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DETERMINISTIC FULLY DYNAMIC DATA STRUCTURES
FOR VERTEX COVER AND MATCHING∗

SAYAN BHATTACHARYA† , MONIKA HENZINGER‡ , AND GIUSEPPE F. ITALIANO§

Abstract. We present the first deterministic data structures for maintaining approximate min-
imum vertex cover and maximum matching in a fully dynamic graph G = (V,E), with |V | = n and
|E| = m, in o(

√
m) time per update. In particular, for minimum vertex cover, we provide determinis-

tic data structures for maintaining a (2+ε) approximation in O(logn/ε2) amortized time per update.
For maximum matching, we show how to maintain a (3+ε) approximation in O(min(

√
n/ε,m1/3/ε2)

amortized time per update and a (4 + ε) approximation in O(m1/3/ε2) worst-case time per update.
Our data structure for fully dynamic minimum vertex cover is essentially near-optimal and set-
tles an open problem by Onak and Rubinfeld [in 42nd ACM Symposium on Theory of Computing,
Cambridge, MA, ACM, 2010, pp. 457–464].
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data structures, primal-dual method
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1. Introduction. Finding maximum matchings and minimum vertex covers in
undirected graphs are classical problems in combinatorial optimization. Let G =
(V,E) be an undirected graph, with m = |E| edges and n = |V | nodes. A matching
in G is a set of vertex-disjoint edges; i.e., no two edges share a common vertex. A
maximum matching, also known as maximum cardinality matching, is a matching
with the largest possible number of edges. A matching is maximal if it is not a proper
subset of any other matching in G. A subset V ′ ⊆ V is a vertex cover if each edge of
G is incident to at least one vertex in V ′. A minimum vertex cover is a vertex cover
of smallest possible size.

The Micali–Vazirani algorithm for maximum matching runs in O(m
√
n ) time [13,

18]. Using this algorithm, a (1 + ε)-approximate maximum matching can be con-
structed in O(m/ε) time [8]. The same bound can also be obtained using scaling
algorithms [9, 10]. Finding a minimum vertex cover, on the other hand, is NP-hard.
Still, these two problems remain closely related as their LP-relaxations are duals of
each other. Furthermore, a maximal matching, which can be computed in O(m) time
in a greedy fashion, is known to provide a 2-approximation both to maximum match-
ing and to minimum vertex cover (by using the endpoints of the maximal matching).
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860 SAYAN BHATTACHARYA, MONIKA HENZINGER, AND GIUSEPPE F. ITALIANO

Under the unique games conjecture, the minimum vertex cover cannot be efficiently
approximated within any constant factor better than 2 [15]. Thus, under the unique
games conjecture, the 2-approximation in O(m) time is the optimal guarantee for this
problem.

In this paper, we consider a dynamic setting, where the input graph is being up-
dated via a sequence of edge insertions/deletions. The goal is to design data structures
that are capable of maintaining the solution to an optimization problem faster than
recomputing it from scratch after each update. If P 6= NP , we cannot achieve poly-
nomial time updates for minimum vertex cover. We also observe that achieving fast
update times for maximum matching appears to be a particularly difficult task: In this
case, an update bound of O(poly log(n)) would be a breakthrough since it would im-
mediately improve the long-standing bounds of various static algorithms [13, 17–19].
The best-known update bound for dynamic maximum matching is obtained by a ran-
domized data structure of Sankowski [22], which has O(n1.495) time per update. In
this scenario, if one wishes to achieve fast update times for dynamic maximum match-
ing or minimum vertex cover, approximation appears to be inevitable. Indeed, in the
past few years there has been a growing interest in designing efficient dynamic data
structures for maintaining approximate solutions to both these problems.

1.1. Previous work. A maximal matching can be maintained in O(n) worst-
case update time by a trivial deterministic algorithm. Ivković and Lloyd [14] showed

how to improve this bound to O((n + m)
√
2/2). Onak and Rubinfeld [21] designed a

randomized data structure that maintains constant factor approximations to maxi-
mum matching and to minimum vertex cover in O(log2 n) amortized time per update
with high probability, with the approximation factors being large constants. Baswana,
Gupta, and Sen [2] improved these bounds by showing that a maximal matching, and
thus a 2-approximation of maximum matching and minimum vertex cover, can be
maintained in a dynamic graph in amortized O(log n) update time with high proba-
bility.

Subsequently, turning to deterministic data structures, Neiman and Solomon [20]
showed that a 3/2-approximate maximum matching can be maintained dynamically
in O(

√
m ) worst-case time per update. They maintain a maximal matching and

thus achieve the same update bound also for 2-approximate minimum vertex cover.
Furthermore, Gupta and Peng [12] presented a deterministic data structure to main-
tain a (1 + ε) approximation of a maximum matching in O(

√
m/ε2) worst-case time

per update. We also note that Onak and Rubinfeld [21] gave a deterministic data
structure that maintains an O(log n)-approximate minimum vertex cover in O(log2 n)
amortized update time. See Table 1 for a summary of these results.

Very recently, Abboud and Williams [1] showed a conditional lower bound on the
performance of any dynamic matching algorithm. There exists an integer k ∈ [2, 10]
with the following property: If the dynamic algorithm maintains a matching with the
property that every augmenting path in the input graph (w.r.t. the matching) has
length at least (2k − 1), then an amortized update time of o(m1/3) for the algorithm
will violate the 3-SUM conjecture (which states that the 3-SUM problem on n numbers
cannot be solved in o(n2) time).

1.2. Our results. From the above discussion, it is clear that for both fully
dynamic constant approximate maximum matching and minimum vertex cover, there
is a huge gap between state-of-the-art deterministic and randomized performance
guarantees: The former gives O(

√
m ) update time, while the latter gives O(log n)

update time. Thus, it seems natural to ask whether the O(
√
m ) bound achieved
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DETERMINISTIC DYNAMIC VERTEX COVER AND MATCHING 861

Table 1
Dynamic data structures for approximate (integral) maximum matching (MM) and minimum

vertex cover (MVC).

Problem Approximation Update Data Reference
guarantee time structure

MM & MVC O(1) O(log2 n) amortized Randomized [21]
MM & MVC 2 O(logn) amortized Randomized [2]

MM 1.5 O(
√
m ) worst-case Deterministic [20]

MVC 2 O(
√
m ) worst-case Deterministic [20]

MM 1 + ε O(
√
m/ε2) worst-case Deterministic [12]

MVC 2 + ε O(logn/ε2) amortized Deterministic This paper
MM 3 + ε O(

√
n/ε) amortized Deterministic This paper

MM 3 + ε O(m1/3/ε2) amortized Deterministic This paper

MM 4 + ε O(m1/3/ε2) worst-case Deterministic This paper

in [12, 20] is a natural barrier for deterministic data structures. In particular, in their
pioneering work on these problems, Onak and Rubinfeld [21] asked the following:

• “Is there a deterministic data structure that achieves a constant approxima-
tion factor with polylogarithmic update time? ”

We answer this question in the affirmative by presenting a deterministic data
structure that maintains a (2 + ε)-approximation of a minimum vertex cover in
O(log n/ε2) amortized time per update. Since it is impossible to get better than
2-approximation for minimum vertex cover in polynomial time, our data structure is
near-optimal (under the unique games conjecture). As a by-product of our approach,
we can also maintain, deterministically, a (2 + ε)-approximate maximum fractional
matching in O(log n/ε2) amortized update time. Note that the vertices of the frac-
tional matching polytope of a graph are known to be half integral; i.e., they have
only {0, 1/2, 1} coordinates (see, e.g., [16]). This implies immediately that the value
of any fractional matching is at most 3/2 times the value of the maximum integral
matching. Thus, it follows that we can maintain the value of the maximum (integral)
matching within a factor of (2+ε)·(3/2) = (3+O(ε)), deterministically, in O(log n/ε2)
amortized update time.

Next, we focus on the problem of maintaining an integral matching in a dynamic
setting. For this problem, we show how to maintain a (3 + ε)-approximate maxi-
mum matching in O(min(

√
n/ε,m1/3/ε2)) amortized time per update and a (4 + ε)-

approximate maximum matching in O(m1/3/ε2) worst-case time per update. Since
m1/3 = o(n), we provide the first deterministic data structures for dynamic matching
whose update time is sublinear in the number of nodes. Table 1 puts our main results
in perspective with previous work.

1.3. Our techniques. To see why it is difficult to deterministically maintain a
dynamic (say maximal) matching, consider the scenario when a matched edge incident
to a node u gets deleted from the graph. To recover from this deletion, we have to
scan through the adjacency list of u to check if it has any free neighbor z. This takes
time proportional to the degree of u, which can be O(n). Both the papers [2, 21] use
randomization to circumvent this problem. Roughly speaking, the idea is to match
the node u to one of its free neighbors z picked at random and show that even if
this step takes O(deg(u)) time, in expectation the newly matched edge (u, z) survives
the next deg(u)/2 edge deletions in the graph (assuming that the adversary is not
aware of the random choices made by the data structure). This is used to bound the
amortized update time.
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862 SAYAN BHATTACHARYA, MONIKA HENZINGER, AND GIUSEPPE F. ITALIANO

Our key insight is that we can maintain a large fractional matching determin-
istically. Suppose that in this fractional matching, we pick each edge incident to u
to an extent of 1/deg(u). These edges together contribute at most one to the ob-
jective. Thus, we do not have to do anything for the next deg(u)/2 edge deletions
incident to u, as these deletions reduce the contribution of u towards the objective
by at most a factor of two. This gives us the desired amortized bound. Inspired by
this observation, we take a closer look at the framework of Onak and Rubinfeld [21].
Roughly speaking, they maintain a hierarchical partition of the set of nodes V into
O(log n) levels such that the nodes in all but the lowest level, taken together, form a
valid vertex cover V ∗. In addition, they maintain a matching M∗ as a dual certificate.
Specifically, they show that |V ∗| ≤ λ · |M∗| for some constant λ, which implies that
V ∗ is a λ-approximate minimum vertex cover. Their data structure is randomized
since, as discussed above, it is particularly difficult to maintain the matching M∗

deterministically in a dynamic setting. To make the data structure deterministic, in-
stead of M∗, we maintain a fractional matching as a dual certificate. Along the way,
we improve the amortized update time of [21] from O(log2 n) to O(log n/ε2) and their
approximation guarantee from some large constant λ to 2 + ε.

Our approach gives near-optimal bounds for fully dynamic minimum vertex cover,
and, as we have already remarked, it maintains a fractional matching. Next, we
consider the problem of maintaining an approximate maximum integral matching, for
which we are able to provide deterministic data structures with improved (polynomial)
update time. Towards this end, we introduce the concept of a kernel of a graph,
which we believe is of independent interest. Intuitively, a kernel is a subgraph with
two important properties: (i) each node has bounded degree in the kernel, and (ii)
a kernel approximately preserves the size of the maximum matching in the original
graph. Our key contribution is to show that a kernel always exists and that it can be
maintained efficiently in a dynamic graph undergoing a sequence of edge updates.

1.4. Subsequent work. Subsequent to the publication of the conference version
of this paper, there has been multiple follow-up work on this problem. Solomon [23]
obtained a randomized algorithm for maintaining a maximal matching in O(1) amor-
tized update time. As far as deterministic data structures are concerned, Bernstein
and Stein [3, 4] showed how to maintain a (3/2+ε)-approximate maximum matching in
O(m1/4/ε2.5) amortized update time. Bhattacharya, Henzinger, and Nanongkai [6, 7]
gave an algorithm for maintaining a (2 + ε)-approximate maximum (integral) match-
ing in O(poly(log n, 1/ε)) amortized update time and an algorithm for maintaining
a (2 + ε)-approximate maximum fractional matching and minimum vertex cover in
O(log3 n/poly(1/ε)) worst-case update time. Finally, Bhattacharya, Chakrabarty, and
Henzinger [5] and Gupta et al. [11] showed how to maintain a O(1)-approximate max-
imum fractional matching and minimum vertex cover in O(1) amortized update time.

2. Deterministic fully dynamic vertex cover. In this section, we consider
the following dynamic setting. An input graph G = (V,E) has |V | = n nodes and zero
edges in the beginning. Subsequently, it keeps getting updated due to the insertions
of new edges and the deletions of existing edges. The edge updates, however, occur
one at a time, while the set V remains fixed. The goal is to maintain an approximate
vertex cover of G in this fully dynamic setting.

The rest of this section is organised as follows. In section 2.1, we introduce
the notion of an (α, β)-partition of G = (V,E). This is a hierarchical partition of
the set V into L+ 1 levels, where L = dlogβ(n/α)e and α, β > 1 are two parameters
(Definition 2.2). If the (α, β)-partition satisfies an additional property (Invariant 2.4),

D
ow

nl
oa

de
d 

08
/2

0/
18

 to
 1

31
.1

30
.1

69
.5

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DETERMINISTIC DYNAMIC VERTEX COVER AND MATCHING 863

then from it we can easily derive a 2αβ-approximation to the minimum vertex cover
(Theorem 2.5). In section 2.2, we present the relevant data structures that we use
to maintain an (α, β)-partition. In section 2.3, we present a natural deterministic
algorithm for maintaining such an (α, β)-partition. Finally, in section 2.4, we analyze
the amortized update time of the algorithm using a carefully chosen potential function.
We show that for α = 1+3ε and β = 1+ε, the algorithm takes O

(
(t/ε) log1+ε n

)
time

to handle t edge updates starting from an empty graph (Theorem 2.8). This leads to
the main result of this section, which is stated in the theorem below.

Theorem 2.1. For every ε ∈ (0, 1), we can deterministically maintain a (2 + ε)-
approximate minimum vertex cover in a fully dynamic graph, the amortized update
time being O(log n/ε2).

2.1. The (α, β)-partition and its properties.

Definition 2.2. An (α, β)-partition of the graph G partitions its node set V into
subsets V0 · · ·VL, where L = dlogβ(n/α)e and α, β > 1. For i ∈ {0, . . . , L}, we identify
the subset Vi as the ith level of this partition and denote the level of a node v by `(v).
Thus, we have v ∈ V`(v) for all v ∈ V . Furthermore, the partition assigns a weight

w(u, v) = β−max(`(u),`(v)) to every edge (u, v) ∈ V .

Define Nv to be the set of neighbors of a node v ∈ V . Given an (α, β)-partition,
let Nv(i) ⊆ Nv denote the set of neighbors of v that are in the ith level, and let
Nv(i, j) ⊆ Nv denote the set of neighbors of v whose levels are in the range [i, j]:

Nv = {u ∈ V : (u, v) ∈ E} for all v ∈ V(1)

Nv(i) = {u ∈ Nv ∩ Vi} for all v ∈ V ; i ∈ {0, . . . , L}(2)

Nv(i, j) =

j⋃
k=i

Nv(k) for all v ∈ V ; i, j ∈ {0, . . . , L}, i ≤ j.(3)

Similarly, define the notations Dv, Dv(i), and Dv(i, j). Note that Dv is the degree
of a node v ∈ V :

Dv = |Nv|(4)

Dv(i) = |Nv(i)|(5)

Dv(i, j) = |Nv(i, j)|.(6)

Given an (α, β)-partition, let Wv =
∑
u∈Nv w(u, v) denote the total weight a node

v ∈ V receives from the edges incident to it. We also define the notation Wv(i). It
gives the total weight the node v would receive from the edges incident to it if the node
v itself was to go to the ith level. Thus, we have Wv = Wv(`(v)). Since the weight of
an edge (u, v) in the hierarchical partition is given by w(u, v) = β−max(`(u),`(v)), we
derive the following equations for all nodes v ∈ V :

Wv =
∑
u∈Nv

β−max(`(u),`(v))(7)

Wv(i) =
∑
u∈Nv

β−max(`(u),i) for all i ∈ {0, . . . , L}.(8)

Fix a node v ∈ V , and focus on the value of Wv(i) as we go down from the highest
level i = L to the lowest level i = 0. Lemma 2.3 states that Wv(i) ≤ α when i = L,
that Wv(i) keeps increasing as we go down the levels one after another, and that
Wv(i) increases by at most a factor of β between consecutive levels.
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Lemma 2.3. Every (α, β)-partition of the graph G satisfies the following condi-
tions for all nodes v ∈ V :

Wv(L) ≤ α(9)

Wv(L) ≤ · · · ≤Wv(i) ≤ · · · ≤Wv(0)(10)

Wv(i) ≤ β ·Wv(i+ 1) for all i ∈ {0, . . . , L− 1}.(11)

Proof. Fix any (α, β)-partition and any node v ∈ V . We prove the first part of
the lemma as follows:

Wv(L) =
∑
u∈Nv

β−max(`(u),L)

=
∑
u∈Nv

β−L ≤ n · β−L ≤ n · β− logβ(n/α) = α.

We now fix any level i ∈ {0, . . . , L− 1} and show that the (α, β)-partition satis-
fies (10):

Wv(i+ 1) =
∑
u∈Nv

β−max(`(u),i+1)

≤
∑
u∈Nv

β−max(`(u),i) = Wv(i).

Finally, we prove (11):

Wv(i) =
∑
u∈Nv

β−max(`(u),i) = β ·
∑
u∈Nv

β−1−max(`(u),i)

≤ β ·
∑
u∈Nv

β−max(`(u),i+1) = β ·Wv(i+ 1).

We will maintain a specific type of (α, β)-partition, where each node is assigned
to a level in a way that satisfies Invariant 2.4.

Invariant 2.4. For every node v ∈ V , if `(v) = 0, then Wv ≤ α · β. Else, if
`(v) ≥ 1, then Wv ∈ [1, αβ].

Consider any (α, β)-partition satisfying Invariant 2.4. Let v ∈ V be a node in this
partition that is at level `(v) = k ∈ {0, . . . , L}. It follows that

∑
u∈Nv(0,k) w(u, v) =

|Nv(0, k)| · β−k ≤Wv ≤ αβ. Thus, we infer that |Nv(0, k)| ≤ αβk+1. In other words,
Invariant 2.4 gives an upper bound on the number of neighbors a node v can have
that lie on or below `(v). We will crucially use this property in the analysis of our
algorithm.

Theorem 2.5. Consider an (α, β)-partition of the graph G that satisfies Invari-
ant 2.4. Let V ∗ = {v ∈ V : Wv ≥ 1} be the set of nodes with weight at least one. The
set V ∗ is a feasible vertex cover in G. Further, the size of the set V ∗ is at most 2αβ
times the size of the minimum-cardinality vertex cover in G.

Proof. Consider any edge (u, v) ∈ E. We claim that at least one of its endpoints
belong to the set V ∗. Suppose that the claim is false and we have Wu < 1 and
Wv < 1. If this is the case, then Invariant 2.4 implies that `(u) = `(v) = 0 and
w(u, v) = β−max(`(u),`(v)) = 1. Since Wu ≥ w(u, v) and Wv ≥ w(u, v), we get Wu ≥ 1
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and Wv ≥ 1, and this leads to a contradiction. Thus, we infer that the set V ∗ is a
feasible vertex cover in the graph G.

Next, we construct a fractional matching Mf by picking x(u, v) = w(u, v)/(αβ)
copies of every edge (u, v) ∈ E. Since for all nodes v ∈ V we have

∑
u∈Nv x(u, v) =∑

u∈Nv w(u, v)/(αβ) = Wv/(αβ) ≤ 1, we infer that Mf is a valid fractional matching
in G. The size of this matching is given by |Mf | =

∑
(u,v)∈E x(u, v) = (1/(αβ)) ·∑

(u,v)∈E w(u, v). We now bound the size of V ∗ in terms of |Mf |:

|V ∗| =
∑
v∈V ∗

1 ≤
∑
v∈V ∗

Wv =
∑
v∈V ∗

∑
u∈Nv

w(u, v)

≤
∑
v∈V

∑
u∈Nv

w(u, v) = 2 ·
∑

(u,v)∈E

w(u, v) = (2αβ) · |Mf |.

The approximation guarantee now follows from the LP duality between minimum
fractional vertex cover and maximum fractional matching.

Query time. We store the nodes v with Wv ≥ 1 as a separate list. Thus, we can
report the set of nodes in the vertex cover in O(1) time per node. Using appropriate
pointers, we can report in O(1) time whether a given node is part of this vertex cover.
In O(1) time, we can also report the size of the vertex cover.

2.2. Data structures. We now describe the data structures that we will use to
maintain an (α, β)-partition in a dynamic graph:

• A counter to keep track of the current value of `(v)
• A counter to keep track of the current value of Wv

• For every level i > `(v), the set of nodes Nv(i) as a doubly linked list
• For level i = `(v), the set of nodes Nv(0, i) as a doubly linked list

The insertion/deletion of an edge (u, v) in G changes the weights of its endpoints
{u, v}. Thus, after the insertion/deletion of an edge (u, v) in G, we might discover
that one or both of its endpoints violates Invariant 2.4. Such a node (which violates
Invariant 2.4) is called dirty, and we store the set of dirty nodes as a doubly linked list.
For every node v ∈ V , we maintain a bit Status[v] ∈ {dirty, clean} that indicates
whether the node is dirty. Every dirty node stores a pointer to its position in the list
of dirty nodes.

The phrase “neighborhood lists of v” refers to the set
⋃L
i=`(v)+1Nv(i)

⋃
Nv

(0, `(v)). For every edge (u, v), we maintain two bidirectional pointers: One links
the edge to the position of v in the neighborhood lists of u, while the other links the
edge to the position of u in the neighborhood lists of v. These pointers allow us to
insert or delete any edge from any list in constant time.

2.3. Handling the insertion/deletion of an edge. Recall that a node is
called dirty if it violates Invariant 2.4 and clean otherwise. Since the graph G = (V,E)
is initially empty, every node is clean and at level zero before the first update in G.
Now consider the time instant just prior to the tth update in G. By the induction
hypothesis, at this instant every node is clean. Then the tth update takes place, which
inserts (resp., deletes) an edge (x, y) in G with weight w(x, y) = β−max(`(x),`(y)). This
increases (resp., decreases) the weights Wx,Wy by w(x, y). Due to this change, the
nodes x and y might become dirty. To recover from this, we run the While loop
in Figure 1, which repeatedly tries to fix the dirty nodes using the following simple
greedy heuristic: Whenever it finds a dirty node whose weight is too large (resp.,
small), it increments (resp., decrements) the level of that node.
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866 SAYAN BHATTACHARYA, MONIKA HENZINGER, AND GIUSEPPE F. ITALIANO

01. While there exists a dirty node v
02. If Wv > αβ, Then // If true, then by (9) we have `(v) < L.
03. Increment the level of v by setting `(v)← `(v) + 1, and update the

relevant data structures.
04. Else if (Wv < 1 and `(v) > 0), Then
05. Decrement the level of v by setting `(v)← `(v)− 1, and update the

relevant data structures.

Fig. 1. Handling the dirty nodes.

Consider any iteration of the While loop in Figure 1, which tries to fix a dirty
node v ∈ V . Suppose that Wv = Wv(`(v)) > αβ. In this event, (9) implies that
Wv(L) < Wv(`(v)), and hence we have L > `(v). In other words, when the procedure
described in Figure 1 decides to increment the level of a dirty node v (step 03), we
know for sure that the current level of v is strictly less than L (the highest level in
the (α, β)-partition). Next, consider a node z ∈ Nv. If we change `(v), then this may
change the weight w(v, z), and this in turn may change the weight Wz. Thus, a single
iteration of the While loop in Figure 1 may lead to some clean nodes becoming dirty
and some other dirty nodes becoming clean. If and when the While loop terminates,
however, we are guaranteed that every node is clean and that Invariant 2.4 holds.

Lemma 2.6. Suppose that some iteration of the While loop in Figure 1 increases
the level of a node v from i to i+ 1. Then it takes Θ(1 +Dv(0, i)) time to update the
relevant data structures during this iteration.

Proof. When the node v moves up from level i to level i+ 1, we need to update
v’s position in the neighborhood lists of a node u ∈ Nv iff `(u) ≤ i. On the other
hand, we can update the neighborhood lists of v itself in constant time by simply
noting that Nv(0, i + 1) = Nv(0, i) ∪ Nv(i + 1). Hence, the total time spent on this
iteration is proportional to 1 +Dv(0, i), where the term 1 comes from the fact that it
takes constant time to implement the iteration even if Dv(0, i).

Lemma 2.7. Suppose that some iteration of the While loop in Figure 1 decreases
the level of a node v from i to i− 1. Then it takes Θ(1 +Dv(0, i)) time to update the
relevant data structures during this iteration.

Proof. When the node v moves down from level i to level i−1, we need to update
v’s position in the neighborhood lists of a node u ∈ Nv iff `(u) < i. However, when v
is at level i, our data structure keeps all the nodes u ∈ Nv with `(u) ≤ i in one doubly
linked list Nv(0, i). Thus, when v moves down from level i to level i− 1, we need to
scan through the nodes in the list Nv(0, i) one after the other. While considering any
node u ∈ Nv(0, i), we need to check if `(u) < i, and, if yes, then we need to update
v’s position in the neighborhood lists of u. We can update the neighborhood lists
of v itself during the same scan since basically all we need to do is to split the list
Nv(0, i) into two parts: Nv(0, i− 1) and Nv(i). Accordingly, the total time spent on
this iteration is proportional to 1 + Dv(0, i), where the term 1 comes from the fact
that it takes constant time to implement the iteration even if Dv(0, i).

Bounding the amortized update time: An overview. It is by no means obvious that
the While loop in Figure 1 will eventually terminate after a finite number of steps.
Thus, it is somewhat surprising that in section 2.4 we are able to prove the following
guarantee: The algorithm described above for handling the insertion/deletion of an
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edge in the input graph has an amortized update time O(log n/ε2) for α = 1 + 3ε and
β = ε. We now give a high-level intuitive explanation for this result.

For simplicity, we assume that both α and β are very large constants. Fur-
thermore, we consider the following modification of the While loop in Figure 1. If
Wv > αβ, then we move the node v up to a level i, where Wv(i) ∈ [β, αβ]. On
the other hand, if Wv < 1 and `(v) > 0, then we move v down to a level i, where
Wv(i) ∈ [β, αβ]. If no such level i, exists, then we move v down to level 0, where it
must have Wv(0) ∈ [0, αβ]. We can change the level of v in this way due to Lemma 2.3,
which implies that (1) the weight Wv changes by at most a factor of β when we change
the level of v by one and (2) Wv(L) ≤ α. One key property of this modified algorithm
is as follows: For every level k ∈ [0, L], we have Wv(k) ∈ [β, αβ] whenever a node v
moves from any level i 6= k to level k.

Define the level of an edge (u, v) as `(u, v) = max(`(u), `(v)), and note that the
weight of an edge is completely determined by its level. As a proxy for the actual
update time, we focus on upper bounding the number of times the modified algorithm
changes the level (and therefore the weight) of an edge in the (α, β)-partition. We refer
to this quantity as the update cost of the modified algorithm and explain informally
why the amortized update cost is O(L) = O(log n).

If it were the case that the modified algorithm never decreases the level of an
edge in the (α, β)-partition, then we would immediately get an amortized update cost
of O(L) for the following reason. The level of an edge can take only L + 1 different
values. Therefore, during a sequence of t edge insertions/deletions starting from an
empty graph, we would see the level of an edge increasing at most t(L + 1) times,
leading to an amortized update cost of O(L). Unfortunately for us, this claim is too
good to be true. The level of an edge can also decrease during the course of our
modified algorithm, which breaks the previous argument. Nevertheless, we can show
that if we look at a sufficiently long time interval, then the number of times the level
of an edge drops is significantly smaller than the number of times the level of an edge
increases plus the number of edge deletions. Then using a more sophisticated version
of the previous argument, we derive that the amortized update cost is O(L). It now
remains to explain why the number of level decreases of edges is significantly smaller
than the number of level increases plus the number of edge deletions.

The level of an edge decreases only when one of its endpoints moves down to a
lower level. Accordingly, consider a time step t when a node v moves from some level
i down to some other level j < i. It follows that Wv(i) < 1 at time step t. When
the node v moves down from level i to level j, it only decreases the levels of the
edges (u, v) ∈ E with `(u) < i. Just before time step t, each such edge had a weight
1/βmax(`(u),`(v)) = 1/βi, and we had Wv(i) < 1. Hence, at time step t, the node v
has at most βi neighbors u with `(u) < i. In other words, when the node v moves
down from level i to level j, at most βi many edges incident on v decreases their
levels. Now, consider the last time step t′ < t, when the node v moved to level i. In
particular, the node v moves to level i at time step t′, stays at level i during the time
interval [t′, t], and moves down to level j < i at time step t. From the description of
our modified algorithm, it follows that Wv(i) ∈ [β, αβ] at time t′. Thus, the weight
Wv decreases by at least β − 1 during the time interval [t′, t]. This decrease in the
weight of v happens because of multiple occurrences of the following two events: (1)
An edge (u, v) incident on v gets deleted from the input graph, and (2) an edge (u, v)
incident on v has its other endpoint u increase its own level `(u) from some k ≤ i to
some k′ > i. Each of these events decreases the weight Wv by at most 1/βi since the
node v remains at level i during the time interval [t′, t]. Thus, at least (β − 1) · βi of
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these events must take place during the time interval [t′, t]. To summarize, whenever
a node v moves down from a level i, it decreases the levels of at most βi many incident
edges. However, for such an event to take place, at least (β − 1)βi edges incident on
v must either get deleted or increase their levels. This implies that the number of
level decreases of edges is much smaller than the number of level increases plus the
number of edge deletions.

Comparison with the framework of Onak and Rubinfeld [21]. As described below,
there are two significant differences between our framework and that of [21]. Con-
sequently, many of the technical details of our approach (illustrated in section 2.4)
differ from the proof in [21].

First, in the hierarchical partition of [21], the invariant for a node y consists of
O(L) constraints: For each level i ∈ {`(y), . . . , L}, the quantity |Ny(0, i)| has to lie
within a certain range. This is the main reason for their amortized update time being
Θ(log2 n). Indeed, when a node y becomes dirty, unlike in our setting, they have to
spend Θ(log n) time just to figure out the new level of y.

Second, along with the hierarchical partition, the authors in [21] maintain a
matching as a dual certificate and show that the size of this matching is within a
constant factor of the size of their vertex cover. As pointed out in section 1, this is
the part where they crucially need to use randomization, as until now, there is no
deterministic data structure for maintaining a large matching in polylog amortized
update time. We bypass this barrier by implicitly maintaining a fractional matching
as a dual certificate. Indeed, the weight w(y, z) of an edge (y, z) in our hierarchical
partition, after suitable scaling, equals the fractional extent by which the edge (y, z)
is included in our fractional matching.

2.4. Bounding the amortized update time: Detailed analysis. We devote
this section to the proof of the following theorem, which bounds the update time of
our algorithm. Throughout this section, we set α ← 1 + 3ε and β ← 1 + ε, where
ε ∈ (0, 1) is a small positive constant.

Theorem 2.8. The algorithm in section 2.3 maintains an (α, β)-partition that
satisfies Invariant 2.4. For every ε ∈ (0, 1), α = 1 + 3ε, and β = 1 + ε, the algorithm
takes O

(
(t/ε) log1+ε n

)
time to handle t edge updates starting from an empty graph.

Consider the following thought experiment. We have a bank account, and initially,
when there are no edges in the graph, the bank account has zero balance. For each
subsequent edge insertion/deletion, at most 20L/ε dollars are deposited to the bank
account, and for each unit of computation performed by our algorithm, at least one
dollar is withdrawn from it. We show that the bank account, never runs out of
money, and this gives a running time bound of O(tL/ε) = O

(
(t/ε) logβ(n/α)

)
=

O
(
(t/ε) log1+ε n

)
for handling t edge updates starting from an empty graph:

Let B denote the total amount of money (or potential) in the bank account at
the present moment. We keep track of B by distributing an ε-fraction of it among the
nodes and the current set of edges in the graph:

(12) B = (1/ε) ·

(∑
e∈E

Φ(e) +
∑
v∈V

Ψ(v)

)
.

In the above equation, the amount of money (or potential) associated with an
edge e ∈ E is given by Φ(e), and the amount of money (or potential) associated with
a node v ∈ V is given by Ψ(v). To ease notation, for each edge e = (u, v) ∈ E, we use
the symbols Φ(e),Φ(u, v), and Φ(v, u) interchangeably.
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We call a node v ∈ V passive if we have Nv = ∅ throughout the duration of a
time interval that starts at the beginning of the algorithm (when E = ∅) and ends at
the present moment. Let Vpassive ⊆ V denote the set of all nodes that are currently
passive.

At every point in time, all the potentials Φ(u, v),Ψ(v) are determined by the two
invariants stated below.

Invariant 2.9. For every (unordered) pair of nodes {u, v}, u, v ∈ V , we have

Φ(u, v) =

{
(1 + ε) · (L−max(`(u), `(v))) if (u, v) ∈ E;

0 if (u, v) /∈ E.

Invariant 2.10. For every node v ∈ V , we have

Ψ(v) =

{
ε · (L− `(v)) +

(
β`(v)+1/(β − 1)

)
·max (0, α−Wv) if v /∈ Vpassive;

0 if v ∈ Vpassive.

Initialization. When the algorithm starts, the graph has zero edges, all the nodes
are at level 0, and every node is passive. At that moment, Invariant 2.10 sets Ψ(v) = 0
for all nodes v ∈ V . Consequently, (12) implies that the potential B is also set to
zero. This is consistent with our requirement that initially the bank account ought
to have zero balance.

Insertion of an edge. The time taken to handle an edge insertion, ignoring the
time spent on the While loop in Figure 1, is Θ(1). According to our framework, we
are allowed to deposit at most 20L/ε dollars to the bank account, and a withdrawal of
one dollar from the same account is sufficient to pay for the computation performed.
Thus, an edge insertion should not increase the potential B by more than 20L/ε− 1.
We show below that this is indeed the case.

When an edge (u, v) is inserted into the graph, the potential Φ(u, v) increases by
at most (1 + ε)L. Next, we consider two possible scenarios to bound the increase in
Ψ(v):

1. The node v was passive prior to the insertion of the edge. Clearly, in this
case, the node is at level zero, and Ψ(v) = 0 before the insertion. After the
insertion, the node is not passive anymore, and we have Ψ(v) ≤ εL+αβ/(β−
1) = εL + (1 + 3ε)(1 + ε)/ε ≤ 9L. Since ε ∈ (0, 1) and L = logβ(n/α) =
log1+ε (n/(1 + 3ε)), the last inequality holds as long as n ≥ 20. We conclude
that the potential Ψ(v) increases by at most 9L.

2. The node v was not passive prior to the insertion of the edge. Clearly, in this
case, the node v is also not passive afterwards. The weight Wv increases and
the quantity max(0, α−Wv) decreases due to the insertion, which means that
the potential Ψ(v) decreases.

Similarly, we conclude that either Ψ(u) increases by at most 9L or it actually de-
creases. The potentials of the remaining nodes and edges do not change. Hence,
by (12), the net increase in B is at most 18L/ε.

Deletion of an edge. The analysis is very similar to the one described above. The
time taken to handle an edge deletion, ignoring the time spent on the While loop
in Figure 1, is Θ(1). According to our framework, we are allowed to deposit at most
20L/ε dollars to the bank account, and a withdrawal of one dollar from the same
account is sufficient to pay for the computation performed. Thus, an edge deletion
should not increase the potential B by more than 20L/ε−1. We show below that this
is indeed the case.
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When an edge (u, v) is deleted from the graph, the potential Φ(u, v) decreases.
Next, note that the weight Wv decreases by at most β−`(v), and so the quantity
max(0, α −Wv) increases by at most β−`(v). As the node v was not passive before
the edge deletion, it is also not passive afterwards. Thus, Ψ(v) increases by at most(
β`(v)+1/(β − 1)

)
· β−`(v) = 2/ε ≤ 2L. The last equality holds as long as n ≥ 20. We

similarly conclude that Ψ(u) increases by at most 2L. The potentials of the remaining
nodes and edges do not change. Hence, by (12), the net increase in B is at most 4L/ε.

It remains to analyze the time spent on the While loop in Figure 1.

2.4.1. Analysis of the time spent on the WHILE loop in Figure 1. Fix
any single iteration of the While loop in Figure 1, which changes the level of a dirty
node v by one. Throughout this section, we use the phrase the iteration to refer to
this specific iteration of the While loop in Figure 1. We use the superscript 0 (resp.,
1) on a symbol to denote its state at the time instant immediately prior to (resp.,
after) the iteration. Further, we preface a symbol with δ to denote the net decrease
in its value due to this iteration. For example, consider the potential B. We have
B = B0 immediately before the iteration starts and B = B1 immediately after the
iteration ends. We also have δB = B0 − B1. We will prove the following theorem.

Theorem 2.11. We have δB > 0 and δB ≥ T , where T denotes the time spent
on the iteration. In other words, the money withdrawn from the bank account during
the iteration is sufficient to pay for the computation performed during the iteration.

The iteration affects only the potentials of the nodes u ∈ Nv ∪ {v} and that of
the edges e ∈ {(u, v) : u ∈ Nv}. This observation, coupled with (12), gives us the
following guarantee:

(13) δB = (1/ε) ·

(
δΨ(v) +

∑
u∈Nv

δΦ(u, v) +
∑
u∈Nv

δΨ(u)

)
.

The iteration does not change (a) the neighborhood structure of the node v and
(b) the level and the overall degree of any node u 6= v. Hence, we get

N 0
v (i) = N 1

v (i) for all i ∈ {0, . . . , L}(14)

`0(u) = `1(u) for all u ∈ V \ {v}(15)

D0
u = D1

u for all u ∈ V \ {v}.(16)

Accordingly, to ease notation, we do not put any superscript on the following
symbols, as the quantities they refer to remain the same throughout the duration of
the iteration: 

Nv, Dv

Nv(i), Dv(i),Wv(i) for all i ∈ {0, . . . , L}
Nv(i, j), Dv(i, j) for all i, j ∈ {0, . . . , L}, i ≤ j
`(u), Du for all u ∈ V \ {v}.

Since the node v is dirty just before the iteration, it follows that neither the node
v nor the nodes u ∈ Nv are passive.1 Applying Invariant 2.10, we get

(17)

Ψ(u) = ε·(L−`(u))+
(
β`(u)+1/(β − 1)

)
·max (0, α−Wu) for all nodes u ∈ Nv∪{v}.

1A passive node is not adjacent to any edges, and thus its weight is zero and it has no neighbors.
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We divide the proof of Theorem 2.11 into two possible cases, depending upon
whether the iteration increments or decrements the level of v. The main approach to
the proof remains the same in each case. We first give an upper bound on the time T
spent on the iteration. Next, we separately lower bound each of the following quanti-
ties: δΨ(v), δΦ(u, v) for all u ∈ Nv and δΨ(u) for all u ∈ Nv. Finally, applying (13),
we derive that δB ≥ T .

Case 1: The iteration increases the level of the node v from k to (k + 1).

Lemma 2.12. We have T ≤ 1 +Dv(0, k).

Proof. Follows from Lemma 2.6.

Lemma 2.13. We have δΨ(v) = ε.

Proof. Since the iteration increments the level of v, step 02 of Figure 1 guarantees
that W 0

v = Wv(k) > αβ. Next, from Lemma 2.3, we get W 1
v = Wv(k + 1) ≥

β−1 ·Wv(k) > α. Since both W 0
v ,W

1
v > α, we get

Ψ0(v) = ε · (L− k) +
(
βk+1/(β − 1)

)
·max(0, α−W 0

v ) = ε · (L− k),

Ψ1(v) = ε · (L− k − 1) +
(
βk+2/(β − 1)

)
·max(0, α−W 1

v ) = ε · (L− k − 1).

It follows that δΨ(v) = Ψ0(v)−Ψ1(v) = ε.

Lemma 2.14. For every node u ∈ Nv, we have

δΦ(u, v) =

{
(1 + ε) if u ∈ Nv(0, k);

0 if u ∈ Nv(k + 1, L).

Proof. If u ∈ Nv(0, k), then we have Φ0(u, v) = (1 + ε) · (L− k), and Φ1(u, v) =
(1 + ε) · (L− k − 1). It follows that δΦ(u, v) = Φ0(u, v)− Φ1(u, v) = (1 + ε).

In contrast, if u ∈ Nv(k+ 1, L), then we have Φ0(u, v) = Φ1(u, v) = (1 + ε) · (L−
`(u)). Hence, we get δΦ(u, v) = Φ0(u, v)− Φ1(u, v) = 0.

Lemma 2.15. For every node u ∈ Nv, we have

δΨ(u) ≥

{
−1 if u ∈ Nv(0, k);

0 if u ∈ Nv(k + 1, L).

Proof. Consider any node u ∈ Nv(k + 1, L). Since k < `(u), we have w0(u, v) =
w1(u, v), and this implies that W 0

u = W 1
u . Thus, we get δΨ(u) = 0.

Next, fix any node u ∈ Nv(0, k). Note that δWu = δw(u, v) = β−k − β−(k+1) =
(β − 1)/βk+1. Using this observation and the fact that `(u) ≤ k, we infer that

δΨ(u) ≥ −
(
β`(u)+1/(β − 1)

)
· δWu = −β`(u)+1/βk+1 ≥ −1.

Proof of Theorem 2.11 (for Case 1). From Lemmas 2.13, 2.14, and 2.15 and from
(13), we derive the following bound:

δB = (1/ε) ·

(
δΨ(v) +

∑
u∈Nv

δΦ(u, v) +
∑
u∈Nv

δΨ(u)

)
,

≥ (1/ε) · (ε+ (1 + ε) ·Dv(0, k)−Dv(0, k)) ,

= 1 +Dv(0, k).

The theorem (for Case 1) now follows from Lemma 2.12.
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Case 2: The iteration decreases the level of the node v from k to k − 1.

Claim 2.16. We have W 0
v = Wv(k) < 1 and Dv(0, k) ≤ βk.

Proof. As the iteration decrements the level of v, step 04 of Figure 1 ensures that
W 0
v = Wv(k) < 1. Since `0(v) = k, we have w0(u, v) ≥ β−k for all u ∈ Nv. We

conclude that
1 > W 0

v ≥
∑

u∈Nv(0,k)

w0(u, v) ≥ β−k ·Dv(0, k).

Thus, we get Dv(0, k) ≤ βk.

Lemma 2.17. We have T ≤ βk.

Proof. Since the iteration decrements the level of v from k to k − 1, Lemma 2.7
implies that the iteration takes Θ(1 + Dv(0, k)) time. Applying Claim 2.16, we now
infer that T ≤ βk.

Lemma 2.18. For every node u ∈ Nv, we have δΨ(u) ≥ 0.

Proof. Fix any node u ∈ Nv. As the level of the node v decreases from k to
k − 1, we infer that w0(u, v) ≤ w1(u, v), and, accordingly, we get W 0

u ≤ W 1
u . Since

Ψ(u) = ε · (L− `(u)) + β`(u) ·max (0, α−Wu), we derive that Ψ0(u) ≥ Ψ1(u). Thus,
we have δΨ(u) = Ψ0(u)−Ψ1(u) ≥ 0.

Lemma 2.19. For every node u ∈ Nv, we have

δΦ(u, v) =

{
0 if u ∈ Nv(k, L);

−(1 + ε) if u ∈ Nv(0, k − 1).

Proof. Fix any node u ∈ Nv. We prove the lemma by considering two possible
scenarios:

1. We have u ∈ Nv(k, L). As the iteration decreases the level of the node v from
k to k− 1, we infer that Φ0(u, v) = Φ1(u, v) = (1 + ε) · (L− `(u)). Hence, we
get δΦ(u, v) = Φ1(u, v)− Φ0(u, v) = 0.

2. We have u ∈ Nv(0, k − 1). Since the iteration decreases the level of node v
from k to k− 1, we infer that Φ0(u, v) = (1 + ε) · (L−k) and Φ1(u, v)=(1+ε) ·
(L−k+1). Hence, we get δΦ(u, v)=Φ1(u, v)−Φ0(u, v)=−(1+ε).

We partition W 0
v into two parts: x and y. The first part denotes the contributions

towards W 0
v by the neighbors of v that lie below level k, while the second part denotes

the contribution towards W 0
v by the neighbors of v that lie on or above level k. Thus,

we get the following equations:

W 0
v = x+ y ≤ 1(18)

x =
∑

u∈Nv(0,k−1)

w0(u, v) = β−k ·Dv(0, k − 1)(19)

y =
∑

u∈Nv(k,L)

w0(u, v).(20)

Lemma 2.20. We have
∑
u∈Nv δΦ(u, v) = −(1 + ε) · x · βk.

Proof. Lemma 2.19 implies that
∑
u∈Nv δΦ(u, v) = −(1 + ε) · Dv(0, k − 1).

Applying (19), we infer that Dv(0, k − 1) = x · βk. The lemma follows.

Lemma 2.21. We have

δΨ(v) = −ε+ (α− x− y) ·
(
βk+1/(β − 1)

)
−max (0, α− βx− y) ·

(
βk/(β − 1)

)
.
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Proof. By (18), we have W 0
v = x+ y < 1. Since `0(v) = k, we get

(21) Ψ0(v) = ε(L− k) + (α− x− y) ·
(
βk+1/(β − 1)

)
.

As the node v decreases its level from k to k − 1, we have

w1(u, v) =

{
β · w0(u, v) if u ∈ Nv(0, k − 1);

w0(u, v) if u ∈ Nv(k, L).

Accordingly, we have W 1
v = β · x+ y, which implies the following equation:

(22) Ψ1(v) = ε(L− k + 1) + max(0, α− βx− y) ·
(
βk/(β − 1)

)
.

Since δΨ(v) = Ψ0(v)−Ψ1(v), the lemma now follows from (21) and (22).

Proof of Theorem 2.11 (for Case 2). We consider two possible scenarios depend-
ing upon the value of (α−βx−y). We show that in each case, δB ≥ βk. The theorem
(for Case 2) then follows from Lemma 2.17.

1. Suppose that (α − βx − y) < 0. From Lemmas 2.18, 2.20, and 2.21 and
from (13), we derive

ε · δB =
∑
u∈Nv

δΨ(u) +
∑
u∈Nv

δΦ(u, v) + δΨ(v),

≥ 0− (1 + ε) · x · βk − ε+ (α− x− y) · βk+1/(β − 1),

≥ −ε− (1 + ε) · βk + (α− 1) · βk+1/(β − 1), (18)

= −ε+
βk

(β − 1)
· {(α− 1) · β − (1 + ε)(β − 1)} ,

= −ε+ 2 · (1 + ε) · βk, (since α = 1 + 3ε and β = 1 + ε)

≥ ε · βk. (since β > 1, ε < 1)

2. Suppose that (α − βx − y) ≥ 0. From Lemmas 2.18, 2.20, and 2.21 and
from (13), we derive

ε · δB =
∑
u∈Nv

δΨ(u) +
∑
u∈Nv

δΦ(u, v) + δΨ(v),

≥ 0− (1 + ε) · x · βk − ε+ (α−x−y) · βk+1/(β−1)− (α−βx−y) · βk/(β − 1),

= −ε+
βk

(β − 1)
·
{

(α− x− y) · β − (1 + ε) · x · (β − 1)− (α− βx− y)
}
,

= −ε+
βk

(β − 1)
·
{

(α− x− y) · (β − 1)− ε · x · (β − 1)
}
,

≥ −ε+
βk

(β − 1)
·
{

(α− 1) · (β − 1)− ε · (β − 1)
}
, (since 0 ≤ x+ y ≤ 1)

= −ε+ 2 · ε · βk, (since α = 1 + 3ε and β = 1 + ε)

≥ ε · βk. (since β > 1)

3. Dynamic matching. In this section, we present algorithms for maintaining
an (approximately) maximum matching in a dynamic graph G = (V,E) with |V | = n
nodes and |E| = m edges. Note that the value of m changes with time as edges keep
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getting inserted into or deleted from the graph G. But the value of n always remains
the same, as we do not allow insertion or deletion of nodes. Our main results are
stated in the theorems below.

Theorem 3.1. We can maintain a (3 + ε)-approximate maximum matching in a
dynamic graph G = (V,E) in O

(
min

(√
n/ε,m1/3/ε2

))
amortized update time.

Theorem 3.2. We can maintain a (4 + ε)-approximate maximum matching in a
dynamic graph G = (V,E) in O(m1/3/ε2) worst-case update time.

To explain the main idea behind our approach, we first describe a naive algorithm
for maintaining a maximal matching.2 Let M ⊆ E be the maximal matching main-
tained by our naive algorithm. When an edge (u, v) is inserted into the input graph
G, we add the edge (u, v) to the matching M iff both the endpoints x ∈ {u, v} were
unmatched in M just before the insertion. When an unmatched edge (u, v) ∈ E \M
gets deleted from G, we do not change the matching M . Finally, when a matched
edge (u, v) ∈ M gets deleted from the graph G, we consider each of its endpoints
x ∈ {u, v} one after the other. While considering the node x, we scan all the neigh-
bors of x in the input graph G, searching for an unmatched node. If we are successful
in finding such a neighbor y of x that is unmatched, then we add the edge (x, y) to the
matching M . Otherwise, it means that every neighbor of x is matched in M , and in
this case, we let the node x remain unmatched. Clearly, this algorithm ensures that
the matching M ⊆ E is maximal. It takes O(1) time in the worst case to handle an
edge insertion in the input graph. In contrast, the time taken to handle the deletion
of an edge (u, v) from the input graph is at most the sum of the degrees of the two
endpoints u and v. Since a maximal matching gives 2-approximation to maximum
matching, we get the following theorem.

Theorem 3.3 (folklore). Consider a dynamic graph G = (V,E), where the maxi-
mum degree of any node is bounded by d ≥ 1 at every point in time. Then there exists
an algorithm for maintaining a 2-approximate maximum matching in G that handles
every edge insertion in O(1) worst-case time and every edge deletion in G in O(d)
worst-case time.

Neiman and Solomon [20] extended the above idea to show how to maintain a 3/2-
approximate maximum matching in a bounded degree graph. The following theorem
is a direct corollary of their work.

Theorem 3.4 ([20]). Consider a dynamic graph G = (V,E), where the maximum
degree of any node is bounded by d ≥ 1 at every point in time. Then there exists an
algorithm for maintaining a 3/2-approximate maximum matching in G that handles
every edge insertion in O(d) worst-case time and every edge deletion in G also in
O(d) worst-case time.

One crucial difference between Theorems 3.3 and 3.4 is that the former can handle
an edge insertion in O(1) worst-case time but the latter cannot. This difference will
turn out to be significant later on when we focus on bounding the worst-case update
time of our dynamic matching algorithm. The main message we take away from the
above two theorems is that maintaining an approximately maximum matching is easy
in bounded degree graphs. Thus, it seems natural to pursue the following approach
for general graphs:

2A maximal matching M ⊆ E has the following property: Every edge (u, v) ∈ E in the input
graph has at least one endpoint matched in M . It is well known that the size of any maximal
matching gives 2-approximation to the size of the maximum matching.
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• (Step 1) Maintain a bounded degree subgraph κ(G) = (V, κ(E)), κ(E) ⊆ E,
of the input graph G = (V,E). We call the subgraph κ(G) a kernel of G.

• (Step 2) Show that the kernel κ(G) approximately preserves the size of the
maximum matching in G.

• (Step 3) Maintain an approximately maximum matching in κ(G) using The-
orem 3.3 or 3.4.

We define the notion of a kernel in section 3.1. In Theorem 3.12, we show that a
kernel indeed preserves the size of the maximum matching within a constant factor.
The proof of Theorem 3.12 appears in section 3.2. In section 3.3, we present dynamic
algorithms for maintaing a kernel. We maintain an approximately maximum matching
on top of this kernel using Theorem 3.3 or 3.4. The first of our main results—
Theorems 3.1—follows from Corollaries 3.21 and 3.23. Finally, in section 3.4, we
present a dynamic matching algorithm with efficient worst-case update time, which
proves Theorem 3.2.

3.1. The kernel and its properties. We now introduce the notion of a kernel
in the input graph. Intuitively, a kernel is a bounded degree subgraph that preserves
the size of the maximum matching within a constant factor. To appreciate the precise
definition of a kernel, we first need to revisit the notion of a maximal c-matching.
Consider any integer c ≥ 0. A maximal c-matching in the input graph G = (V,E) is
a maximal subset of edges Ec ⊆ E such that every node v ∈ V has at most c incident
edges in Ec. In other words, a subset of edges Ec ⊆ E is a maximal c-matching iff (1)
every node x ∈ V has at most c incident edges in Ec and (2) every edge (u, v) ∈ E \Ec
has at least one endpoint x ∈ {u, v} such that x has exactly c neighbors in Ec. A
maximal c-matching can be constructed using a simple linear time greedy algorithm
as follows:

• Start by setting Ec ← ∅. Now, scan through the edges in E in any arbitrary
order. While considering an edge (u, v) ∈ E during this scan, insert the edge
(u, v) into the set Ec iff at the present moment both its endpoints u, v have
strictly less than c incident edges in Ec.

Consider any maximal c-matching Ec ⊆ E. Let Tc ⊆ V denote the subset of nodes
with degree exactly equal to c in the subgraph Gc = (V,Ec). Let Sc = V \ Tc denote
the remaining subset of nodes with degree strictly less than c in Gc. We say that
the nodes in Tc and Sc are tight and slack, respectively. Note that any maximal
c-matching satisfies the three properties stated below.

Property 3.5. Every node has degree at most c in the subgraph Gc.

Property 3.6. Every tight node has degree at least c in the subgraph Gc.

Property 3.7. Every edge in the input graph connecting two slack nodes is in-
cluded in the subgraph Gc.

Properties 3.5 and 3.6 follow from the definition of a maximal c-matching and
the definition of tight and slack nodes. Property 3.7 holds since the subset Ec ⊆ E
is maximal, meaning that no more edge can be added to Ec without violating the
condition that every node has degree at most c in Gc = (V,Ec). We are now ready
to define a kernel, which will be a relaxation of the concept of a maximal c-matching.

3.1.1. Defining a kernel. We start by introducing some notations that will
be used throughout the rest of section 3. In the input graph G = (V,E), we let
Nv = {u ∈ V : (u, v) ∈ E} denote the set of neighbors of v ∈ V . A kernel will be a
subgraph of G, and it will be denoted as κ(G) = (V, κ(E)) with κ(E) ⊆ E. For all
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v ∈ V , we define the set κ(Nv) = {u ∈ Nv : (u, v) ∈ κ(E)}, which consists of all the
neighbors of v in the kernel κ(G). The precise definition of a kernel is stated below.

Definition 3.8. Fix any integer c ≥ 1 and any ε ∈ (0, 1/3). Consider any
partition of the node set V into two subsets: T ⊆ V and S = V \ T . Say that the
nodes in T and S are tight and slack, respectively. The subgraph κ(G) is an (ε, c)-
kernel of G with respect to the partition (T, S) iff it satisfies Invariants 3.9–3.11.

Invariant 3.9. |κ(Nv)| ≤ (1 + ε)c for all v ∈ V ; i.e., a node has at most (1 + ε)c
neighbors in κ(G).

Invariant 3.10. |κ(Nv)| ≥ (1 − ε)c for all v ∈ T ; i.e., a tight node has at least
(1− ε)c neighbors in κ(G).

Invariant 3.11. For all u, v ∈ S, if (u, v) ∈ E, then (u, v) ∈ κ(E). In other
words, if two slack nodes are connected by an edge in G, then that edge must belong
to κ(G).

Note that Invariants 3.9, 3.10, and 3.11 are analogous to Properties 3.5, 3.6, and
3.7, respectively. Specifically, a (0, c)-kernel is nothing but a maximal c-matching.
From Invariant 3.9, it is immediately obvious that an (ε, c)-kernel is a subgraph with
bounded degree. The following theorem implies that such a subgraph also preserves
the size of the maximum matching within a constant factor. The proof of this theorem
is derived from a subsequent paper [6]. For the sake of completeness, we present the
detailed proof in section 3.2.

Theorem 3.12 ([6]). Consider any matching M∗ ⊆ E in the input graph G =
(V,E). Then there exists a matching M ⊆ κ(E) in any (ε, c)-kernel κ(G) = (V, κ(E))
such that |M∗| ≤ (2 + 42ε) · |M |.

3.2. Proof of Theorem 3.12. The proof uses the notion of a fractional match-
ing. Specifically, a fractional matching assigns a nonnegative (possibly fractional)
weight w(e) ∈ [0, 1] to every edge e ∈ E, subject to the constraint that

∑
(u,v)∈E w(u, v)

≤ 1 for all v ∈ V . In other words, in a fractional matching, the total weight received
by every node from all its incident edges is at most one. The size of a fractional
matching is defined as the sum of the weights of all the edges in the input graph. The
proof consists of three parts as described below:

1. We carefully construct a fractional matching {w(e)} in the input graph G =
(V,E). This construction depends on the matching M∗ ⊆ E and the kernel
κ(G).

2. We show that the size of M∗ is at most (2+20ε) times the size of this fractional
matching {w(e)}:

(23) |M∗| ≤ (2 + 20ε) ·
∑
e∈E

w(e).

3. We construct a matching M ⊆ κ(E) in the kernel and show that the size of
the fractional matching {w(e)} is at most (1 + ε) times the size of M :

(24)
∑
e∈E

w(e) ≤ (1 + ε) · |M |.

By (23) and (24), we have |M∗| ≤ (2 + 20ε)(1 + ε) · |M | ≤ (2 + 42ε) · |M |. This
concludes the proof of Theorem 3.12. We describe these three parts of the proof in
sections 3.2.2, 3.2.3, and 3.2.4, respectively. But first we need to define a few notations
that will be used throughout the rest of the proof.
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3.2.1. Notations. We define the parameter λ = d(1 + ε)ce. Let ET = {(u, v) ∈
κ(E) : {u, v} ∩ T 6= ∅} denote the set of all kernel edges with at least one tight
endpoint. Let M∗S = {(u, v) ∈M∗ : u, v ∈ S} denote the set of edges in the matching
M∗ whose both endpoints are slack. Let M∗T = {(u, v) ∈M∗ : {u, v}∩T 6= ∅} denote
the set of edges in the matching M∗ with at least one tight endpoint. Since the
subsets T ⊆ V and S = V \ T partition the node set V and since no two edges in the
matching M∗ share a common endpoint, we infer that the subsets M∗T and M∗S also
partition the set of edges in M∗. Finally, let κT (Nv) = {u ∈ Nv ∩ T : (u, v) ∈ κ(E)}
denote the set of tight neighbors of any node v ∈ V in the kernel.

3.2.2. Part 1: Constructing the fractional matching. We construct the
fractional matching in two phases. Initially, before the first phase, every edge has
weight zero. During the first phase, we increase the weight of every edge in ET from
0 to 1/λ. Thus, at the end of the first phase, for all nodes v ∈ V , we have Wv =
(1/λ) ·κT (Nv) ≤ (1/λ) ·κ(Nv) ≤ 1. The last inequality follows from Invariant 3.9. In
other words, at the end of the first phase, the total weight received by any node from
its incident edges is at most one. We now classify the edges in M∗S into two types, as
stated below:

• Type (a): Edges (u, v) ∈ M∗S , where Wu + Wv ≥ 1 at the end of the first
phase. Such edges have κT (Nu) + κT (Nv) ≥ λ.

• Type (b): Edges (u, v) ∈ M∗S , where Wu + Wv < 1 at the end of the first
phase. Such edges have κT (Nu) + κT (Nv) < λ.

In the second phase, we increase the weight of every type (b) edge (u, v) ∈ M∗S
from zero until the point where Wu + Wv becomes equal to one. Specifically, at
the end of the second phase, every type (b) edge (u, v) ∈M∗S has a weight w(u, v) =
1−(1/λ)·(κT (Nu) + κT (Nv)), every edge (u, v) ∈ ET has a weight w(u, v) = 1/λ, and
every other edge has zero weight. This completes the construction of the fractional
matching. The weight assigned to every edge in the input graph is summarized as

(25) w(u, v) =


1/λ if (u, v) ∈ ET ;

max
(

0, 1− κT (Nu)+κT (Nv)
λ

)
if (u, v) ∈M∗S ;

0 otherwise.

From the description above, it is easy to check that Wv ∈ [0, 1] for all nodes v ∈ V
at the end of our construction. Accordingly, the edge weights {w(e)} define a feasible
fractional matching in the input graph.

3.2.3. Part 2: Lower bounding the size of the fractional matching. We
will now show that the size of the matching M∗ ⊆ E is at most (2 + ε) times the size
of the fractional matching {w(e)} constructed in part (1). Specifically, we will show
that (23) holds.

Let V (M∗) ⊆ V be the set of endpoints of the matched edges in M∗. Since
each matched edge has two endpoints, we infer that |V (M∗)| = 2 · |M∗|. Similarly,
since each edge (u, v) ∈ E contributes w(u, v) towards the weights of both of its two
endpoints, we infer that

∑
v∈V Wv = 2 ·

∑
e∈E w(e). Thus, (23) is equivalent to the

following guarantee:
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|V (M∗)| ≤ (2 + 20ε) ·
∑
v∈V

Wv.(26)

We will show that (26) holds by proving that

Wu +Wv ≥ 1− 2ε for every edge (u, v) ∈M∗.(27)

If we sum (27) over all the edges (u, v) ∈M∗, then we get∑
x∈V (M∗)

Wx ≥ (1− 2ε) · |M∗| = (1− 2ε) · |V (M∗)|/2.

Rearranging the terms in the above inequality, we get

|V (M∗)| ≤ 2

(1− 2ε)
·
∑

x∈V (M∗)

Wx ≤ (2 + 20ε) ·
∑
v∈V

Wx.

The last inequality holds since ε ∈ (0, 1/3) according to Definition 3.8. In other
words, (27) implies (26), which, in turn, is equivalent to (23). It now remains to
prove (27).

Recall the notations defined in section 3.2.1. In that section, we also argued that
the set of edges in the matching M∗ is partitioned into two subsets M∗S ⊆ M∗ and
M∗T = M∗ \M∗S . To complete the proof of (27), we will show the following guarantee:

(28) Wu +Wv ≥

{
1− 2ε for every edge (u, v) ∈M∗T ;

1 for every edge (u, v) ∈M∗S .

Consider any edge (u, v) ∈ M∗T , and without any loss of generality, suppose that
v ∈ T . Invariant 3.10 ensures that the node v has at least (1 − ε)c = (1 − ε)λ/(1 +
ε) ≥ (1 − 2ε)λ many neighbors in the kernel. Since v ∈ T , each of these edges
(v, x) ∈ κ(E) belongs to the set ET . Note that (25) implies that each of these edges
gets a weight of 1/λ. Hence, we infer that Wv ≥ (1− 2ε)λ · (1/λ) ≥ 1− 2ε. Thus, we
get Wu +Wv ≥Wv ≥ 1− 2ε. In other words, (27) holds for every edge in M∗T .

Next, consider any edge (u, v) ∈ M∗S . We want to lower bound the sum of the
node weights Wu + Wv. The edges that contribute nonzero weights to this sum can
be classified into two types, as described below:

• (1) The edges in the kernel that connect u or v to some tight node. There are
exactly κT (Nu)+κT (Nv) many such edges, and each of them contributes 1/λ
towards the sum Wu+Wv (follows from (25)). Thus, their total contribution
towards the sum Wu +Wv is exactly equal to (1/λ) · (κT (Nu) + κT (Nv)).

• (2) The edge (u, v). Note that (25) implies that w(u, v) ≥ 1 − (1/λ) ·
(κT (Nu) + κT (Nv)). Further, note that the edge (u, v) contributes 2 ·w(u, v)
towards the sum Wu +Wv.

Summing over the contributions from these two types of edges, it follows that Wu +
Wv ≥ 1. In other words, (27) holds for every edge in M∗S as well.

3.2.4. Part 3: Constructing the matching M in the kernel. We will
use the notations from section 3.2.1, and we will prove (24). We first construct a
multigraph G = (V, E) defined on the node set of the input graph G = (V,E) as
follows. For every edge (u, v) ∈ ET , we create a multiedge (u, v) with a single copy
and add it to E . Finally, for every edge (u, v) ∈ M∗S , we create a multiedge (u, v)
with max (0, λ− κT (Nu)− κT (Nv)) many copies and add all these copies to E . This
concludes the construction of the multigraph G = (V, E). From the description in
section 3.2.2 and (25), it follows that the total weight assigned to all the edges in the
input graph is exactly equal to |E|/λ. More formally, we have
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DETERMINISTIC DYNAMIC VERTEX COVER AND MATCHING 879∑
e∈E

w(e) = |E|/λ.(29)

We will show that the multigraph G = (V, E) admits a proper edge coloring with
λ + 1 colors. Specifically, given a palette of λ + 1 colors, we will show how to assign
a color to every multiedge (counting all the copies) such that no two multiedges with
the same color share a common endpoint. The key observation is that the set of
multiedges receiving the same color form a matching, and, in particular, different
copies of multiedges between the same two nodes get different colors. Hence, a simple
counting argument implies that in a proper λ + 1 coloring of G, there must exist a
color that is assigned to at least |E|/(λ+ 1) many multiedges. This means that there
exists a matching M in G of size at least |E|/(λ + 1). Clearly, the set of edges M
also form a matching in the kernel κT (G) = (V, κ(E)): This is true because (1) the
multiedges in G originate from the edge set ET ∪M∗S in the input graph G = (V,E),
(2) ET ⊆ κ(E) by definition, and (3) M∗S ⊆ κ(E) due to Invariant 3.11. Thus, there
exists a matching M ⊆ κ(E) in the kernel of size |M | ≥ |E|/(λ+1). Now, (29) implies
that

∑
e∈E w(e) = |E|/λ ≤ ((λ+ 1)/λ) · |M | = (1 + 1/λ) · |M | ≤ (1 + ε) · |M |. This

concludes the proof of (24).
It now remains to show that G admits a proper edge coloring with λ + 1 colors.

Let GT = (V,ET ) denote the subgraph of the input graph G = (V,E) consisting of
all the kernel edges with at least one tight endpoint. Since ET ⊆ κ(E), Invariant 3.9
implies that the degree of every node in GT is at most λ. Hence, by Vizing’s theorem,
there exists a proper edge coloring of GT using only λ + 1 colors. Note that in the
multigraph G, each edge (u, v) ∈ ET is present in only one copy. Accordingly, we
color the multiedges originating from ET exactly the same way as done by the proper
λ + 1 coloring of GT . It now remains to color the multiedges originating from M∗S .
Towards this end, consider any edge (u, v) ∈M∗S . If κT (Nu) + κT (Nv) ≥ λ, then the
edge (u, v) contributes zero copy of multiedges to G, and hence we do not need to
assign any color for such an edge in G. Else, if κT (Nu) + κT (Nv) < λ, then the edge
(u, v) contributes λ−κT (Nu)−κT (Nv) = η (say) copies of multiedges to G. However,
there are at most κT (Nu) + κT (Nv) = λ − η many multiedges in G that originate
from ET and have an endpoint in {u, v}. Since the palette consists of λ+ 1 colors, it
means that there are at least (λ+ 1)− (λ− η) = η+ 1 colors that are not assigned to
any multiedge originating from ET with an endpoint in {u, v}. Accordingly, we can
properly color the η copies of the multiedge (u, v) with these η + 1 remaining colors,
ensuring that there is no conflict. This shows that there exists a proper λ + 1 edge
coloring in the multigraph G.

3.3. Dynamic algorithms for maintaining a kernel. Our focus in this sec-
tion is to present algorithms for maintaining an (ε, c)-kernel in a dynamic graph.
Towards this end, in section 3.3.1, we first present a generic template for maintaining
an (ε, c)-kernel and explain some of its important properties. Subsequently, using this
template, we present two concrete algorithms in section 3.3.2 for maintaining an (ε, c)-
kernel and analyze their amortized update times. As corollaries, we obtain algorithms
for maintaining an approximately maximum matching in a dynamic graph.

3.3.1. An algorithmic template. Suppose that just before the insertion/
deletion of an edge in G, we have a kernel κ(G) = (V, κ(E)) and a partition of
the node set V into subsets T ⊆ V and S = V \T that satisfy Invariants 3.9–3.11. We
describe how to update the kernel κ(G) and the partition (T, S) following the edge
insertion/deletion in G in such a way which ensures that Invariants 3.9–3.11 continue
to remain valid.
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Insertion of an edge (u, v) in G = (V,E). Suppose that an edge (u, v) is inserted
into the input graph. For every endpoint x ∈ {u, v}, if |Nx| ≥ c, then we ensure that
the node x is tight by setting T ← T ∪{x} and S ← S \{x}. Next, if both |κ(Nu)| < c
and |κ(Nv)| < c, then we perform the following operations:

• We insert the edge (u, v) into the kernel. Next, for all x ∈ {u, v}, if |κ(Nx)| =
c, then we set T ← T ∪ {x} and S ← S \ {x}. In other words, if the number
of neighbors of any endpoint x ∈ {u, v} happens to become equal to c due
to the insertion of the edge (u, v) into the kernel, then we ensure that the
endpoint x also becomes tight.

Lemma 3.13. If Invariants 3.9–3.11 were valid just before the insertion of the edge
(u, v) in G, then they continue to remain valid just after the execution of the above
procedure following the edge insertion.

Proof. We first focus on Invariant 3.9. The edge (u, v) gets inserted into the
kernel only if each of its endpoints had less than c neighbors in the kernel just before
the insertion of the edge in G. Hence, Invariant 3.9 continues to remain valid.

Next, we focus on Invariant 3.10. A node x changes from being slack to being
tight due to the above procedure only if |Nx| = c. Furthermore, the number of
neighbors a node has in the kernel does not decrease due to the above procedure.
Hence, Invariant 3.10 continues to remain valid.

Finally, we focus on Invariant 3.11. The above procedure never changes a node
from being tight to being slack. Thus, the only way Invariant 3.11 can get violated
is if an edge (u, v) is inserted between two slack nodes u and v in the input graph
G. In this event, if |Nx| ≥ c for any x ∈ {u, v} just before the insertion of the
edge (u, v) in G, then the procedure ensures that the node x changes from being
slack to being tight, which implies that Invariant 3.11 does not apply to the edge
(u, v) anymore. Else, if |Nx| < c for all x ∈ {u, v} just before the insertion of the
edge (u, v) in G, then the procedure adds the edge (u, v) to the kernel, which again
implies that Invariant 3.11 continues to remain valid for that edge. We therefore
conclude that Invariant 3.11 always continues to remain valid at the end of the above
procedure.

Lemma 3.14. The above procedure for handling an edge insertion in G takes O(1)
worst-case time.

Proof. Immediately follows from the description of the procedure.

Deletion of an edge (u, v) in G = (V,E). Suppose that an edge (u, v) is deleted
from the input graph. If the edge (u, v) was not part of the kernel just before getting
deleted from G, then we have nothing more to do. The interesting case is when the
edge (u, v) belongs to the kernel, and in this case, we first delete (u, v) from the
kernel after it gets deleted from G. Next, we perform the following operations for
every x ∈ {u, v} ∩ T with |κ(Nx)| < (1 − ε)c, that is, for every tight endpoint of
the edge (u, v) that is left with less than (1 − ε)c neighbors in the kernel due to the
deletion of (u, v):

• Make the node x slack by setting T ← T \ {x} and S ← S ∪ {x}.
• Scan through the edges incident on x in the input graph G. While considering

any such edge (x, y) ∈ E during this scan, perform the following operations:
– If (x, y) /∈ κ(E) and |κ(Nx)| < c and |κ(Ny)| < (1 + ε)c, then
∗ insert the edge (x, y) into the kernel. After this insertion, if |κ(Ny)| ≥
c, then ensure that the node y becomes tight by setting T ← T ∪{y}
and S ← S \ {y}. Finally, after this insertion, if |κ(Nx)| becomes
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equal to c, then ensure that x becomes tight again by setting T ←
T ∪ {x} and S ← S \ {x} and then abort the scan.

Lemma 3.15. If Invariants 3.9–3.11 were valid just before the deletion of the edge
(u, v) from G, then they continue to remain valid just after the execution of the above
procedure following the edge deletion.

Proof. We first focus on Invariant 3.9. This invariant can get violated only when
edges get inserted into the kernel. The only time an edge gets inserted into the kernel
due to the above procedure is when we are scanning the edges incident on an endpoint
x ∈ {u, v}. In that event, however, we insert an edge (x, y) into the kernel only if
|κ(Nx)| < c and |κ(Ny)| < (1 + ε)c. Hence, the above procedure can never result in a
node having more than (1 + ε)c neighbors in the kernel. So Invariant 3.9 continues to
remain valid.

We next focus on Invariant 3.10. The above procedure has the following property.
If the edge (u, v) belonged to the kernel just before getting deleted from G and if this
deletion decreases the value of |Nx| for any endpoint x ∈ {u, v} below the threshold
(1 − ε)c, then we immediately ensure that the node x becomes slack. Subsequently,
while scanning the neighbors of x in G, we never delete edges from the kernel, and we
change a node from being slack to tight only when its degree in the kernel becomes
greater than or equal to c. This implies that Invariant 3.10 continues to remain valid.

We finally focus on Invariant 3.11. Due to the above procedure, the only edge
that gets deleted from the kernel is the edge (u, v), and the only nodes that can
change from being tight to being slack are the endpoints u, v. Thus, Invariant 3.11
can get violated only for an edge incident on x ∈ {u, v}, and that too can happen
only when the node x changes from being tight to slack due to the above procedure.
Now, note that if any endpoint x ∈ {u, v} becomes slack, then the above procedure
starts scanning its neighboring edges in the input graph and tries to include as many
of these edges in the kernel as possible: This process stops only when either (a) the
node x changes again from being slack to being tight or (b) we finish scanning all the
edges incident on x in the input graph. In case (a), we clearly need not worry about
Invariant 3.11 being violated for any edge incident on the node x. Thus, it remains
to consider case (b). In this case, note that every edge (x, y) ∈ E incident on x either
belongs to the kernel or has |κ(Ny)| = (1 + ε)c. However, the above procedures for
handling the insertion and deletion of an edge in G together ensure that the node y
is tight whenever |κ(Ny)| is equal to (1 + ε)c. To summarize, in case (b), there is no
edge (x, y) ∈ E \ κ(E) whose other endpoint y is slack. Hence, the edges incident on
x do not violate Invariant 3.11 in case (b).

Lemma 3.16. The above procedure for handling an edge deletion in G takes time
proportional to the total number of neighbors (in G) of the endpoints x ∈ {u, v} that
are scanned.

Proof. Immediately follows from the description of the procedure.

We now describe three important properties that are satisfied by the above pro-
cedures for handling the insertion/deletion of an edge in G. First, note that these
procedures pay special attention to a node whenever the number of its neighbors in
the kernel increases by one. Specifically, whenever the number of neighbors of a node
in the kernel increases by one, the procedures check if the node has at least c neighbors
in the kernel. If the answer to this question is in the affirmative and if the node was
slack just prior to this event, then the node becomes tight (by moving from the set S
to the set T ). This implies the following property.
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Property 3.17. When a node changes from being slack to being tight, it has
degree at least c in the kernel.

Next, note that a node never changes from being tight to being slack due to the
insertion of an edge in the input graph G. Such an event can take place only if (1) an
edge (u, v) gets deleted from G, (2) the edge was also part of the kernel just before
its deletion, and (3) this deletion results in the degree in the kernel of some endpoint
x ∈ {u, v} dropping below the threshold (1−ε)c. If the endpoint x was tight just before
the deletion, then we make it slack at this time. This implies the following property.

Property 3.18. When a node changes from being tight to being slack, it has
degree at most (1− ε)c in the kernel.

The next property holds since we delete an edge from the kernel only when it gets
deleted from G.

Property 3.19. An edge gets deleted from the kernel only if it also gets deleted
from the input graph.

3.3.2. Two algorithms for maintaining an (ε, c)-kernel. In this section, we
present two algorithms for maintaining an (ε, c)-kernel in a dynamic graph and analyze
their amortized update times. Each of these algorithms uses the template described
in section 3.3.1 and implies an algorithm for maintaining an approximately maximum
matching in a dynamic graph. Our results are summarized in Theorems 3.20 and 3.22
and Corollaries 3.21 and 3.23.

Theorem 3.20. There is an algorithm that maintains an (ε, c)-kernel κ(G) =
(V, κ(E)) in a dynamic graph G = (V,E). The algorithm has an amortized update
time of O(n/(εc)), where n = |V | is the number of nodes in the input graph.

Proof. Initially, the input graph G = (V,E) is empty, and all the nodes are slack.
Thus, at this point in time, we have E = ∅, T = ∅, and S = V . Subsequently,
we handle the insertion/deletion of an edge in G as per the procedures outlined
in section 3.3.1. From Lemmas 3.13 and 3.15, we infer that this algorithm always
maintains an (ε, c)-kernel in G. We now focus on bounding the amortized update
time of this algorithm.

Clearly, handling an edge insertion takes O(1) time in the worst case. On the
other hand, handling an edge deletion takes Ω(1) time only if an endpoint (say x) of
the edge being deleted changes from being tight to being slack. Further, the time spent
on such an event is O(n) since in the worst case, we might need to scan every neighbor
of x in G and x can have at most n − 1 neighbors. However, Properties 3.17, 3.18,
and 3.19 imply that between any two consecutive events like this, at least εc edges
incident on x must have been deleted from G. Thus, we can charge the O(n) time
spent on the node x during this event to εc many edge deletions incident on x. This
gives an amortized update time of O(n/(εc)).

Corollary 3.21. We can maintain a (3 + ε)-approximate maximum matching
in a dynamic graph G = (V,E) in O(

√
n/ε) amortized update time.

Proof. Set c =
√
n. We run the algorithm for maintaining an (ε, c)-kernel κ(G) =

(V, κ(E)) as outlined in the proof of Theorem 3.20. We further maintain a 3/2-
approximate maximum matching M ′ ⊆ κ(E) in the kernel κ(G) as per Theorem 3.4.
Applying Theorem 3.12, we infer that the matching M ′ ⊆ κ(E) ⊆ E is a (3/2) · (2 +
42ε) = (3 + 21ε)-approximate maximum matching in the input graph G = (V,E). It
now remains to analyze the amortized update time of this procedure.
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Theorem 3.20 implies that it takes only O(n/(εc)) = O(
√
n/ε) amortized update

time to maintain the kernel κ(G). For the rest of the proof, we therefore focus
on bounding the amortized time spent on maintaining the matching M ′ ⊆ κ(E) in
the kernel. Note that due to an edge insertion in the input graph G = (V,E), at
most one edge can get inserted into the kernel. In contrast, due to the deletion
of an edge (u, v) from G, at most c edges might get inserted into the kernel for
every endpoint x ∈ {u, v}. However, as discussed in the proof of Theorem 3.20,
such an event can occur only after the concerned endpoint x has lost εc many edges
in G. Thus, on average, O(1/ε) edges get inserted into or deleted from the kernel
per edge insertion/deletion in G. Hence, from Theorem 3.4 and Invariant 3.9, we
infer that the amortized update time for maintaining the matching M ′ is at most
(1/ε) · (1 + ε)c = O(

√
n/ε).

Theorem 3.22. There is an algorithm that maintains an (ε, c)-kernel κ(G) =
(V, κ(E)) in a dynamic graph G = (V,E). The algorithm has an amortized update
time of O(c + m/(ε2c2)), where m = |E| is the current number of edges in the input
graph.

Proof. The algorithm runs in phases, where each phase consists of a sequence of
consecutive edge insertions/deletions in the input graph. Consider any phase ϕ, and
let m denote the number of edges in the input graph G = (V,E) in the beginning of
a phase. Then the phase ϕ lasts for the next m/(ε2c2) edge insertions/deletions in G.
Typically, for large enough c, the quantity m/(ε2c2) is sublinear in m, which implies
that the total number of edges in G remains Θ(m) throughout the duration of the
phase.

In the beginning of a phase, we compute a maximal c-matching M ⊆ E in
G = (V,E). Let T ⊆ V denote the subset of nodes with degree exactly equal to
c in this maximal-c matching, and let S = V \ T be the remaining set of nodes with
degree less than c in M . From the discussion in section 3.1, it follows that the set
of edges M , together with the partition (T, S) of the node set, defines a (0, c)-kernel
κ(G) = (V, κ(E)) in G in the beginning of this phase, where κ(E) = M . Using the
natural greedy algorithm, constructing this (0, c)-kernel requires Θ(m) time. Since a
(0, c)-kernel is also an (ε, c)-kernel, we have an (ε, c)-kernel of G ready for us when the
phase begins. During the phase, after each edge insertion/deletion in G, we update
the kernel as per the procedures in section 3.3.1. When the current phase ends, we
compute a new kernel in the beginning of the next phase and repeat. Lemmas 3.13
and 3.15 imply that this algorithm always maintains an (ε, c)-kernel in G. We now
bound the amortized update time of this algorithm.

Throughout the following discussion, we repeatedly refer to the procedures for
handling an edge insertion/deletion as outlined in section 3.3.1. The reader, there-
fore, will find it helpful to keep the descriptions of these two procedures in mind.
First, note that handling an edge insertion in G in the middle of a phase requires
O(1) worst-case time (see Lemma 3.14). In contrast, while handling the deletion of
an edge (u, v) from G in the middle of a phase, we spend time O(1) plus the total
number of neighbors of each endpoint x ∈ {u, v} that are scanned by the concerned
procedure (see Lemma 3.16). We claim that at most c neighbors of any endpoint
x ∈ {u, v} gets scanned after the deletion of an edge (u, v). This implies that an edge
deletion in G is handled in O(c) worst-case time in the middle of a phase. To see why
the claim is true, note that as per the discussion in the previous paragraph, we have
|κ(N (y))| ≤ c for every node y ∈ V in the beginning of the phase. During the phase,
the value of |κ(N (y))| never exceeds c due to an edge insertion in G. In contrast,
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due to an edge deletion in G, the value of |κ(N (y))| increases by one only if some
neighbor x of y becomes slack and we scan the edge (x, y). We now focus on such a
neighbor x:

• Consider a time step (say t) in the middle of the phase when the node x
scans the edge (x, y) and adds it to the kernel, thereby increasing the value
of |κ(Ny)| by one. From the description of the procedure in section 3.3.1, it
follows that the node x changes from being tight to being slack just before
starting to scan its incident edges at time t. Let t′ < t be the last time step
before t when the node x changed from being slack to being tight, and if
no such time step exists, then let t′ be the time step denoting the beginning
of the phase. At time step t′, we had |κ(Nx)| = c, whereas at time step t,
we have |κ(Nx)| ≤ (1 − ε)c. These observations follow from Properties 3.17
and 3.18. Furthermore, as per Property 3.19, the value of |κ(Nx)| decreases
by one only when an edge incident on x gets deleted from G. Thus, we con-
clude that at least εc edges incident on x gets deleted from G during the time
interval [t′, t]. We charge the increase in the value of |κ(Ny)| at time step t
to these edge deletions during time interval [t′, t]. In other words, each time
the value of |κ(Ny)| increases by one while handling an edge deletion in G,
we can find εc new edge deletions in G that were responsible for this event.
Since the current phase lasts only for ε2c2 many edge deletions in G and since
|κ(Ny)| ≤ c in the beginning of the phase, the value of |κ(Ny)| can never
exceed (1 + ε)c during the phase.

Now, let us look back at the scenario where a node x starts scanning its incident
edges after becoming slack. Just before starting the scan, the node x had |κ(Nx)| =
(1− ε)c− 1. During the scan, whenever the node x finds an edge (x, y) that is not in
the kernel, the preceding discussion implies that |κ(Ny)| < (1 + ε)c. In other words,
each time the node x finds an incident edge that is not part of the kernel during the
scan, it is able to include that edge into the kernel and increase the value of |κ(Nx)|
by one. Accordingly, after scanning at most c of its incident edges, the node x will
manage to ensure that |κ(Nx)| becomes equal to c. Hence, an edge deletion in G will
require O(c) time in the worst case in the middle of the phase.

To summarize, we have concluded that handling an edge insertion/deletion in G
in the middle of the phase requires O(c) time in the worst case. Next, recall that
computing the initial kernel in the beginning of the phase requires Θ(m) time, but
we can amortize this cost across the ε2c2 many edge insertions/deletions during the
phase. This gives a total amortized update time of O(c+m/(ε2c2)).

Corollary 3.23. We can maintain a (3 + ε)-approximate maximum matching
in a dynamic graph G = (V,E) in O(m1/3/ε2) amortized update time.

Proof. We maintain a kernel κ(G) = (V, κ(E)) in the input graph G = (V,E) as
per the algorithm outlined in the proof of Theorem 3.22. We set c = m1/3. Hence, it
takes O(c + m/(ε2c2)) = O(m1/3/ε2) amortized update time to maintain the kernel.
We further maintain a matching M ′ ⊆ κ(E) on the kernel as follows.

In the beginning of a phase, we simply compute a (3/2)-approximate maximum
matching M ′ ⊆ κ(E) in the kernel. This requires Θ(m) time. We distribute this cost
over the duration of a phase, thereby contributing O(m/(ε2c2)) = O(m1/3/ε2) to-
wards the amortized update time. During the phase, whenever an edge gets inserted
into or deleted from the kernel, we update the matching M ′ as per Theorem 3.4.
Using exactly the same argument as in the proof of Corollary 3.21, we conclude that
each edge insertion/deletion in G leads to O(1/ε) edge insertions/deletions in the
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kernel κ(G) on average. Hence, as per Theorem 3.4 and Invariant 3.9, maintaining
the matching M ′ during a phase requires O((1 + ε)c/ε) = O(m1/3/ε) amortized up-
date time. To summarize, we spend an overall O(m1/3/ε2) amortized update time
to maintain the matching M ′ in the kernel κ(G). It now remains to analyze the
approximation guarantee.

By Theorem 3.12, the kernel κ(G) preserves the size of the maximum matching
in G up to a factor of (2 + 42ε). Since M ′ is a (3/2)-approximate maximum matching
in the kernel κ(G), we infer that M ′ is also a (3/2) · (2+42ε) = (3+21ε)-approximate
maximum matching in the input graph G.

3.4. Getting worst-case update time: Proof of Theorem 3.2. To get
worst-case update time, we extend the algorithm outlined in the proofs of Theorem
3.22 and Corollary 3.23. Recall that this algorithm runs in phases. The key observa-
tion is that within a phase, we already have O(c) worst-case update time. Specifically,
we have the following lemma.

Lemma 3.24. Consider the algorithm presented in the proof of Theorem 3.22 for
maintaining an (ε, c)-kernel κ(G) = (V, κ(E)) in the input graph G = (V,E). Within
a given phase, the algorithm has O(c) worst-case update time. Furthermore, within a
given phase, one edge insertion/deletion in G can lead to at most O(c) edge insertions
and O(1) edge deletions in κ(G).

Proof. Consider the insertion of an edge (u, v) in G in the middle of a phase. This
insertion is handled as per the procedure section 3.3.1. By Lemma 3.14, this takes
O(1) time, and clearly this leads to at most one edge insertion in the kernel κ(G).

Next, consider the deletion of an edge (u, v) from G in the middle of a phase.
This deletion is also handled as per the procedure in section 3.3.1. By Lemma 3.16,
this takes time proportional to the total number of neighbors of the endpoints x ∈
{u, v} that are scanned. From the description of the procedure, it follows that at
most O(c) edges get inserted into the kernel during the scan. Finally, in the proof
of Theorem 3.22, we argued that at most c edges get scanned for every endpoint
x ∈ {u, v}. Hence, the procedure takes O(c) worst-case time.

We claim that using Lemma 3.24, one can maintain, within a given phase, a (4+ε)-
approximate maximum matching in G in O(c) = O(m1/3) worst-case update time.
To see why this is true, within a given phase simply maintain a maximal matching
M ⊆ κ(E) in the kernel using Theorem 3.3. Because of maximality, the matching M
will be a 2-approximation to the size of the maximum matching in the kernel κ(G).
Hence, by Theorem 3.12, the same matching M will be a 2 · (2 + 42ε) = (4 + 84ε)-
approximate maximum matching in G. By Lemma 3.24, an edge insertion/deletion
in G leads to at most O(c) edge insertions and at most one edge deletion in the kernel
κ(G). By Theorem 3.3, while maintaining the matching M in the kernel κ(G), each
edge insertion in κ(G) is handled in O(1) worst-case time, and each edge deletion in
κ(G) is handled in O(c) worst-case time. Thus, it takes O(c) time in the worst-case to
update the matching in M after an edge insertion/deletion in the input graph G.3 To
summarize, within a given phase, we can maintain a (4 + ε)-approximate maximum
matching in G in O(c) = O(m1/3) worst-case update time.

3At this point, it should be clear to the reader why we could not get (3 + ε)-approximation
in O(m1/3/ε2) worst-case update time, for that would require us to maintain a (3/2)-approximate
matching in the kernel. Theorem 3.4 would then imply that we would have to spend O(c) worst-case
time after every edge insertion in the kernel. Coupled with the fact that an edge insertion/deletion
in G can lead to Ω(c) edge insertions in κ(G), we would end up with a worst-case update time of
Ω(c2).
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On the other hand, in the beginning of a phase, we have to compute an initial ker-
nel κ(G) = (V, κ(E)), with κ(E) ⊆ E, and a matching M ⊆ κ(E) in this kernel. This
takes Θ(m) time, and we distribute this cost over the Θ(ε2c2) edge insertions/deletions
during a phase. This leads to an amortized update time of O(m/(ε2c2)). This is the
only place where we have to use amortization. However, we can make the update
time for this part of the algorithm worst case by using the standard concept of pe-
riodic rebuilding. Basically, we prepare for the next phase while handling the edge
insertions/deletions in the current phase. Note that we need to do Θ(m) amount of
computation at the end of the current phase to get the initial kernel and the matching
for the next phase. We perform Θ(m/(ε2c2)) amount of this computation after each
edge insertion/deletion in the current phase. Thus, when the current phase ends after
ε2c2 edge insertions/deletions, we have already done Θ(m/(ε2c2)) · (ε2c2) = Θ(m)
amount of computation, which is sufficient to create the initial kernel and the match-
ing for the next phase. This way, we get Θ(m/(ε2c2)) worst-case update time for
preparing the kernel and the matching in the beginning of a phase. Adding the time
for maintaing the kernel and the matching in the middle of a phase, we get a total
worst-case update time of Θ(c+m/(ε2c2)) = Θ(m1/3/ε2).
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published as Vol. 121 of the North-Holland Mathematics Studies, North-Holland Publish-
ing, Amsterdam.

[17] A. Madry, Navigating central path with electrical flows: From flows to matchings, and back,
in 54th IEEE Symposium on Foundations of Computer Science, Berkeley, CA, IEEE Com-
puter Society, 2013, pp. 253–262.

[18] S. Micali and V. V. Vazirani, An O(
√
|V | |E|) algorithm for finding maximum matching in

general graphs, in 21st IEEE Symposium on Foundations of Computer Science, Syracuse,
NY, IEEE Computer Society, 1980, pp. 17–27.

[19] M. Mucha and P. Sankowski, Maximum matchings via Gaussian elimination, in 45th IEEE
Symposium on Foundations of Computer Science, Rome, Italy, IEEE Computer Society,
2004, pp. 248–255.

[20] O. Neiman and S. Solomon, Simple deterministic algorithms for fully dynamic maximal
matching, in 45th ACM Symposium on Theory of Computing, Palo Alto, CA, ACM, 2013,
pp. 745–754.

[21] K. Onak and R. Rubinfeld, Maintaining a large matching and a small vertex cover, in 42nd
ACM Symposium on Theory of Computing, Cambridge, MA, ACM, 2010, pp. 457–464.

[22] P. Sankowski, Faster dynamic matchings and vertex connectivity, in 18th ACM-SIAM Sym-
posium on Discrete Algorithms, New Orleans, LA, SIAM, 2007, pp. 118–126.

[23] S. Solomon, Fully dynamic maximal matching in constant update time, in 57th IEEE Sympo-
sium on Foundations of Computer Science, New Brunswick, NJ, IEEE Computer Society,
2016, pp. 325–334.

D
ow

nl
oa

de
d 

08
/2

0/
18

 to
 1

31
.1

30
.1

69
.5

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Previous work
	Our results
	Our techniques
	Subsequent work

	Deterministic fully dynamic vertex cover
	The (,)-partition and its properties
	Data structures
	Handling the insertion/deletion of an edge
	Bounding the amortized update time: Detailed analysis
	Analysis of the time spent on the WHILE loop in Figure 1


	Dynamic matching
	The kernel and its properties
	Defining a kernel

	Proof of Theorem 3.12
	Notations
	Part 1: Constructing the fractional matching
	Part 2: Lower bounding the size of the fractional matching
	Part 3: Constructing the matching M in the kernel

	Dynamic algorithms for maintaining a kernel
	An algorithmic template
	Two algorithms for maintaining an (,c)-kernel

	Getting worst-case update time: Proof of Theorem 3.2

	References

