candidate set S ∈ X in a given iteration of the main while-loop. By the
induction hypothesis, S has no random vertices with edges to V \ S. First, some bad
vertices can be iteratively removed from S. At each such removal, the random attractor
to these vertices is removed from S as well. After the removal, by the definition of a
random attractor, S has no random outgoing edges to the attractor, and therefore by
induction has no random outgoing edges to V \ S. Second, S may be partitioned into at
least two proper subsets. Then for each such subset C, the random attractor to random
vertices in C with edges to S \ C is removed from C. By induction and the definition of
a random attractor, after the removal C contains no random outgoing edges to V \ C
and adding it to X preserves the invariant.

ut

Proof (of Theorem 4).
Correctness. Whenever a candidate set S is added to goodEC, it contains an edge by
the check at line 12, BAD(S) = ∅ by the check at line 6, and it has no outgoing random
edges by Invariant 8 and the random attractor removal at line 8. Furthermore, (a) at
line 13, S is strongly connected by Invariant 1, (b) at line 17, S is strongly connected
by the result of ALLSCCS, and (c) at line 28, S is strongly connected by Theorem 1.
Therefore we have that whenever a candidate set is added to goodEC, it is indeed a
good end-component (soundness).

Finally, by soundness, Invariant 7, the termination of the algorithm (shown below),
and the fact that X = ∅ at the termination of the algorithm, we have that goodEC
contains all good end-components of G (completeness).
Symbolic steps analysis. When using our improved symbolic algorithm for MEC de-
composition, the initialization takes O(n ·

√
m) symbolic steps by Theorem 3.

In each iteration of the outer while-loop, a set S is removed from X and either (a)
a set S′ ⊆ S is added to goodEC and no set is added to X or (b) at least two sets that
are (subsets of) a partition of S are added to X . Both can happen at most O(n) times,
thus there can be at most O(n) iterations of the outer while-loop. The Pre and Post
operations at lines 12, 30, 33, 34, 35, and 36 can be charged to the iterations of the outer
while-loop.

An iteration of the inner while-loop (line 6) is executed only if some vertices B are
removed from S; the vertices of B are then not considered further. Thus there can, in
total, be at most O(n) Post operations at line 9 and Pre operations at line 10 over all
iterations of the inner while-loop.

Similarly, each CPreR operation executed as a part of a random attractor computation
adds at least one vertex to the attractor, and the vertices of the attractor are then not
considered any further in the algorithm. Therefore there can, in total, be at most O(n)
CPreR operations over all attractor computations at lines 7, 21, 30, and 30.

Note that every vertex in each of HS and TS can be attributed to at least one unique
implicit edge deletion since we only add vertices to HS resp. TS that are successors resp.
predecessors of vertices that were separated from S (or deleted from the maintained
graph). Whenever the case |HS |+ |TS | ≥

√
m/ log n occurs, for all subsets C ⊆ S that

are then added to X , we initialize HC = TC = ∅. Therefore, the case |HS | + |TS | ≥√
m/ log n can happen at most O(

√
m log n) times throughout the algorithm since

there are at most m edges that can be deleted. In one iteration of this case, the number
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of symbolic steps executed by ALLSCCS together with symbolic steps executed at
lines 20, 23, and 24, is bounded by O(n) [24].

It remains to bound the number of symbolic steps in Procedure LOCK-STEP-SEARCH.
LetC be the set returned by the procedure; we charge the symbolic steps in this call of the
procedure to the vertices of the smaller set of C and S \C. By Theorem 1 we have either
(a) C = S, the number of symbolic steps in this call is bounded by O(

√
m/ log n · |C|),

and the set S is added to goodEC or (b) min(|C|, |S \ C|) ≤ |S|/2 and the number of
symbolic steps in this call is bounded by O(

√
m/ log n ·min(|C|, |S \ C|)). Case (a)

can happen at most once for the vertices of C, and for case (b) note that the size of a set
containing a specific vertex can be halved at most O(log n) times; thus we charge each
vertex at most O(log n) times. Hence we can bound the total number of symbolic steps
in all calls to the procedure by O(n ·

√
m log n). ut

E Details of Section 7: Experiments

We present the results of the experimental evaluation when comparing based on the time.
In all the figures, both axes plot the amount of seconds spent on the execution. Similar
to the case of symbolic steps, we begin the measurement after the initial preprocessing
step (computing all SCCs for graphs and all MECs for MDPs) is finished. The results
for graphs are shown in Figure 4 and the results for MDPs are shown in Figure 5.
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Fig. 4: Comparison of time for graphs with Streett objectives.

(a) 10% random vertices (b) 20% random vertices

(c) 50% random vertices

Fig. 5: Comparison of time for MDPs with Streett objectives.
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