
17

Incremental Exact Min-Cut in Polylogarithmic Amortized

Update Time

GRAMOZ GORANCI and MONIKA HENZINGER, University of Vienna, Austria

MIKKEL THORUP, University of Copenhagen

We present a deterministic incremental algorithm for exactly maintaining the size of a minimum cut with

O (log3 n log log2 n) amortized time per edge insertion and O (1) query time. This result partially answers

an open question posed by Thorup (2007). It also stays in sharp contrast to a polynomial conditional lower

bound for the fully dynamic weighted minimum cut problem. Our algorithm is obtained by combining a

sparsification technique of Kawarabayashi and Thorup (2015) or its recent improvement by Henzinger, Rao,

and Wang (2017), and an exact incremental algorithm of Henzinger (1997).

We also study space-efficient incremental algorithms for the minimum cut problem. Concretely, we show

that there exists an O (n logn/ε2) space Monte Carlo algorithm that can process a stream of edge insertions

starting from an empty graph, and with high probability, the algorithm maintains a (1 + ε)-approximation

to the minimum cut. The algorithm has O ((α (n) log3 n)/ε2) amortized update time and constant query time,

where α (n) stands for the inverse of Ackermann function.

CCS Concepts: • Theory of computation → Dynamic graph algorithms; Streaming, sublinear and near

linear time algorithms;

Additional Key Words and Phrases: Minimum cut, edge connectivity, space-efficient dynamic graph

algorithms

ACM Reference format:

Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. 2018. Incremental Exact Min-Cut in Polylogarithmic

Amortized Update Time. ACM Trans. Algorithms 14, 2, Article 17 (March 2018), 21 pages.

https://doi.org/10.1145/3174803

1 INTRODUCTION

Computing a minimum cut of a graph is a fundamental algorithmic graph problem. Although
most of the focus has been on designing static-efficient algorithms for finding a minimum cut, the
dynamic maintenance of a minimum cut has also attracted increasing attention over the past two

A preliminary version of this work appeared in Proceedings of the 24th European Symposium on Algorithms (ESA’16) [14].

The research leading to these results received funding from the European Research Council under the European Union’s 7th

Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 340506 for M. Henzinger and G. Goranci. M. Thorup’s

research was partly supported by Advanced Grant DFF-0602-02499B from the Danish Council for Independent Research

under the Sapere Aude research career programme. This work was done in part while M. Henzinger and M. Thorup were

visiting the Simons Institute for the Theory of Computing.

Authors’ addresses: G. Goranci and M. Henzinger, Faculty of Computer Science, University of Vienna, Währinger Straße

29, Vienna, 1090, Austria; emails: {gramoz.goranci, monika.henzinger}@univie.ac.at; M. Thorup, Department of Com-

puter Science, University of Copenhagen, Universitetsparken 1, Copenhagen East, 2100, Denmark; email: mikkel2thorup@

gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 1549-6325/2018/03-ART17 $15.00

https://doi.org/10.1145/3174803

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

https://doi.org/10.1145/3174803
https://doi.org/10.1145/3174803

17:2 G. Goranci et al.

decades. The motivation for studying the dynamic setting is apparent as real-life networks such
as the social or road network undergo constant and rapid changes.

Given an initial graphG, the goal of a dynamic graph algorithm is to build a data structure that
maintains G and supports update and query operations. Depending on the types of update oper-
ations we allow, dynamic algorithms are classified into three main categories: (i) fully dynamic, if
update operations consist of both edge insertions and deletions; (ii) incremental, if update oper-
ations consist of edge insertions only; and (iii) decremental, if update operations consist of edge
deletions only. In this article, we study incremental algorithms for maintaining the size of a min-
imum cut of an unweighted, undirected graph (denoted by λ(G) = λ) supporting the following
operations:

• Insert (u,v): Insert the edge (u,v) in G.
• QuerySize: Return the exact (approximate) size of a minimum cut of the current G.

For any α ≥ 1, we say that an algorithm is an α-approximation of λ if QuerySize returns a positive
number k such that λ ≤ k ≤ α · λ. Our problem is characterized by two time measures: query time,
which denotes the time needed to answer each query, and total update time, which denotes the
time needed to process all edge insertions. We say that an algorithm has an O (t (n)) amortized
update time if it takes O (m(t (n))) total update time for m edge insertions starting from an empty

graph. We use Õ (·) to hide polylogarithmic factors.

Related work. For more than a decade, the best-known static and deterministic algorithm
for computing a minimum cut was due to Gabow [11], which runs in O (m + λ2n logn)
time. Kawarabayashi and Thorup [22] devised an O (m log12 n) time algorithm that applies only to
unweighted, undirected simple graphs. Recently, Henzinger et al. [16] improved the running time
to O (m log2 n log log2 n). Randomized Monte Carlo algorithms in the context of static minimum
cut were initiated by Karger [20]. The best-known randomized algorithm is due to Karger [21] and
runs in O (m log3 n) time.

Karger [19] was the first to study the dynamic maintenance of a minimum cut in its full gen-
erality. He devised a fully dynamic, albeit randomized, algorithm for maintaining a

√
1 + 2/ε-

approximation of the minimum cut in Õ (n1/2+ε) expected amortized time per edge operation. In
the incremental setting, he showed that the update time for the same approximation ratio can be

further improved to Õ (nε). Thorup and Karger [33] improved upon the preceding guarantees by

achieving an approximation factor of
√

2 + o(1) and an Õ (1) expected amortized time per edge
operation.

Henzinger [17] obtained the following guarantees for the incremental minimum cut: for any
ε ∈ (0, 1], (i) anO (1/ε2) amortized update time for a (2 + ε)-approximation, (ii) anO (log3 n/ε2) ex-
pected amortized update time for a (1 + ε)-approximation, and (iii) anO (λ logn) amortized update
time for the exact minimum cut.

For minimum cut up to some polylogarithmic size, Thorup [32] gave a fully dynamic Monte

Carlo algorithm for maintaining exact minimum cut in Õ (
√
n) time per edge operation. He also

showed how to obtain an 1 + o(1)-approximation of an arbitrary-size minimum cut with the same
time bounds. In comparison to previous results, it is worth pointing out that his work achieves
worst-case update times.

Lacki and Sankowski [25] studied the dynamic maintenance of the exact size of the minimum
cut in planar graphs with arbitrary edge weights. They obtained a fully dynamic algorithm with

Õ (n5/6) worst-case query and update time.
There has been a growing interest in proving conditional lower bounds for dynamic problems

in the past few years [1, 15]. A recent result of Nanongkai and Saranurak [29] shows the following

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:3

conditional lower bound for the exact weighted minimum cut assuming the online matrix-vector
multiplication conjecture: for any ε > 0, there are no fully dynamic algorithms with polynomial-
time preprocessing that can simultaneously achieve O (n1−ε) update time and O (n2−ε) query time.

Our results and technical overview. We present two new incremental algorithms concerning the
maintenance of the size of a minimum cut. Both algorithms apply to undirected, unweighted simple
graphs.

Our first and main result, presented in Section 4, shows that there is a deterministic incremental
algorithm for exactly maintaining the size of a minimum cut with O (log3 n log log2 n) amortized
time per operation andO (1) query time. This result allows us to partially answer in the affirmative
a question regarding efficient dynamic algorithms for exact minimum cut posed by Thorup [32].
Additionally, it also stays in sharp contrast to the polynomial conditional lower bound for the fully
dynamic weighted minimum cut problem of Nanongkai and Saranurak [29].

We obtain our result by heavily relying on a recent sparsification technique developed in the
context of static minimum cut algorithms. Specifically, for a given simple graphG, Kawarabayashi

and Thorup [22] (and subsequently Henzinger et al. [16]) designed an Õ (m) procedure that con-
tracts vertex sets of G and produces a multigraph H with considerably fewer vertices and edges
while preserving some family of cuts of size up to (3/2)λ(G). Motivated by the properties of H ,
the crucial observation is that it is “safe” to work entirely with graph H as long as the sequence of
newly inserted edges do not increase the size of the minimum cut in H by more than (3/2)λ(G).
If the latter occurs, we recompute a new multigraph H for the current graph G. Since λ(G) ≤ n,
the number of such recomputations isO (logn). For maintaining the minimum-cut of H , we appeal
to the exact incremental algorithm due to Henzinger [17]. Our main technical contribution is to
skillfully combine these two algorithms and formally argue that such combination leads to our
desirable guarantees.

Motivated by the recent work on space-efficient dynamic algorithms [5, 13], we also study the

efficient maintenance of the size of a minimum cut using only Õ (n) space. Concretely, we present
a O (n logn/ε2) space Monte Carlo algorithm that can process a stream of edge insertions start-
ing from an empty graph, and with high probability, it maintains a (1 + ε)-approximation to the
minimum cut in O ((α (n) log3 n)/ε2) amortized update time and constant query time.

Note that although the streaming model also allows only Õ (n) space, it is less constrained than
the space-efficient dynamic model since streaming algorithms do not need to maintain an explicit
sparsifier at every moment but just have enough information to construct one at the end of the
stream. There have been several streaming algorithms [2, 3, 23, 24] for maintaining a cut sparsifier,
and thus (1 + ε)-approximating the minimum cut. The best bounds are due to Kyng et al. [24], who
compute a stronger spectral sparsifier withO (n logn/ε2) size andO (log2 n) amortized update time.
In comparison to our result, although our update time is slightly worse, we can achieve constant
query time, whereas their algorithms require Ω(n) time to answer a query.

2 PRELIMINARY

Let G = (V ,E) be an undirected, unweighted multigraph with no self-loops. Two vertices x and y
are k-edge connected if there exist k edge-disjoint paths connecting x and y. A graph G is k-edge

connected if every pair of vertices is k-edge connected. The local edge connectivity λ(x ,y,G) of
vertices x and y is the largest k such that x and y are k-edge connected inG. The edge connectivity

λ(G) of G is the largest k such that G is k-edge connected.
For a subset S ⊆ V in G, the edge cut EG (S,V \ S) is a set of edges that have one endpoint in

S and the other in V \ S . We may omit the subscript when clear from the context. Let λ(S,G) =
|EG (S,V \ S) | be the size of the edge cut. If S is a singleton, we refer to such cut as a trivial cut.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

17:4 G. Goranci et al.

Two vertices x andy are separated by E (S,V \ S) if they belong to different connected components
of the graph induced by E \ E (S,V \ S). A minimum edge cut of x and y is a cut of minimum size
among all cuts separating x and y. A global minimum cut λ(G) for G (or simply λ when G is clear
from the context) is the minimum edge cut over all pairs of vertices. By Menger’s theorem [26],
(a) the size of the minimum edge cut separating x and y is λ(x ,y,G), and (b) the size of the global
minimum cut is equal to λ(G).

Let n, m0, and m1 be the number of vertices, initial edges, and inserted edges, respectively.
The total number of edges m is the sum of the initial and inserted edges. Moreover, let λ and δ
denote the size of the global minimum cut and the minimum degree in the final graph, respectively.
Note that the minimum degree is always an upper bound on the edge connectivity (i.e., λ ≤ δ and
m =m0 +m1 = Ω(δn)).

A subset U ⊆ V is contracted if all vertices in U are identified with some element of U and
all edges between them are discarded. For G = (V ,E) and a collection of vertex sets, let H =
(V (H),E (H)) denote the graph obtained by contracting such vertex sets. Such contractions are as-
sociated with a mapping h : V → V (H). For an edge subset N ⊆ E, let Nh = {(h(a),h(b)) : (a,b) ∈
N } ⊆ E (H) be its corresponding edge subset induced by h. Throughout, we will use the term with
high probability (in short, w.h.p.) to denote the event that holds with probability at least 1 − 1/nc ,
for some positive constant c .

3 SPARSE CERTIFICATES

In this section, we review a useful sparsification tool introduced by Nagamochi and Ibaraki [27].
We first give the following definition from Benczúr and Karger [4], which also appeared implicitly
in Nagamochi and Ibaraki [27].

Definition 3.1. A sparse k-connectivity certificate, or simply a k-certificate, for an unweighted
graph G with n vertices is a subgraph G ′ of G such that

(1) G ′ consists of at most k (n − 1) edges, and
(2) G ′ contains all edges crossing cuts of size at most k .

Given an undirected graph G = (V ,E), a (maximal) spanning forest decomposition (msfd) F of
order k is a decomposition ofG into k edge-disjoint spanning forests Fi , 1 ≤ i ≤ k , such that Fi is a
(maximal) spanning forest ofG \ (F1 ∪ F2 . . . ∪ Fi−1). Note thatGk = (V ,

⋃
i≤k Fi) is a k-certificate.

An msfd fulfills the following property, whose proof we defer to the appendix.

Lemma 3.2 ([28]). Let F = (F1, . . . , Fm) be an msfd of orderm of a graphG = (V ,E), and let k be

an integer with 1 ≤ k ≤ m. Then for any nonempty and proper subset S ⊂ V ,

λ(S,Gk)

{
≥ k, if λ(S,G) ≥ k
= λ(S,G) if λ(S,G) ≤ k − 1.

As Gk is a subgraph of G, λ(Gk) ≤ λ(G). This implies that λ(Gk) ≥ min(k, λ(G)).
Nagamochi and Ibaraki [27] presented an O (m + n) time algorithm (which we call a decomposi-

tion algorithm (DA)) to construct a special msfd, which we refer to as DA-msfd.

4 INCREMENTAL EXACT MINIMUM CUT

In this section, we present a deterministic incremental algorithm that exactly maintains λ(G).
The algorithm has O (log3 n log log2 n) update time and O (1) query time, and it applies to any
undirected, unweighted simple graph G = (V ,E). The result is obtained by carefully combining
a recent static min-cut algorithm by Kawarabayashi and Thorup [22] or its recent improvement
due to Henzinger et al. [16], and the incremental min-cut algorithm of Henzinger [17]. We start

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:5

by describing the maintenance of nontrivial cuts—that is, cuts with at least two vertices on both
sides.

Maintaining nontrivial cuts. Kawarabayashi and Thorup [22] devised a near-linear time algo-
rithm that contracts vertex sets of a simple input graph G and produces a sparse multi-graph H
preserving all nontrivial minimum cuts of G. We refer to such a graph H as a KT-Sparsifier. Re-
cently, Henzinger et al. [16] improved the running time for constructing H and provided better
bounds on the size of H . We next define a slightly generalized version of a KT-Sparsifier and then
state the bounds achieved by these two algorithms.

Definition 4.1 (KT-Sparsifier). Let G = (V ,E) be an undirected, unweighted simple graph with
n vertices,m edges, and min-cut λ. A multigraph H = (V (H),E (H)) is a KT-Sparsifier of G if the
following holds:

• H has nH = Õ (n/λ) vertices andmH = Õ (m/λ) edges
• H preserves all nontrivial cuts of size up to (3/2)λ in G
• H is obtained by contracting vertex sets in G.

Theorem 4.2 ([22]). Given an undirected, unweighted simple graph G = (V ,E), there is an

O (m log12 n) time algorithm to construct a KT-Sparsifier H of G such that H has O (n log4 n/λ) ver-

tices and O (m log4 n/λ) edges.

In what follows, whenever we invoke the algorithm that constructs a KT-Sparsifier, we mean
to invoke the algorithm from the following theorem.

Theorem 4.3 ([16]). Given an undirected, unweighted simple graph G = (V ,E), there is an

O (m log2 n log log2 n) time algorithm to construct a KT-Sparsifier H of G such that H has

O (n logn/λ) vertices and O (m logn/λ) edges.

As far as nontrivial cuts are concerned, Theorem 4.3 implies that it is safe to work on H instead
ofG as long as the sequence of newly inserted edges satisfies λH ≤ (3/2)λ. To incrementally main-
tain the correct λH , we apply Henzinger’s algorithm [17] on top of H . The basic idea to verify the
correctness of the solution is to compute and store all min-cuts ofH . Clearly, a solution is correct as
long as an edge insertion does not increase the size of all min-cuts. If all min-cuts have increased,
a new solution is computed using information about the previous solution. The preceding steps
can be performed efficiently by making use of the cactus tree representation, which we will define
shortly. The crucial observation is that whenever λH increases (and assuming that we can effi-
ciently check this), instead of recomputing the cactus tree from scratch, we update intermediate
structures that remained from the previous cactus tree. We next show a precise implementation
of these steps.

The minimum edge cuts are stored using the cactus tree representation introduced by Dinitz
et al. [7] (see Fleiner and Frank [9] for a concise proof). A cactus tree of a graph G = (V ,E) is a
weighted graph Gc = (Vc ,Ec) defined as follows. There is a mapping ϕ : V → Vc such that

(1) Every node in V maps to exactly one node in Vc and every node in Vc corresponds to a
(possibly empty) subset of V .

(2) ϕ (x) = ϕ (y) if and only if x and y are (λ(G) + 1)-edge connected.
(3) Every min-cut in Gc corresponds to a min-cut in G, and every min-cut in G corresponds

to at least one min-cut in Gc .
(4) If λ is odd, every edge of Ec has weight λ and Gc is a tree. If λ is even, no two simple

cycles of Gc intersect in more than one node. Furthermore, edges that belong to a cycle
have weight λ/2, whereas those not belonging to a cycle have weight λ.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

17:6 G. Goranci et al.

Dinitz and Westbrook [8] showed that given a cactus tree, we can use the data structures from
Galil and Italiano [12] and La Poutré [30] to efficiently maintain the cactus tree for fixed minimum
cut size λ under edge insertions. This implies that this data structure can be used to efficiently test
whether min-cut has increased its value during edge insertions. The result is summarized in the
following theorem.

Theorem 4.4 ([8]). Given a cactus tree, there is an algorithm that maintains the cactus tree for

fixed minimum cut size λ under u edge insertions, reporting when the minimum cut size increase to

λ + 1 in O (u + n) total time.

We now turn our attention to the efficient construction and update of the cactus tree representa-
tion of a given multigraphG. To construct the cactus tree, we use an algorithm due to Gabow [10],
which proceeds as follows. It first computes a subgraph of G, called a complete λ-intersection or
I (G, λ), with at most λn edges, and then uses I (G, λ) to compute the cactus tree. In the following
theorem, we state the running time for the cactus tree construction dependent on the time for
computing I (G, λ).

Theorem 4.5 ([10]). Let G = (V ,E) be an undirected, unweighted multigraph, and assume that

there is an algorithm that computes I (G, λ) in O (T (m,n)) time. Given I (G, λ), the cactus tree repre-

sentation of G can be constructed in O (m) time. Hence, the total time for constructing the cactus tree

of G is bounded by O (T (m,n) +m).

Gabow [11] devised an algorithm to compute I (G, λ) in O (m + λ2n logn) time. Moreover, his
algorithm is incremental in the sense that whenever I (G, λ) is given as an input, the new I (G, λ +
1) can be computed more efficiently rather than just recomputing it from scratch. The precise
statement and bounds are given in the following theorem.

Theorem 4.6 ([11]). Given an undirected, unweighted multigraph G = (V ,E), there is an algo-

rithm that computes I (G, λ) inO (m + λ2n logn) time. Moreover, given I (G, λ) and a sequence of edge

insertions that increase the minimum cut by 1, the new I (G, λ + 1) can be computed in O (m′ logn)
time, wherem′ is the number of edges in the current graph.

Note that by combining Theorems 4.5 and 4.6, we get that the cactus tree for the initial graph
can be computed inO (m0 + λ

2n logn) time, and the new cactus tree for some current graph whose
minimum cut has increased can be computed in O (m′ logn) time.

Maintaining trivial cuts. We remark that the multigraph H from Theorem 4.3 preserves only
nontrivial cuts of G. If λ = δ , then we also need a way to keep track of a trivial minimum cut. We
achieve this by maintaining a minimum heapHG on the vertices, where each vertex is stored with
its degree. When an edge insertion is performed, the values of the edge endpoints are updated
accordingly in the heap. It is well known that constructing HG takes O (n) time. The supported
operations Min(HG) and UpdateEndpoints(HG , e) can be implemented inO (1) andO (logn) time,
respectively (see Cormen et al. [6]).

This leads to Algorithm 1.

Correctness. LetG be the current graph throughout the execution of the algorithm, and let H be
the corresponding multigraph maintained by the algorithm. Recall that H preserves some family
of cuts from G. We say that H is useful if and only if there exists a minimum cut from G that is
contained in the union of (a) all trivial cuts of G and (b) all cuts in H . Note that we consider H to
be useful even in the Special Step (i.e., when λH > (3/2)λ∗), where H is not updated anymore
since we are certain that the smallest trivial cut is smaller than any cut in H .

To prove the correctness of the algorithm, we will show that (1) it correctly maintains a trivial
min-cut at any time, (2) as long as λH ≤ (3/2)λ∗, the algorithm correctly maintains all cuts of size

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:7

ALGORITHM 1: Incremental Exact Minimum Cut

1: Compute the size λ0 of the min-cut of G and set λ∗ = λ0.

Build a heapHG on the vertices, where each vertex stores its degree as a key.

Compute a KT-sparsifier H of G and a mapping h : V → VH .

Compute the size λH of the min-cut of H , a DA-msfd F1, . . . , Fm of orderm of H ,

I (H , λH), and a cactus-tree of
⋃

i≤λH+1 Fi .

2: Set Nh = ∅.
// Use the data-structure from Theorem 4.4 to maintain the cactus tree
while there is at least one minimum cut of size λH do

Receive the next operation.

if it is a query then return min{λH , Min(HG)}

else it is the insertion of an edge (u,v), then

update the cactus tree according to the insertion of the new edge (h(u),h(v)),
add the edge (h(u),h(v)) to Nh and update the degrees of u and v inHG .

endif

endwhile

Set λH = λH + 1.

3: if min{λH , Min(HG)}> (3/2)λ∗ then

// Full Rebuild Step
Compute λ(G) and set λ∗ = λ(G).
Compute a KT-sparsifier H of the current graph G.

Update λH to be the min-cut of H , compute a DA-msfd F1, . . . , Fm of orderm of H ,

and then I (H , λH) and a cactus tree of
⋃

i≤λH+1 Fi .

else if λH ≤ (3/2)λ∗ then

// Partial Rebuild Step
Compute a DA-msfd F1, . . . , Fm of orderm of

⋃
i≤(3/2)λ∗+1 Fi ∪ Nh and

call the resulting forests F1, . . . , Fm .

// Update the cactus tree using Theorems 4.5 and 4.6
Let H ′ = (V (H),E ′) be a graph with E ′ = I (H , λH − 1) ∪⋃i≤λH+1 Fi .

Compute I (H ′, λH), a cactus tree of H ′ and set H = H ′.
else // Special Step

while Min(HG) ≤ (3/2)λ∗ do

if the next operation is a query then return Min(HG)

else update the degrees of the edge endpoints inHG .

endif

endwhile

Goto 3.

endif

Goto 2.

up to (3/2)λ∗ + 1 ofH , and (3)H is useful as long as min{Min(HG), λH } ≤ (3/2)λ∗ (note that when
this condition fails, we rebuild H).

Lemma 4.7. The algorithm correctly maintains a trivial min-cut in G.

Proof. This follows directly from the min-heap property ofHG . �

To simplify the notation, in the following we will refer to Step 1 as a Full Rebuild Step
(namely the initial Full Rebuild Step). Let G = (V ,E) be the current graph, and let H be the
multigraph obtained by invoking KT-sparsifier on G, at the time of a Full Rebuild Step.
Now, as long as λH ≤ (3/2)λ∗, suppose that the graphG and its corresponding multigraph H have

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

17:8 G. Goranci et al.

undergone a sequence of edge insertions that triggered k executions of Partial Rebuild Steps
(including Step 2) for some k ≥ 0. Note that no Full Rebuild Step is executed as long as
λH ≤ (3/2)λ∗.

Let H (k) = (V (H),E (H (k))) be the multigraph H after the k-th partial rebuild, and let H (0) =

H . Let N (k)
h
⊆ E (H (k)) be the set of inserted edges in H that the algorithm maintains during the

execution of the while loop in Step 2, after the (k − 1)-st and before the k-th partial rebuild. Define

H̃ (k) = (V (H),
⋃

i≤(3/2)λ∗+1 F
(k)
i) ∪ N (k)

h
) to be the sparsified graph that the algorithm maintains,

where F (k)
1 , . . . , F

(k)
m is a DA-msfd for the graph H̃ (k−1) , and let H̃ (0) = H be the multigraph right

after the last full rebuild. We next show that H̃ (k) preserves all cuts of size up to (3/2)λ∗ + 1 ofH (k) .

Lemma 4.8. For k ≥ 0, letH (k) and H̃ (k) be the multigraphs defined earlier. Then for any nonempty

and proper subset S ⊂ V (H),

λ(S, H̃ (k))

{
≥ (3/2)λ∗ + 1, if λ(S,H (k)) ≥ (3/2)λ∗ + 1,

= λ(S,H (k)) if λ(S,H (k)) ≤ (3/2)λ∗.

Proof. We proceed by induction on the number k of partial rebuilds. We give the inductive

step; the base case (k = 0) follows from the fact that H̃ (0) = H = H (0) .

Fix any cut (S,V (H) \ S) in H (k) , and note that H (k) = (V (H),E (H (k−1)) ∪ N (k)
h

). Define A �

EH (k) (S,V (H) \ S) ∩ N (k)
h

and B � EH (k) (S,V (H) \ S) ∩ E (H (k−1)) such that EH (k) (S,V (H) \ S) =

A � B. Letting F ′ =
⋃

i≤(3/2)λ∗+1 F
(k)
i , we similarly define edge sets Ã and B̃ partitioning the edges

EH̃ (k) (S,V (H) \ S) that cross the cut (S,V (H) \ S) in H̃ (k) . Note that A = Ã since edges of N (k)
h

are

always included in H̃ (k) and λ(S,H (k)) = |A| + |B |, λ(S, H̃ (k)) = |Ã| + |B̃ |. We distinguish two cases.

First, assume that λ(S,H (k)) ≤ (3/2)λ∗. Then, since H (k−1) ⊆ H (k) and by construction of H (k) ,
λ(S,H (k−1)) = |B |, we get that λ(S,H (k−1)) ≤ (3/2)λ∗. By the induction hypothesis, it follows

that λ(S, H̃ (k−1)) = λ(S,H (k−1)) ≤ (3/2)λ∗. The latter along with Lemma 3.2 implies that |B̃ | =
λ(S, H̃ (k−1)), and thus λ(S, H̃ (k)) = |Ã| + |B̃ | = |A| + |B | = λ(S,H (k)).

Second, assume that λ(S,H (k)) ≥ (3/2)λ∗ + 1. Then either λ(S,H (k−1)) ≤ (3/2)λ∗ or
λ(S,H (k−1)) ≥ (3/2)λ∗ + 1. In the first case, by the induction hypothesis, it follows that

λ(S, H̃ (k−1)) = λ(S,H (k−1)) ≤ (3/2)λ∗. This along with Lemma 3.2 implies that |B̃ | = λ(S, H̃ (k−1)),
and thus λ(S, H̃ (k)) = |Ã| + |B̃ | = |A| + |B | = λ(S,H (k)) ≥ (3/2)λ∗ + 1. In the second case, by the

induction hypothesis, it follows that λ(S, H̃ (k−1)) ≥ (3/2)λ∗ + 1. The latter along with Lemma 3.2

imply that |B̃ | ≥ (3/2)λ∗ + 1, and thus λ(S, H̃ (k)) = |Ã| + |B̃ | ≥ (3/2)λ∗ + 1, which completes the
proof. �

We now show that the multigraphs H (k) and H̃ (k) share the same set of minimum cuts.

Lemma 4.9. Assume that λ(H (k)) ≤ (3/2)λ∗. Then a cut is a min-cut in H (k) if and only if it is a

min cut in H̃ (k) .

Proof. We first show that every non–min cut in H (k) is a non–min cut in H̃ (k) . By contraposi-

tive, we get that a min-cut in H̃ (k) is a min-cut in H (k) .

To this end, let (S,V (H) \ S) be a cut with λ(S,H (k)) ≥ λ(H (k)) + 1 in H (k) . Note that by as-
sumption λ(H (k)) ≤ (3/2)λ∗. By Lemma 4.8, we distinguish two cases. First, if λ(S,H (k)) ≤ (3/2)λ∗,
then λ(S, H̃ (k)) = λ(S,H (k)) ≥ λ(H (k)) + 1. Second, if λ(S,H (k−1)) ≥ (3/2)λ∗ + 1, then λ(S, H̃ (k)) ≥
(3/2)λ∗ + 1 ≥ λ(H (k)) + 1. The preceding cases along with λ(Hk) ≥ λ(H̃ (k)) give that λ(S, H̃ (k)) ≥
λ(H̃ (k)) + 1, which in turn implies that (S,V (H) \ S) cannot be a min-cut in H̃ (k) .

For the other direction, consider a min-cut (D,V (H) \ D) of size λ(D, H̃ (k)) in H̃ (k) . Considering

the cut in H (k) , we know that λ(D,H (k)) ≥ λ(H (k)). Then, similarly as before, Lemma 4.8 implies

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:9

that λ(D, H̃ (k)) ≥ λ(H (k)). Since (D,V (H) \ D) was chosen arbitrarily, we get that λ(H̃ (k)) ≥
λ(H (k)) must hold. The latter along with λ(H̃ (k)) ≤ λ(H (k)) imply that λ(H̃ (k)) = λ(H (k)).

Now, let (S,V (H) \ S) be a min-cut in H (k) . Since H̃ (k) is a subgraph of H (k) , we know that

λ(S, H̃ (k)) ≤ λ(S,H (k)). The latter along with λ(H̃ (k)) = λ(H (k)) imply that

λ(S, H̃ (k)) ≤ λ(S,H (k)) = λ(H (k)) = λ(H̃ (k)),

or λ(S, H̃ (k)) ≤ λ(H̃ (k)). It follows that the inequality must hold with equality since λ(H̃ (k)) is the

value of min-cut in H̃ (k) . Thus, (S,V (H) \ S) is also a min-cut in H̃ (k) . �

Lemma 4.10. For some current graph G, let H be the current multigraph maintained by the algo-

rithm and assume that λH ≤ (3/2)λ∗, where λ∗ denotes the min-cut of G at the last Full Rebuild
Step. Then the value λH maintained by the algorithm satisfies λH = λ(H).

Proof. Let λ(H (k)) be the value of λH after the k-th execution of partial rebuild step for k ≥ 0.

Since λ(H (k)) = λ(H), it suffices to show that λ(H (k)) is correct. We proceed by induction on the
number k of partial rebuilds since the last full rebuild.

We first consider the base case k = 0 (i.e., the time right after the last full rebuild). At the begin-
ning of a full rebuild, the algorithm computes a KT-sparsifier H ofG that preserves all nontrivial
min-cuts of G. The value of λH is updated to λ(H), a DA-msfd F1, . . . , Fm is computed for H , and
a cactus tree is constructed for F ′ =

⋃
i≤λH+1 Fi . Lemma 3.2 shows that a cut is a min-cut in H if

and only if it is a min-cut in F ′. The latter implies that since the cactus tree preserves the min-cuts
of F ′, it also preserves those of H . The fact that the cactus tree algorithm correctly tells us when
to increment λH in Step 2, we conclude that the value of λH after a full rebuild is set correctly.

We next give the inductive step. By the induction hypothesis, assume that λ(H (k−1)) is correct.

By Lemma 4.9, we get that a cut is a min-cut in H (k−1) if and only if it is a min-cut in H̃ (k−1) . Now,

let F (k)
1 , . . . , F

(k)
m be the DA-msfd computed on H̃ (k−1) during the k-th partial rebuild, and define

F̃ (k) =
⋃

i≤λ (H (k−1))+1 F
(k)
i . Lemma 3.2 shows that a cut is min-cut in H̃ (k−1) if and only if it is a min-

cut in F̃ (k) . The two preceding equivalences give that every min-cut inH (k−1) is a min-cut F̃ (k) , and

thus the graph H ′(k) (as defined in Algorithm 1) correctly preserves all min-cuts of H (k−1) . Given

the correctness of λ(H (k−1)), the properties of the cactus trees, and the fact that the incremental

cactus tree algorithm correctly tells us when to increment λ(H (k−1)) in Step 2, we conclude that

λ(H (k)) is the correct min-cut value for the graph H (k) = (V (H),E (H (k−1)) ∪ N (k)
h

) after the k-th
partial rebuild. �

Note that when λH > (3/2)λ∗, the preceding lemma is not guaranteed to hold, as the algorithm
does not execute a Partial Rebuild Step in this case. However, we will show in the following
that this is not necessary for the correctness of the algorithm. The fact that we do not need to
execute a Partial Rebuild Step in this setting is crucial for achieving our time bound.

Lemma 4.11. If min{Min(HG), λH } ≤ 3/2λ∗, then H is useful.

Proof. Let (S ′,V \ S ′) be any nontrivial cut inG that is not inH . Such a cut must have cardinal-
ity strictly greater than (3/2)λ∗, as otherwise it would be contained in H . We show that (S ′,V \ S ′)
cannot be a minimum cut as long as min{Min(HG), λH } ≤ (3/2)λ∗ holds. We distinguish two
cases:

(1) If λH ≤ (3/2)λ∗, then by Lemma 4.10 the algorithm maintains λH correctly. Since H is
obtained fromG by contracting vertex sets, there is a cut (S,VH , S) in H , and thus inG, of
value λH . It follows that (S ′,V \ S ′) cannot be a minimum cut of G since |E (S ′,V \ S ′) | >
(3/2)λ∗ ≥ λH = λ(H) ≥ λ(G), where the last inequality follows from the fact that H is a
contraction of G.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

17:10 G. Goranci et al.

(2) If Min(HG) ≤ (3/2)λ∗, then by Lemma 4.7 there is a cut of size Min(HG) = δ in G. Simi-
larly, (S ′,V \ S ′) cannot be a minimum cut ofG since |E (S ′,V \ S ′) | > (3/2)λ∗ ≥ δ ≥ λ(G).

Appealing to the preceding cases, we conclude that H is useful since a min-cut of G is either
contained in H or is a trivial cut of G.

Lemma 4.12. Let G be some current graph. Then the algorithm correctly maintains λ(G).

Proof. Let G be some current graph and H be the current multigraph maintained by the algo-
rithm. We will argue that λ(G) = min{Min(HG), λH }.

If min{Min(HG), λH } ≤ (3/2)λ∗, then by Lemma 4.11, H is useful—that is, there exists a mini-
mum cut of G that is contained in the union of all trivial cuts of G and all cuts in H . Lemma 4.7
guarantees that the algorithm correctly maintains Min(HG) (i.e., the trivial minimum cut ofG). If
λH ≤ (3/2)λ∗, then Lemma 4.10 ensures that λH = λ(H), and thus min{Min(HG), λH } = λ(G). If,
however, λH > (3/2)λ∗ but min{Min(HG), λH } ≤ (3/2)λ∗, then λH > min{Min(HG), λH }, which
implies that min{Min(HG), λH } = Min(HG) = λ(G). As we argued earlier, the algorithm correctly
maintains Min(HG) at any time. Thus, it follows that the algorithm correctly maintains λ(G) in
this case as well.

The only case that remains to consider is min{Min(HG), λH } > (3/2)λ∗. But whenever this hap-
pens, the algorithm performs a full rebuild step. After this full rebuild, λ(G) = min{Min(HG), λH }
trivially holds.

Running time analysis.

Theorem 4.13. LetG be a simple graph withn nodes andm0 edges. Then the total time for inserting

m1 edges and maintaining a minimum edge cut of G is

O ((m0 +m1) log3 n log log2 n).

If we start with an empty graph, the amortized time per edge insertion isO (log3 n log log2 n). The size

of a minimum cut can be answered in constant time.

Proof. We first analyze Step 1. Note that building the heap HG and computing λ0 take O (n)
andO (m0 log2 n log log2 n) time, respectively. Recall thatm0 ≥ λ0n. The total running time for con-
structing H , I (H , λH) and the cactus tree is dominated by O ((m0 + λ

2
0 · (n/λ0)) log2 n log log2 n) =

O (m0 log2 n log log2 n). Thus, the total time for Step 1 is (m0 log2 n log log2 n).

Let λ0
H
, . . . , λ

f

H
be the values that λH assumes in Step 2 during the execution of the algorithm in

increasing order. We define Phase i to be all steps executed after Step 1 while λH = λi
H

, excluding
Full Rebuild Steps and Special Steps. Additionally, let λ∗0, . . . , λ

∗
O (log n)

be the values that λ∗

assumes during the algorithm. We define Superphase j to consist of the j-th Full Rebuild Step
along with all steps executed until the next Full Rebuild Step, i.e., while min{Min(HG), λH } ≤
(3/2)λ∗j , where λ∗j is the value of λ(G) at the j-th Full Rebuild Step. Note that a superphase

consists of a sequence of phases and potentially a final Special Step. Moreover, the algorithm
executes a phase if λH ≤ (3/2)λ∗.

We say that λi
H

belongs to superphase j if the i-th phase is executed during superphase j and

λi
H
≤ (3/2)λ∗j . We remark that the number of vertices in H changes only at the beginning of a

superphase and remains unchanged during its lifespan.
Let nj denote the number of vertices in some superphase j. We bound this quantity as follows.

Proposition 4.14. Let j be a superphase during the execution of the algorithm. Then we have

nj = O ((n logn)/λi
H) for all λi

H belonging to superphase j .

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:11

Proof. From Step 3 and Theorem 4.3, we know that nj = O ((n logn)/λ∗j). Moreover, observe

that λ∗j ≤ λi
H

and a phase is executed whenever λi
H
≤ (3/2)λ∗j . Thus, for all λi

H
’s belonging to

superphase j, we get the following relation:

λ∗j ≤ λi
H ≤ (3/2)λ∗j , (1)

which in turn implies that nj = O ((n logn)/λ∗j) = O ((n logn)/λi
H

). �

For the remaining steps, we divide the running time analysis into two parts: one part corre-
sponding to phases and the other to superphases.

Part 1. For some superphase j, the i-th phase consists of the i-th execution of a Partial Rebuild
Step followed by the execution of Step 2. Let ui be the number of edge insertions in Phase i .
By Theorem 4.4 and the fact that heap insertions are performed in O (logn) time, it follows that
the total time for Step 2 during the i-th phase is O (nj + ui logn) = O ((n + ui) logn). Since nj =

O ((n logn)/λ∗j), we observe that
⋃

i≤(3/2)λ∗j+1 Fi ∪ Nh has sizeO (ui−1 + λ
∗
jnj) = O ((ui−1 + n) logn).

Thus, the total time for computing DA-msfd in a Partial Rebuild Step is O ((ui−1 + n) logn).
Using Proposition 4.14, note that H ′ has O (λi

H
nj) = O (n logn) edges, and thus it takes O (n log2 n)

time to compute I (H ′, λi
H

) and the new cactus tree.

The total time spent in Phase i is O ((ui−1 + ui + n) log2 n). Let λ and λH denote the size of the

minimum cut in the final graph and its corresponding multigraph, respectively. Note that
∑λ

i=1 ui ≤
m1, λn ≤ m0 +m1 and recall Equation (1). This gives that the total work over all phases is

λH∑
i=1

O ((ui−1 + ui + n) log2 n) =
λ∑

i=1

O ((ui−1 + ui + n) log2 n) = O ((m0 +m1) log2 n).

Part 2. The j-th superphase consists of the j-th execution of a Full Rebuild Step along
with a possible execution of a Special Step, depending on whether the condition is met. In a
Full Rebuild Step, computing λ(G) takes O ((m0 +m1) log2 n log log2 n) time. The total run-
ning time for constructing H , I (H , λ∗j) and the cactus tree is dominated by O ((m0 +m1 + (λ∗j)2 ·
(n/λ∗j)) log2 n log log2 n) = O ((m0 +m1) log2 n log log2 n). The running time of a Special Step is

O (m1 logn).
Throughout its execution, the algorithm begins a new superphase whenever λ(G) = min
{Min(HG), λH } > (3/2)λ∗. This implies that λ(G) must be at least (3/2)λ∗, where λ∗ is the value of
λ(G) at the last Full Rebuild Step. Thus, a new superphase begins whenever λ(G) has increased
by a factor of 3/2 (i.e., only O (logn) times over all insertions). This gives that the total time over
all superphases is O ((m0 +m1) log3 n log log2 n). �

5 INCREMENTAL (1 + ε) MINIMUM CUT WITH ˜O (n) SPACE

In this section, we present two Õ (n) space incremental Monte Carlo algorithms that w.h.p. main-

tain the size of a min-cut up to a (1 + ε) factor. Both algorithms have Õ (1) update time and Õ (1),
respectively O (1), query-time. The first algorithm uses O (n log2 n/ε2) space, whereas the second
one improves the space complexity to O (n logn/ε2).

5.1 An O (n log2 n/ε2) Space Algorithm

Our first algorithm follows an approach that was used in several previous works [17, 32, 33]. The
basic idea is to maintain the min-cut up to some size k using small space. We achieve this by
maintaining a sparse (k + 1) certificate and incorporating it into the incremental exact min-cut

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

17:12 G. Goranci et al.

ALGORITHM 2: Incremental Exact Min-Cut Up to Size k

1: Set λ = 0, initialize k + 1 union-find data structures F1, . . . ,Fk+1,

k + 1 empty forests F1, . . . , Fk+1, I (G, λ), and an empty cactus tree.

2: while there is at least one minimum cut of size λ do

Receive the next operation.

if it is a query then return λ
else it is the insertion of an edge e , then

Set i = (k + 1)-Connectivity(e).
if i � NULL then

Set Fi = Fi ∪ {e}.
Update the cactus tree according to the insertion of the edge e .

endif

endif

endwhile

3: Set λ = λ + 1.

Let G ′ = (V ,E ′) be a graph with E ′ = I (G, λ − 1) ∪⋃i≤λ+1 Fi .

Compute I (G ′, λ) and a cactus tree of G ′.
Goto 2.

algorithm due to Henzinger [17], as described in Section 4. Finally, we apply the well-known
randomized sparsification result due to Karger [20] to obtain our result.

Maintaining min-cut up to size k using O (kn) space. We incrementally maintain an msfd for an
unweighted graph G using k + 1 union-find data structures F1, . . . ,Fk+1 (see Cormen et al. [6]).
Each Fi maintains a spanning forest Fi of G. Recall that F1, . . . , Fk+1 are edge disjoint. When a
new edge e = (u,v) is inserted into G, we define i to be the first index such that Fi .Find(u) �
Fi .Find(v). If we find such an i , we append the edge e to the forest Fi by setting Fi .Union(u,v)
and return i . If such an i cannot be found after k + 1 steps, we simply discard edge e and return
NULL. We refer to such procedure as (k + 1)-Connectivity(e).

It is easy to see that the forests maintained by (k + 1)-Connectivity(e) for every newly
inserted edge e are indeed edge disjoint. Combining this procedure with techniques from
Henzinger [17] leads to Algorithm 2.

The correctness of the preceding algorithm is immediate from Lemmas 4.8 and 4.10. The
running time and query bounds follow from Theorem 8 of Henzinger [17]. For the sake of
completeness, we provide a full proof here.

Corollary 5.1. For k > 0, there is anO (kn) space algorithm that processes a stream of edge inser-

tions starting from any empty graph G and maintains an exact value of min{λ(G),k }. Starting from

an empty graph, the total time for insertingm edges isO (kmα (n) logn) and queries can be answered

in constant time, where α (n) stands for the inverse of Ackermann function.

Proof. We first analyze Step 1. Initializing k + 1 union-find data structures takes O (kn) time.
The running time for constructing I (G, λ) and building an empty cactus tree is also dominated by
O (kn). Thus, the total time for Step 1 is O (kn).

Let λ0, . . . , λf , where λf ≤ k , be the values that λ assumes in Step 2 during the execution of the
algorithm in increasing order. We define Phase i to be all steps executed while λ = λi . For i ≥ 1,
we can view Phase i as the i-th execution of Step 3 followed by the execution of Step 2. Let ui

denote the number of edge insertion in Phase i . The total time for testing the (k + 1)-connectivity
of the endpoints of the newly inserted edges and updating the cactus tree in Step 2 is dominated
byO (n + kα (n)ui). Since the graphG ′ in Step 3 has always at mostO (kn) edges, the running time

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:13

ALGORITHM 3: (1 + ε)-Min-Cut With O (n log2 n/ε2) Space

1: For i = 0, . . . , �logn�, let Gi be an initially empty sampled subgraph.

2: Receive the next operation.

if it is a query then

Find the minimum j such that λ(G j) ≤ k and return 2jλ(G j)/(1 − ε).
else it is the insertion of an edge e , then

Include edge e to each Gi with probability 1/2i .

Maintain the exact min cut of each Gi up to size k = 48 logn/ε2 using Algorithm 2.

endif

3: Goto 2.

to compute I (G ′, λ) and the cactus tree of G ′ is O (kn logn). Combining the preceding bounds,
the total time spent in Phase i is O (k (α (n)ui + n logn)). Thus, the total work over all phases is
O (kmα (n) logn).

The space complexity of the algorithm is only O (kn), as we always maintain at most k + 1
spanning forests during its execution. �

Dealing with min-cuts of arbitrary size. We observe that Corollary 5.1 gives polylogarithmic
amortized update time only for min-cuts up to some polylogarithmic size. For dealing with
min-cuts of arbitrary size, we use the well-known sampling technique due to Karger [20]. This
allows us to get an (1 + ε)-approximation to the value of a min-cut with high probability.

Lemma 5.2 ([20]). Let G be any graph with minimum cut λ, and let p ≥ 12(logn)/(ε2λ). Let G (p)
be a subgraph ofG obtained by including each of edge ofG toG (p) with probability p independently.

Then the probability that the value of any cut ofG (p) has value more than (1 + ε) or less than (1 − ε)
times its expected value is O (1/n4).

For some integer i ≥ 1, letGi denote a subgraph ofG obtained by including each edge ofG toGi

with probability 1/2i independently. We now have all necessary tools to present our incremental
algorithm.

Theorem 5.3. There is an O (n log2 n/ε2) space randomized algorithm that processes a stream of

edge insertions starting from an empty graph G and maintains a (1 + ε)-approximation to a min-cut

ofG with high probability. The amortized update time per operation isO (α (n) log3 n/ε2), and queries

can be answered in O (logn) time.

Proof. We first prove the correctness of the algorithm. For an integer t ≥ 0, letG (t) = (V ,E (t))
be the graph after the first t edge insertions. Further, let λ(G (t)) denote the min-cut of G (t) ,

p (t) = 12(logn)/(ε2λ(t)) and λ(S,G) = |EG (S,V \ S) | for some cut (S,V \ S). For any integer i ≤
�log2 1/p (t)�, Lemma 5.2 implies that for any cut (S,V \ S), ((1 − ε)/2i)λ(S,G (t)) ≤ λ(S,G (t)

i) ≤
((1 + ε)/2i)λ(S,G (t)) with probability 1 −O (1/n4). Let (S∗,V \ S∗) be a min-cut of G (t)

i (i.e.,

λ(S∗,G (t)
i) = λ(G (t)

i)). Setting i = �log2 1/p (t)�, we get that

E

[
λ
(
G (t)

i

)]
≤ λ
(
G (t)
)
/2i ≤ 2p (t)λ

(
G (t)
)
≤ 24 logn/ε2.

The latter along with the implication of Lemma 5.2 give that for any ε ∈ (0, 1), the size of the

minimum cut in G (t)
i is at most (1 + ε)24 logn/ε2 ≤ 48 logn/ε2 with probability 1 −O (1/n4).

Thus, j ≤ �log2 1/p (t)� with probability 1 −O (1/n4). Additionally, we observe that the algo-

rithm returns a (1 +O (ε))-approximation to a min-cut of G (t) w.h.p. since by Lemma 5.2,

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

17:14 G. Goranci et al.

2iλ(G (t)
i)/(1 − ε) ≤ (1 + ε)/(1 − ε)λ(G (t)) = (1 +O (ε))λ(G (t)) w.h.p. Note that for any t ,

�log2 1/p (t)� ≤ �logn�, and thus it is sufficient to maintain only O (logn) sampled subgraphs.
Since our algorithm applies to unweighted simple graphs, we know that t ≤ O (n2). Now apply-

ing union bound over all t ∈ {1, . . .O (n2)} gives that the probability that the algorithm does not
maintain a 1 +O (ε)-approximation is at most O (1/n2).

The total expected time for maintaining a sampled subgraph is O (mα (n) log2 n/ε2), and the
required space is O (n logn/ε2) (Corollary 5.1). Maintaining O (logn) such subgraphs gives an
O (α (n) log3 n/ε2) amortized time per edge insertion and anO (n log2 n/ε2) space requirement. The
O (logn) query time follows, as in the worst case we scan at most O (logn) subgraphs, each an-
swering a min-cut query in constant time. �

5.2 Improving the Space to O (n logn/ε2)

We next show how to bring down the space requirement of the previous algorithm toO (n logn/ε2)
without degrading its running time. The main idea is to keep a single sampled subgraph instead
of O (logn) of them.

Let G = (V ,E) be an unweighted undirected graph, and assume that each edge is given some
random weight pe chosen uniformly from [0, 1]. Let Gw be the resulting weighted graph. For any
p > 0, we denote byG (p) the unweighted subgraph ofG that consists of all edges that have weight
at most p. We state the following lemma due to Karger [18].

Lemma 5.4. Let k = 48 logn/ε2. Given a connected graph G, let p be a value such that p ≥
k/(4λ(G)). Then with high probability, λ(G (p)) ≤ k and λ(G (p))/p is an (1 + ε)-approximation to

a min-cut of G.

Proof. Since the weight of every edge is uniformly distributed, the probability that an edge has
weight at most p is exactly p. Thus,G (p) is a graph that contains every edge ofG with probability
p. The claim follows from Lemma 5.2. �

For any graphG and some appropriate weight p ≥ k/(4λ(G)), the preceding lemma tells us that
the min-cut ofG (p) is bounded byk with high probability. Thus, instead of considering the graphG
along with its random edge weights, we build a collection ofk + 1 minimum edge-disjoint spanning
forests (using those edge weights). We note that such a collection is an msfd of order k + 1 for G
with O (kn) edges, and by Lemma 4.8, it preserves all minimum cuts of G up to size k .

Our algorithm uses the following two data structures.
(1) NI-Sparsifier(k) data-structure. Given a graphG, where each edge e is assigned some weight

pe and some parameter k , we devise an insertion-only data structure that maintains a collection
of k + 1 minimum edge-disjoint spanning forests F1, . . . , Fk+1 with respect to the edge weights.
Let F =

⋃
i≤k+1 Fi . Since we are in the incremental setting, it is known that the problem of main-

taining a single minimum spanning forest can be solved in time O (logn) per insertion using the
dynamic tree structure of Sleator and Tarjan Sleator and Tarjan [31]. Specifically, we use this data
structure to determine for each pair of nodes (u,v) the maximum weight of an edge in the cycle
that the edge (u,v) induces in the minimum spanning forest Fi . Let max-weight(Fi (u,v)) denote
such a maximum weight. The update operation works as follows. When a new edge e = (u,v) is
inserted into G, we first use the dynamic tree data structure to test whether u and v belong to the
same tree. If no, we link their two trees with the edge (u,v) and return the pair (TRUE, NULL) to
indicate that e was added to Fi and no edge was evicted from Fi . Otherwise, we check whether
pe > max-weight(Fi (e)). If the latter holds, we make no changes in the forest and return (FALSE,
e). Otherwise, we replace one of the maximum edges, say e ′, on the path between u and v in the
tree by e and return (TRUE, e ′). The Boolean value that is returned indicates whether e belongs to

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:15

Fi or not, and the second value that is returned gives an edge that does not (or no longer) belong
to Fi . Note that each edge insertion requires O (logn) time. We refer to this insert operation as
Insert-MSF(Fi , e,pe).

Now, the algorithm that maintains the weighted minimum spanning forests implements the
following operations:

• Initialize-NI (k): Initializes the data structure for k + 1 empty minimum spanning forests.
• Insert-NI (e,pe): Set i = 1, e ′ = e , taken = FALSE.

while ((i ≤ k + 1) and e ′ � NULL) do

Set (t ′, e ′′) = Insert-MSF(Fi , e
′,pe ′).

if (e ′ = e) then set taken = t ′ endif

Set e ′ = e ′′ and i = i + 1.
endwhile

if (e ′ � e) then return (taken, e ′) else return (taken, NULL).

The Boolean value that is returned indicates whether e belongs to F or not, and the second value
returns an edge that is removed from F , if any.

Recall that F =
⋃

i≤k+1 Fi . We use the abbreviation NI-Sparsifier(k) to refer to this data struc-
ture. Throughout the algorithm, we will associate a weight with each edge in F and use Fw to refer
to this weighted version of F .

Lemma 5.5. Fork > 0 and any graphG, NI-Sparsifier(k) maintains a weighted mfsd of order k + 1
of G under edge insertions. The algorithm uses O (kn) space, and the total time for inserting m edges

is O (km logn).

Proof. We first show that NI-Sparsifier(k) maintains a forest decomposition such that (1) the
forests are edge disjoint and (2) each forest is maximal. We proceed by induction on the number
m of edge insertions.

For m = 0, the forest decomposition is empty. Thus the edge disjointness and maximality of
forests trivially hold. For m > 0, consider the m-th edge insertion, which inserts an edge e . Let
F ′ (respectively F) denote the union of forests before (respectively after) the insertion of edge e .
By the inductive assumption, F ′ satisfies (1) and (2). If F = F ′ (i.e., the edge e was not added to
any of the forests when Insert-NI(e,pe) was called), then F also satisfies (1) and (2). Otherwise,
F � F ′, and note that by construction that e is appended to exactly one forest. Let F ′j (respectively

Fj) denote such maximal forest before (respectively after) the insertion of e . We distinguish two
cases. If e links two trees of F ′j , then Fj is also a maximal forest and forests of F are edge disjoint.

Thus, F satisfies (1) and (2). Otherwise, the addition of e results in the deletion of another edge
e ′ ∈ F ′j . It follows that Fj is maximal and the current forests are edge disjoint. Applying a similar

argument to the addition of edge e ′ in the remaining forests, we conclude that F satisfies (1) and
(2).

We next argue about time and space complexity. The dynamic tree data structure can be im-
plemented in O (n) space, where each query regarding max-weight(Fi (u,v)) can be answered in
O (logn) time. Since the algorithm maintains k + 1 such forests, the space requirement is O (kn).
The total running time follows since insertion of an edge can result in at most k + 1 executions of
the Insert-MSF(Fi , e,pe) procedures, each running in O (logn) time.

(2) Limited Exact Min-Cut(k) data structure. We use Algorithm 2 to implement the following
operations for any unweighted graph G and parameter k :

• Insert-Limited (e): Executes the insertion of edge e using Algorithm 2
• Query-Limited (): Returns λ

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

17:16 G. Goranci et al.

ALGORITHM 4: (1 + ε)-Min-Cut With O (n logn/ε2) Space

1: Set k = 48 logn/ε2.

Set p = 12 logn/ε2.

Let H and Fw be empty graphs.

2: Initialize-Limited(H ,k).
while Query-Limited() < k do

Receive the next operation.

if it is a query then return Query-Limited()/min{1,p}.
else it is the insertion of an edge e , then

Sample a random weight from [0, 1] for the edge e and denote it by pe .

ifpe ≤ p then Insert-Limited(e) endif

Set (taken, e ′) = Insert-NI(e,pe).
if taken then

Insert e into Fw with weight pe .

if (e ′ � NULL) then remove e ′ from Fw .

endif

endif

endwhile

3: // Rebuild Step
Set p = p/2.

Let H be the unweighted subgraph of Fw consisting of all edges of weight at most p.

Goto 2.

• Initialize-Limited (G,k): Builds a data structure for G with parameter k by executing
Step 1 of Algorithm 2 and then Insert-Limited(e) for each edge e in G.

We use the abbreviation Lim(k) to refer to this type of data structure.
Combining the preceding data structures leads to Algorithm 4.

Correctness and running time analysis. Throughout the execution of Algorithm 4, F corresponds
exactly to the msfd of order k + 1 of G maintained by NI-Sparsifier(k). In the following, let H
be the graph that is given as input to Lim(k). Thus, by Corollary 5.1, Query-Limited() returns
min{k, λ(H)}—that is, it returns λ(H) as long as λ(H) ≤ k . We now formally prove the correctness.

Lemma 5.6. Let ϵ ≤ 1,k = 48 logn/ε2, and assume that the algorithm is started on an empty graph.

As long as λ(G) < k , we have H = G, p = k/4, and Query-Limited() returns λ(G). The first rebuild

step is triggered after the first insertion that increases λ(G) to k, and at that time, it holds that λ(G) =
λ(H) = k .

Proof. The algorithm starts with an empty graph G (i.e., initially λ(G) = 0). Throughout the
sequence of edge insertions, λ(G) never decreases. We show by induction on the numberm of edge
insertions that H = G and p = k/4 as long as λ(G) < k .

Note that k/4 ≥ 1 by our choice of ϵ . Form = 0, the graphsG and H are both empty graphs, and
p is set to k/4. For m > 0, consider the m-th edge insertion, which inserts an edge e . Let G and H
denote the corresponding graphs after the insertion of e . By the inductive assumption, p = k/4 and
G \ {e} = H \ {e}. As p ≥ 1, e is added to H , and thus it follows that G = H . Hence, λ(H) = λ(G).
If λ(G) < k but λ(G \ {e}) < k , no rebuild is performed and p is not changed. If λ(G) = k , then the
last insertion was exactly the insertion that increased λ(G) from k − 1 to k . As H = G before the
rebuild, Query-Limited() returns k , triggering the first execution of the rebuild step. �

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:17

We next analyze the case that λ(G) ≥ k . In this case, both H and p are random variables, as they
depend on the randomly chosen weights for the edges. Let F (p) be the unweighted subgraph of
Fw that contains all edges of weight at most p.

Lemma 5.7. Let Nh (p) be the graph consisting of all edges that were inserted after the last rebuild

and have weight at most p, and let F old (p) be F (p) right after the last rebuild. Then it holds that

H = F old (p) ∪ Nh (p).

Proof. Up to the first rebuild, Nh = G and p ≥ 1. Thus, Nh (p) = Nh = G. Lemma 5.6 shows that
until the first rebuild,H = G. As F old (p) = ∅, it follows thatH = G = Nh (p) ∪ F old (p) up to the first
rebuild.

Immediately after each rebuild step, Nh = ∅ and H is set to be F (p), and thus the claim holds.
After each subsequent edge insertion that does not trigger a rebuild, the newly inserted edge is
added to Nh (p) and to H if and only if its weight is at most p. Thus, both Nh (p) and H change in
the same way, which implies that H = F old (p) ∪ Nh (p). �

Lemma 5.8. At the time of a rebuild, F (p) is an msfd of order k + 1 of G (p).

Proof. NI-sparsifier maintains a maximal spanning forest decomposition based on minimum-
weight spanning forests F1, . . . Fk+1 of G using the weights pe . Now consider the hierarchical de-
composition F1 (p), . . . , Fk+1 (p) of G (p) induced by taking only the edges of weight at most p of
each forest Fi . Note that NI-sparsifier would return exactly the same hierarchy F1 (p), . . . , Fk+1 (p)
if only the edges of G (p) were inserted into NI-sparsifier. Thus, F1 (p), . . . , Fk+1 (p) is an msfd of
order k + 1 of G (p). �

To show that λ(H)/min{1,p} is an (1 + ε)-approximation of λ(G) with high probability, we need
to show that if λ(G) ≥ k, then (a) the random variable p is at least k/(4λ(G)) w.h.p., which implies
that λ(G (p)) is a (1 + ε)-approximation of λ(G) w.h.p. and (b) that λ(H) = λ(G (p)) (by Lemma 5.4).

Lemma 5.9. Let ε ≤ 1. If λ(G) ≥ k , then (1) p ≥ k/(4λ(G)) with probability 1 −O (logn/n4) and

(2) λ(H) = λ(G (p)).

Proof. For any i ≥ 0, after the i-th rebuild we have p = p (i) := 12 logn/(2iε2). Let � =
�log(12 logn/ε2)� denote the index of the last rebuild at which p (i) ≥ 1. For any i ≥ � + 1, we

will show by induction on i that (1) p (i) = 12 logn/(2iε2) ≥ 12 logn/(ε2λ(G)) with probability
1 −O ((i − 1 − �)/n4), which is equivalent to showing that λ(G) ≥ 2i , and that (2) at any point

between the (i − 1)-st and the i-th rebuild, λ(H) = λ(G (p (i−1))).
Once we have shown this, we can argue that the number of rebuild steps is small, thus giving the

claimed probability in the lemma. Indeed, note that λ(G) ≤ n sinceG is unweighted. Additionally,
from earlier, we get that after the i-th rebuild, λ(G) ≥ 2i with high probability. Combining these
two bounds yields i ≤ O (logn) w.h.p. (i.e., the number of rebuild steps is at most O (logn)).

We first analyze i = � + 1. Note that � + 1 is the index of the first rebuild at which p (i) < 1.
Assume that the insertion of some edge e caused the first rebuild. Lemma 5.6 showed that (1) at
the first rebuild λ(G) = k and (2) that up to the first rebuildG (p) = G = H . We observe that (1) and
(2) remain true up to the (� + 1)-st rebuild. In addition, λ(G) = k ≥ 24 logn/ε2 ≥ 2i , which implies

that p (i) ≥ 1/2. This shows the base case.
For the induction step (i > � + 1), we inductively assume that (1) at the (i − 1)-st rebuild,

p (i−1) ≥ 12 logn/(ε2λ(Gold)) with probability 1 −O ((i − 2 − �)/n4), whereGold is the graphG right
before the insertion that triggered the i-th rebuild (i.e., at the last point in time when Query-

Limited() returned a value less than k), and (2) that λ(H) = λ(G (p (i−2))) at any time between the
(i − 2)-nd and the (i − 1)-st rebuild. Let e be the edge whose insertion caused the i-th rebuild.

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

17:18 G. Goranci et al.

Define Gnew = Gold ∪ {e}. By the induction hypothesis, with probability 1 −O ((i − 2 − �)/n4),
p (i−1) ≥ 12 logn/(ε2λ(Gold)) ≥ 12 logn/(ε2λ(Gnew)), as λ(Gold) ≤ λ(Gnew). Thus, by Lemma 5.4,

we get that λ(Gnew (p (i−1)))/p (i−1) ≤ (1 + ε)λ(Gnew) with probability 1 −O (1/n4). Applying an
union bound, we get that the two previous statements hold simultaneously with probability
1 −O ((i − 1 − �)/n4).

We show in the following that λ(Gnew (p (i−1))) = λ(Hnew), where Hnew is the graph stored in
Lim(k) right before the i-th rebuild. Thus, λ(Hnew) = k , which implies that

λ(Gnew (p (i−1))) = k = 48 logn/ε2 ≤ (1 + ε)λ(Gnew) · p (i−1)

= (1 + ε)λ(Gnew) · 12 logn/(2i−1ε2),

with probability 1 −O ((i − 1 − �)/n4). This in turn implies that with probability 1 −O ((i − 1 −
�)/n4), λ(Gnew) ≥ 2i+1/(1 + ε) ≥ 2i by our choice of ε .

It remains to show that λ(Gnew (p (i−1))) = λ(Hnew). Note that this is a special case of (2), which

claims that at any point between that (i − 1)-st and the i-th rebuild λ(H) = λ(G (p (i−1))), where H
and G are the current graphs. Thus, to complete the proof of the lemma, it suffices to show (2).

As H is a subgraph of G (p (i−1)), we know that λ(G (p (i−1))) ≥ λ(H). Thus, we only need to

show that λ(G (p (i−1))) ≤ λ(H). Let Gi−1 (respectively F i−1, respectively H i−1) be the graph G
(respectively F , respectively H) right after rebuild i − 1, and let Nh be the set of edges inserted

since, for instance, G = G (i−1) ∪ Nh . As we showed in Lemma 5.7, H = F i−1 (p (i−1)) ∪ Nh (p (i−1)).
Thus, H i−1 = F i−1 (p (i−1)). Additionally, by Lemma 5.8, F i−1 (p (i−1)) is an msfd of order k + 1 of

Gi−1 (p (i−1)). Thus, by Lemma 3.2, for every cut (A,V \A) of value at most k in H i−1, λ(A,H i−1) =
λ(F i−1 (p (i−1)),A) = λ(A,Gi−1 (p (i−1))), where λ(A,G) = |EG (A,V \A) |. Now assume toward con-

tradiction that λ(G (p (i−1))) > λ(H) and consider a minimum cut (A,V \A) in H (i.e., λ(H) =
λ(A,H)). We know that at any time, k ≥ λ(H). Thus, k ≥ λ(H) = λ(A,H), which implies that

k ≥ λ(A,H i−1). By Lemma 3.2, it follows that λ(A,H i−1) = λ(A,Gi−1 (p (i−1))). Note thatH = H i−1 ∪
Nh (p (i−1)) and G (p (i−1)) = Gi−1 (p (i−1)) ∪ Nh (p (i−1)). Let x be the number of edges of Nh (p (i−1))
that cross the cut (A,V \A). Then λ(H) = λ(H ,A) = λ(A,H i−1) + x = λ(A,Gi−1 (p (i−1))) + x =
λ(A,G (p (i−1))), which contradicts the assumption that λ(G (p (i−1))) > λ(H). �

Since our algorithm is incremental and applies only to unweighted graphs, we know that there
can be at most O (n2) edge insertions. The preceding lemma implies that for any current graph G,
Algorithm 4 returns a (1 + ε)-approximation to a min-cut of G with probability 1 −O (logn/n4).
Applying an union bound over O (n2) possible different graphs gives that the probability that the
algorithm does not maintain a (1 + ε)-approximation is at mostO (logn/n2) = O (1/n). Thus, at any
time, we return a (1 + ε)-approximation with probability 1 −O (1/n).

Theorem 5.10. There is an O (n logn/ε2) space randomized algorithm that processes a stream of

edge insertions starting from an empty graph G and maintains a (1 + ε)-approximation to a min-cut

of G with high probability. The total time for inserting m edges is O (mα (n) log3 n/ε2), and queries

can be answered in constant time.

Proof. The space requirement isO (n logn/ε2) since at any point of time, the algorithm keepsH ,
Fw , Lim(k), and NI-Sparsifier (k), each of size at mostO (n logn/ε2) (Corollary 5.1 and Lemma 5.5).

When Algorithm 4 executes a Rebuild Step, only the Lim(k) data structure is rebuilt, but not
NI-Sparsifier(k). During the whole algorithm, m Insert-NI operations are performed. Thus, by
Lemma 5.5, the total time for all operations involving NI-Sparsifier(k) is O (m log2 n/ε2).

It remains to analyze Steps 2 and 3. By Corollary 5.1, Initialize-Limited(H ,k) takes at most
O (mα (n) log2 n/ε2) total time (Step 2). The running time of Step 3 is O (m) as well. Since the

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:19

number of Rebuild Steps is at most O (logn), it follows that the total time for all Initialize-
Limited(H ,k) calls in Step 2 and the total time of Step 3 throughout the execution of the algorithm
is O (mα (n) log3 n/ε2).

We are left with analyzing the remaining part of Step 2. Each query operation executes one
Query-Limited() operation, which takes constant time. Each insertion executes one Insert-
NI(e,pe) operation, which takes amortized time O (log2 n/ε). We maintain the edges of Fw in a
balanced binary tree so that each insertion and deletion takes O (logn) time. As there are m edge
insertions, the remaining part of Step 2 takes total time O (m log2 n/ε2). Combining the preceding
bounds gives the theorem. �

APPENDIX

A MISSING PROOFS

Next we show a proof for Lemma 3.2 in Section 3. The arguments closely follow the work of
Nagamochi and Ibaraki [28]. We first present the following helpful lemma.

Lemma A.1. Let F = (F1, . . . , Fm) be an msfd of orderm of a graphG = (V ,E). Then for any edge

(u,v) ∈ Fj and any i ≤ j, it holds that λ(u,v,
⋃

l ≤i Fl) ≥ i .

Proof. Fix some edge e = (u,v) ∈ Fj . We first argue that for each i = 1, . . . , j − 1, the forest
(V , Fi) contains some (u,v)-path. Indeed, by the maximality of the forest (V , Fi), the graph (V , Fi ∪
{e}) must have some cycleC that contains e . Thus, P = C \ e is the (u,v)-path in the forest (V , Fi).
It follows that (V ,

⋃
l ≤i Fl) has i edge-disjoint paths. Next, observe that G j = (V ,

⋃
l ≤j Fl) has j

edge-disjoint paths, namely the j − 1 edge-disjoint paths inG j−1 (which does not contain the edge
(u,v)) and the 1-edge path consisting of the edge (u,v). Hence, λ(u,v,

⋃
l ≤i Fl) ≥ i . �

Proof of Lemma 3.2. Assume that λ(S,G) ≤ k − 1. Then by definition of Gk , we know that Gk

preserves any cut S of size up to k . Thus, λ(S,Gk) = λ(S,G).
For the other case, λ(S,G) ≥ k and assume that λ(S,Gk) < λ(S,G) (otherwise the lemma fol-

lows). Then there is an edge e = (u,v) ∈ EG (S,V \ S) \ EGk
(S,V \ S). Since e �

⋃
i≤k Fi , this means

that e belongs to some forest Fj with j > k . By Lemma A.1, we have that λ(u,v,Gk) ≥ k . Since
(S,V \ S) separates u and v in Gk , it follows that λ(S,Gk) = |EGk

(S,V \ S) | ≥ λ(u,v,Gk) ≥ k . �

ACKNOWLEDGMENTS

We thank the two anonymous reviewers for their suggestions and comments, which improved the
quality of the article.

REFERENCES

[1] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures imply strong lower bounds for dynamic

problems. In Proceedings of the 55th Symposium on Foundations of Computer Science (FOCS’14). IEEE, Los Alamitos,

CA, 434–443. DOI:https://doi.org/10.1109/FOCS.2014.53

[2] Kook Jin Ahn and Sudipto Guha. 2009. Graph sparsification in the semi-streaming model. In Proceedings of the 36th

International Colloquium on Automata, Languages, and Programming (ICALP’09). 328–338. DOI:https://doi.org/10.

1007/978-3-642-02930-1_27

[3] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph sketches: Sparsification, spanners, and subgraphs.

In Proceedings of the 32nd Symposium on Principles of Database Systems (PODS’12). ACM, New York, NY, 5–14.

DOI:https://doi.org/10.1145/2213556.2213560

[4] András A. Benczúr and David R. Karger. 2015. Randomized approximation schemes for cuts and flows in capacitated

graphs. SIAM Journal on Computing 44, 2, 290–319. DOI:https://doi.org/10.1137/070705970

[5] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsourakakis. 2015. Space- and

time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic streams. In Proceedings of the 47th

Symposium on Theory of Computing (STOC’15). ACM, New York, NY, 173–182. DOI:https://doi.org/10.1145/2746539.

2746592

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1007/978-3-642-02930-1_27
https://doi.org/10.1145/2213556.2213560
https://doi.org/10.1137/070705970
https://doi.org/10.1145/2746539.2746592

17:20 G. Goranci et al.

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms (3rd

ed.). MIT Press, Cambridge, MA.

[7] E. A. Dinitz, A. V. Karzanov, and M. V. Lomonosov. 1976. On the structure of a family of minimum weighted cuts in

a graph. Studies in Discrete Optimization 1976, 290–306.

[8] Yefim Dinitz and Jeffery Westbrook. 1998. Maintaining the classes of 4-edge-connectivity in a graph on-line. Algo-

rithmica 20, 3, 242–276. DOI:https://doi.org/10.1007/PL00009195

[9] Tamás Fleiner and András Frank. 2009. A quick proof for the cactus representation of mincuts. Retrieved February

10, 2018, from http://web.cs.elte.hu/∼frank/cikkek/FrankR3.pdf.

[10] Harold N. Gabow. 1991. Applications of a poset representation to edge connectivity and graph rigidity. In Proceed-

ings of the 32nd Symposium on Foundations of Computer Science (FOCS’91). IEEE, Los Alamitos, CA, 812–821. DOI:
https://doi.org/10.1109/SFCS.1991.185453

[11] Harold N. Gabow. 1995. A matroid approach to finding edge connectivity and packing arborescences. Journal of

Computer and System Sciences 50, 2, 259–273. DOI:https://doi.org/10.1006/jcss.1995.1022

[12] Zvi Galil and Giuseppe F. Italiano. 1993. Maintaining the 3-edge-connected components of a graph on-line. SIAM

Journal on Computing 22, 1, 11–28. DOI:https://doi.org/10.1137/0222002

[13] David Gibb, Bruce M. Kapron, Valerie King, and Nolan Thorn. 2015. Dynamic graph connectivity with improved

worst case update time and sublinear space. arXiv:1509.06464.

[14] Gramoz Goranci, Monika Henzinger, and Mikkel Thorup. 2016. Incremental exact min-cut in poly-logarithmic amor-

tized update time. In Proceedings of the 24th European Symposium on Algorithms (ESA’16). 46:1–46:17. DOI:https://

doi.org/10.4230/LIPIcs.ESA.2016.46

[15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. 2015. Unifying and

strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proceed-

ings of the 47th Symposium on Theory of Computing (STOC’15). ACM, New York, NY, 21–30. DOI:https://doi.org/10.

1145/2746539.2746609

[16] Monika Henzinger, Satish Rao, and Di Wang. 2017. Local flow partitioning for faster edge connectivity. In Proceedings

of the 28th Symposium on Discrete Algorithms (SODA’17). 1919–1938. DOI:https://doi.org/10.1137/1.9781611974782.125

[17] Monika Rauch Henzinger. 1997. A static 2-approximation algorithm for vertex connectivity and incremental approx-

imation algorithms for edge and vertex connectivity. Journal of Algorithms 24, 1, 194–220. DOI:https://doi.org/10.

1006/jagm.1997.0855

[18] David Karger. 1994. Random Sampling in Graph Optimization Problems. Ph.D. Dissertation. Stanford University, Stan-

ford, CA.

[19] David R. Karger. 1994. Using randomized sparsification to approximate minimum cuts. In Proceedings of the 5th Sym-

posium on Discrete Algorithms (SODA’94). 424–432.

[20] David R. Karger. 1999. Random sampling in cut, flow, and network design problems. Mathematics of Operations Re-

search 24, 2, 383–413. DOI:https://doi.org/10.1287/moor.24.2.383

[21] David R. Karger. 2000. Minimum cuts in near-linear time. Journal of the ACM 47, 1, 46–76. DOI:https://doi.org/10.

1145/331605.331608

[22] Ken-Ichi Kawarabayashi and Mikkel Thorup. 2015. Deterministic global minimum cut of a simple graph in near-

linear time. In Proceedings of the 47th Symposium on Theory of Computing (STOC’15). ACM, New York, NY, 665–674.

DOI:https://doi.org/10.1145/2746539.2746588

[23] Jonathan A. Kelner and Alex Levin. 2013. Spectral sparsification in the semi-streaming setting. Theory of Computing

Systems 53, 2, 243–262. DOI:https://doi.org/10.1007/s00224-012-9396-1

[24] Rasmus Kyng, Jakub Pachocki, Richard Peng, and Sushant Sachdeva. 2017. A framework for analyzing resparsification

algorithms. In Proceedings of the 28th Symposium on Discrete Algorithms (SODA’17). 2032–2043. DOI:https://doi.org/

10.1137/1.9781611974782.132

[25] Jakub Lacki and Piotr Sankowski. 2011. Min-cuts and shortest cycles in planar graphs in O (n log log n) time.

In Proceedings of the 19th European Symposium on Algorithms (ESA’11). 155–166. DOI:https://doi.org/10.1007/

978-3-642-23719-5_14

[26] Karl Menger. 1927. Zur allgemeinen kurventheorie. Fundamenta Mathematicae 1, 10, 96–115. DOI:https://doi.org/10.

4064/fm-10-1-96-115

[27] Hiroshi Nagamochi and Toshihide Ibaraki. 1992. A linear-time algorithm for finding a sparse k-connected spanning

subgraph of a k-connected graph. Algorithmica 7, 5–6, 583–596. DOI:https://doi.org/10.1007/BF01758778

[28] Hiroshi Nagamochi and Toshihide Ibaraki. 2008. Algorithmic Aspects of Graph Connectivity. Cambridge University

Press, New York, NY. DOI:https://doi.org/10.1017/CBO9780511721649

[29] Danupon Nanongkai and Thatchaphol Saranurak. 2016. Dynamic cut oracle. Under submission.

[30] Johannes A. La Poutré. 2000. Maintenance of 2- and 3-edge-connected components of graphs II. SIAM Journal on

Computing 29, 5, 1521–1549. DOI:https://doi.org/10.1137/S0097539793257770

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

https://doi.org/10.1007/PL00009195
http://web.cs.elte.hu/protect $elax sim $frank/cikkek/FrankR3.pdf
https://doi.org/10.1109/SFCS.1991.185453
https://doi.org/10.1006/jcss.1995.1022
https://doi.org/10.1137/0222002
https://doi.org/10.4230/LIPIcs.ESA.2016.46
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1137/1.9781611974782.125
https://doi.org/10.1006/jagm.1997.0855
https://doi.org/10.1287/moor.24.2.383
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/2746539.2746588
https://doi.org/10.1007/s00224-012-9396-1
https://doi.org/10.1137/1.9781611974782.132
https://doi.org/10.1007/978-3-642-23719-5_14
https://doi.org/10.4064/fm-10-1-96-115
https://doi.org/10.1007/BF01758778
https://doi.org/10.1017/CBO9780511721649
https://doi.org/10.1137/S0097539793257770

Incremental Exact Min-Cut in Polylogarithmic Amortized Update Time 17:21

[31] Daniel Dominic Sleator and Robert Endre Tarjan. 1983. A data structure for dynamic trees. Journal of Computer and

System Sciences 26, 3, 362–391. DOI:https://doi.org/10.1016/0022-0000(83)90006-5

[32] Mikkel Thorup. 2007. Fully-dynamic min-cut. Combinatorica 27, 1, 91–127. DOI:https://doi.org/10.1007/

s00493-007-0045-2

[33] Mikkel Thorup and David R. Karger. 2000. Dynamic graph algorithms with applications. In Proceedings of the 7th

Scandinavian Workshop on Algorithm Theory. 1–9. DOI:https://doi.org/10.1007/3-540-44985-X_1

Received November 2016; revised September 2017; accepted December 2017

ACM Transactions on Algorithms, Vol. 14, No. 2, Article 17. Publication date: March 2018.

https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/3-540-44985-X_1

