
Information and Computation 261 (2018) 219–239
Contents lists available at ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Dynamic algorithms via the primal-dual method ✩

Sayan Bhattacharya a,∗, Monika Henzinger b, Giuseppe Italiano c

a University of Warwick, Coventry, UK
b University of Vienna, Austria
c University of Rome Tor Vergata, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 May 2015
Available online 8 February 2018

Keywords:
Dynamic algorithms
Primal-dual method
Data structures

We develop a dynamic version of the primal-dual method for optimization problems, and
apply it to obtain the following results. (1) For the dynamic set-cover problem, we maintain
an O (f 2)-approximately optimal solution in O (f · log(m + n)) amortized update time,
where f is the maximum “frequency” of an element, n is the number of sets, and m is the
maximum number of elements in the universe at any point in time. (2) For the dynamic
b-matching problem, we maintain an O (1)-approximately optimal solution in O (log3 n)

amortized update time, where n is the number of nodes in the graph.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The primal-dual method lies at the heart of the design of algorithms for combinatorial optimization problems. The basic
idea, contained in the “Hungarian Method” [1], was extended and formalized by Dantzig et al. [2] as a general framework for
linear programming, and thus it became applicable to a large variety of problems. A few decades later, Bar-Yehuda et al. [3]
were the first to apply the primal-dual method to the design of approximation algorithms. Subsequently, this paradigm was
applied to obtain approximation algorithms for a wide collection of NP-hard problems [4,5]. When the primal-dual method
is applied to approximation algorithms, an approximate solution to the problem and a feasible solution to the dual of an
LP relaxation are constructed simultaneously, and the performance guarantee is proved by comparing the values of both
solutions. The primal-dual method was also extended to online problems [6]. Here, the input is revealed only in parts, and
an online algorithm is required to respond to each new input upon its arrival (without being able to see the future). The
algorithm’s performance is compared against the benchmark of an optimal omniscient algorithm that can view the entire
input sequence in advance.

In this paper, we focus on dynamic algorithms for optimization problems. In the dynamic setting, the input of a problem
is being changed via a sequence of updates, and after each update one is interested in maintaining the solution to the
problem much faster than recomputing it from scratch. We remark that the dynamic and the online setting are completely
different: in the dynamic scenario one is concerned more with guaranteeing fast (worst-case or amortized) update times
rather than comparing the algorithms’ performance against optimal offline algorithms. As a main contribution of this paper,
we develop a dynamic version of the primal-dual method, thus opening up a completely new area of application of the
primal-dual paradigm to the design of dynamic algorithms. With some careful insights, our recent algorithms for dynamic

✩ An extended abstract of this paper appeared in the 42nd International Colloquium on Automata, Languages, and Programming (ICALP 2015).

* Corresponding author.
E-mail addresses: S.Bhattacharya@warwick.ac.uk (S. Bhattacharya), monika.henzinger@univie.ac.at (M. Henzinger), giuseppe.italiano@uniroma2.it
(G. Italiano).

https://doi.org/10.1016/j.ic.2018.02.005
0890-5401/© 2018 Elsevier Inc. All rights reserved.

220 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
matching and dynamic vertex cover [7] can be reinterpreted in this new framework. In this paper, we show how to apply
the new dynamic primal-dual framework to the design of two other optimization problems: the dynamic set-cover and the
dynamic b-matching. Before proceeding any further, we formally define these problems.

Definition 1.1 (Set-Cover). We are given a universe U of at most m elements, and a collection S of n sets S ⊆ U . Each set
S ∈ S has a (polynomially bounded by n) “cost” cS > 0. The goal is to select a subset S ′ ⊆ S such that each element in U is
covered by some set S ∈ S ′ and the total cost

∑
S∈S ′ c(S) is minimized.

Definition 1.2 (Dynamic Set-Cover). Consider a dynamic version of the problem specified in Definition 1.1, where the collec-
tion S , the costs {cS }, S ∈ S , the upper bound f on the maximum frequency maxu∈U |{S ∈ S : u ∈ S}|, and the upper bound
m on the maximum size of the universe U remain fixed. The universe U , on the other hand, keeps changing dynamically. In
the beginning, we have U = ∅. At each time-step, either an element u is inserted into the universe U and we get to know
which sets in S contain u, or some element is deleted from the universe. The goal is to maintain an approximately optimal
solution to the set-cover problem in this dynamic setting.

Definition 1.3 (b-Matching). We are given an input graph G = (V , E) with |V | = n nodes, where each node v ∈ V has a
capacity cv ∈ {1, . . . , n}. A b-matching is a subset E ′ ⊆ E of edges such that each node v has at most cv edges incident to it
in E ′ . The goal is to select the b-matching of maximum cardinality.

Definition 1.4 (Dynamic b-Matching). Consider a dynamic version of the problem specified in Definition 1.3, where the node
set V and the capacities {cv }, v ∈ V remain fixed. The edge set E , on the other hand, keeps changing dynamically. In the
beginning, we have E = ∅. At each time-step, either a new edge is inserted into the graph or some existing edge is deleted
from the graph. The goal is to maintain an approximately optimal solution to the b-matching problem in this dynamic
setting.

As stated in [6,8], the set-cover problem has played a pivotal role both for approximation and for online algorithms,
and thus it seems a natural problem to consider in our dynamic setting. Our definition of dynamic set-cover is inspired by
the standard formulation of the online set-cover problem [6], where the elements arrive online. There exists algorithms for
online set cover that achieve a competitive ratio of O (log n log m) [6], and it is also known that this bound is asymptotically
tight [9].

Our Techniques. Roughly speaking, our dynamic version of the primal-dual method works as follows. We start with a feasible
primal solution and an infeasible dual solution for the problem at hand. Next, we consider the following process: gradually
increase all the primal variables at the same rate, and whenever a primal constraint becomes tight, stop the growth of all
the primal variables involved in that constraint, and update accordingly the corresponding dual variable. This primal growth
process is used to define a suitable data structure based on a hierarchical partition. A level in this partition is a set of the
dual variables whose corresponding primal constraints became (approximately) tight at the same time-instant. To solve the
dynamic problem, we maintain the data structure, the hierarchical partition and the corresponding primal-dual solution
dynamically using a simple greedy procedure. This is sufficient for solving the dynamic set-cover problem. For the dynamic
b-matching problem, we need some additional ideas. We first get a fractional solution to the problem using the previous
technique. To obtain an integral solution, we perform randomized rounding on the fractional solution in a dynamic setting.
This is done by sampling the edges with probabilities that are determined by the fractional solution.

Our Results. Our new dynamic primal-dual framework yields efficient dynamic algorithms for both the dynamic set-
cover problem and the dynamic b-matching problem. In particular, for the dynamic set-cover problem we maintain a
O (f 2)-approximately optimal solution in O (f · log(m + n)) amortized update time (see Theorem 3.2 in Section 3). On
the other hand, for the dynamic b-matching problem, we maintain a O (1)-approximation in O (log3 n) amortized time per
update (see Theorem 4.8 in Section 4). Further, we can show that an edge insertion/deletion in the input graph, on average,
leads to O (log2 n) changes in the set of matched edges maintained by our algorithm.

Related Work. The design of dynamic algorithms is one of the classic areas in theoretical computer science with a countless
number of applications. Dynamic graph algorithms have received special attention, and there have been many efficient
algorithms for several dynamic graph problems, including dynamic connectivity, minimum spanning trees, transitive closure,
shortest paths and matching problems (see, e.g., the survey in [10]). The b-matching problem contains as a special case
matching problems, for which many dynamic algorithms are known [11,7,12–14]. Unfortunately, none of the results on
dynamic matching extends to the dynamic b-matching problem. To the best of our knowledge, no previous result was
known for dynamic set-cover problem.

In the static setting, a simple greedy algorithm for the set-cover problem gives an O (log n) approximation [15], whereas
a primal-dual algorithm gives an f -approximation [3]. Both the algorithms run in O (f · (m + n))-time. On the other hand,
there exists some constant c > 0 such that obtaining a c log n-approximation to the set cover problem in polynomial time
will imply P = N P [16]. Similarly, under the Unique-Games conjecture, one cannot obtain a better than f -approximation to

the set cover problem in polynomial time [17].

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 221
For the maximum b-matching problem, the best known exact algorithm runs in O (mn logn)-time [18] in the static
setting, where n (resp. m) is the number of nodes (resp. edges) in the graph. Very recently, Ahn and Guha [19] pre-
sented another static algorithm that runs in O (m · poly(δ−1, logn))-time and returns a (1 + δ)-approximation for maximum
b-matching, for any δ > 0.

Roadmap for the rest of the paper. We first define a problem called “fractional hypergraph b-matching” (see Definitions 1.5
and 1.6). In Section 2, we show how to maintain a fractional hypergraph b-matching in a dynamic setting. In Section 3, we
use our result from Section 2 to design a dynamic algorithm for set cover. Finally, in Section 4 we present our result for
dynamic b-matching.

Definition 1.5 (Fractional Hypergraph b-Matching). We are given an input hypergraph G = (V , E) with |V | = n nodes and at
most m ≥ |E| edges. Let Ev ⊆ E denote the set of edges incident upon a node v ∈ V , and let Ve = {v ∈ V : e ∈ Ev} denote
the set of nodes an edge e ∈ E is incident upon. Let cv > 0 denote the “capacity” of a node v ∈ V , and let μ ≥ 1 denote the
“multiplicity” of an edge. We assume that the μ and the cv values are polynomially bounded by n. Our goal is to assign a
“weight” x(e) ∈ [0, μ] to each edge e ∈ E in such a way that (a)

∑
e∈Ev

x(e) ≤ cv for all nodes v ∈ V , and (b) the sum of the
weights of all the edges is maximized.

Definition 1.6 (Dynamic Fractional Hypergraph b-Matching). Consider a dynamic version of the problem specified in Defini-
tion 1.5, where the node-set V , the capacities {cv}, v ∈ V , the upper bound f on the maximum frequency maxe∈E |Ve|, and
the upper bound m on the maximum number of edges remain fixed. The edge-set E , on the other hand, keeps changing
dynamically. In the beginning, we have E = ∅. At each time-step, either an edge is inserted into the graph or an edge is
deleted from the graph. The goal is to maintain an approximately optimal solution to the problem in this dynamic setting.

2. Maintaining a fractional hypergraph b-matching in a dynamic setting

2.1. Preliminaries

We first define a linear program for fractional hypergraph b-matching (Definition 1.5). Next, we define the concept of a
“λ-maximal” solution of this LP (Definition 2.1) and prove the approximation guarantee for such a solution (Theorem 2.2).
Our main result is summarized in Theorem 2.3 and Corollary 2.4.

Below, we write a linear program for a fractional hypergraph b-matching.

Primal LP: Maximize
∑
e∈E

x(e) (1)

subject to:
∑
e∈Ev

x(e) ≤ cv ∀v ∈ V . (2)

0 ≤ x(e) ≤ μ ∀e ∈ E. (3)

Dual LP: Minimize
∑
v∈V

cv · y(v) +
∑
e∈E

μ · z(e) (4)

subject to: z(e) +
∑
v∈Ve

y(v) ≥ 1 ∀e ∈ E. (5)

y(v), z(e) ≥ 0 ∀v ∈ V , e ∈ E. (6)

We next define the concept of a “λ-maximal” solution.

Definition 2.1. A feasible solution to LP (1) is λ-maximal (for λ ≥ 1) iff for every edge e ∈ E with x(e) < μ, there is some
node v ∈ Ve such that

∑
e′∈Ev

x(e′) ≥ cv/λ.

Theorem 2.2. Let f ≥ maxe∈E |Ve| be an upper bound on the maximum possible “frequency” of an edge. Let OPT be the optimal
objective value of LP (1). Any λ-maximal solution to LP (1) has an objective value that is at least OPT/(λ f + 1).

Proof. Let {x∗(e)} be a λ-maximal solution to the primal LP. Construct a dual solution {y∗(v), z∗(e)}, as follows. For every
v ∈ V , set y∗(v) = 1 if

∑
e∈Ev

x∗(e) ≥ cv/λ, and y∗(v) = 0 otherwise. For every e ∈ E , set z∗(e) = 1 if x∗(e) = μ and z∗(e) = 0
otherwise.

Consider the dual constraint corresponding to any edge e′ ∈ E . Since the primal solution {x∗(e)} is λ-maximal, either
x∗(e) = μ or there is some v ′ ∈ Ve′ for which y∗(v ′) = 1. In the former case we have z∗(e) = 1, whereas in the latter case
we have y∗(v ′) = 1. Hence, the dual constraint under consideration is satisfied. This shows that the values {y∗(v), z∗(e)},

constitute a feasible dual solution. Next, we infer that:

222 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
∑
v∈V

cv · y∗(v) +
∑
e∈E

μ · z∗(e)

=
∑

v∈V :y∗(v)=1

cv +
∑

e∈E:z∗(e)=1

μ (7)

≤
∑

v∈V :y∗(v)=1

λ ·
∑
e∈Ev

x∗(e) +
∑

e∈E:z∗(e)=1

x∗(e) (8)

≤
∑
v∈V

λ ·
∑
e∈Ev

x∗(e) +
∑
e∈E

x∗(e)

≤ λ · f ·
∑
e∈E

x∗(e) +
∑
e∈E

x∗(e) (9)

= (λ f + 1) ·
∑
e∈E

x∗(e)

Equation (7) holds since y∗(v) ∈ {0, 1} for all v ∈ V and z∗(e) ∈ {0, 1} for all e ∈ E . Equation (8) holds since y∗(v) = 1 only
if

∑
e∈Ev

x∗(e) ≥ cv/λ, and since x∗(e) = μ for all e ∈ E with z∗(e) = 1. Equation (9) holds since each edge can be incident
upon at most f nodes.

Thus, we have constructed a feasible dual solution whose objective is at most (λ f + 1)-times the objective of the
λ-maximal primal solution. The theorem now follows from weak duality.

Our main result is summarized below. For the rest of Section 2, we focus on proving Theorem 2.3.

Theorem 2.3. We can maintain a (f + 1 + ε f)-maximal solution to the dynamic fractional hypergraph b-matching problem in
O (f · log(m + n)/ε2) amortized update time.

Corollary 2.4. We can maintain an O (f 2)-approximate solution to the dynamic hypergraph b-matching problem in O (f log(m +
n)/ε2) amortized update time.

Proof. Follows from Theorem 2.2 and Theorem 2.3.

2.2. The (α, β)-partition and its properties

For the time being, we restrict ourselves to the static setting. Inspired by the primal-dual method for set-cover, we
consider the following algorithm for the fractional hypergraph b-matching problem.

• Consider an initial primal solution with x(e) ← 0 for all e ∈ E , and define F ← E .
• While there is some primal constraint that is not tight:

– Keep increasing the primal variables {x(e)}, e ∈ F , uniformly at the same rate till some primal constraint becomes
tight. At that instant, “freeze” all the primal variables involved in that constraint and delete them from the set F , and
set the corresponding dual variable to one.

In Fig. 1, we define a variant of the above procedure that happens to be easier to maintain in a dynamic setting. The main
idea is to discretize the continuous primal growth process. Define cmin = minv∈V cv to be the minimum capacity over all the
nodes. Without any loss of generality, assume that 0 < cmin < mμ. We can make this assumption because of the following
two reasons. (1) If cmin = 0, then we can delete all the edges incident on the nodes v ∈ V with cv = 0 and then solve the
new instance of the problem. (2) If cmin ≥ mμ, then we can set x(e) ← μ for all edges e ∈ E and get an optimal primal
solution.

Henceforth, we fix two parameters α ≥ β > 1, and define L = �logβ(mμα/cmin)�. Note that L ≥ 2.

Claim 2.5. If we set x(e) ← μ · β−L for all e ∈ E, then we get a feasible primal solution.

Proof. Clearly, x(e) ≤ μ for all e ∈ E . Now, consider any node v ∈ V . We have
∑

e∈Ev
x(e) = |Ev | · μ · β−L ≤ m · μ · β−L ≤

m · μ · (cmin/(mμα)) = cmin/α < cv . Hence, all the primal constraints are satisfied.

Our new algorithm is described in Fig. 1. We initialize our primal solution by setting x(e) ← μβ−L for every edge e ∈ E ,
as per Claim 2.5. We call a node v nearly-tight if its corresponding primal constraint is tight within a factor of f αβ , and

slack otherwise. Furthermore, we call an edge nearly-tight if it is incident upon some nearly tight node, and slack otherwise.

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 223
01. Set x(e) ← μ · β−L for all e ∈ E , and define c∗
v = cv/(f αβ) for all v ∈ V .

02. Set V L ← {v ∈ V : ∑e∈Ev
x(e) ≥ c∗

v }, and EL ← ⋃
v∈V L

Ev .
03. For i = L − 1 to 1:
04. Set x(e) ← x(e) · β for all e ∈ E \ ⋃L

k=i+1 Ei .

05. Set V i ←
{

v ∈ V \ ⋃L
k=i+1 Vk : ∑e∈Ev

x(e) ≥ c∗
v

}
.

06. Set Ei ← ⋃
v∈V i

Ev .
07. Set V 0 ← V \ ⋃L

k=1 V i , and E0 ← ⋃
v∈V 0

Ev .
08. Set x(e) ← x(e) · β for all e ∈ E0.

Fig. 1. DISCRETE-PRIMAL-DUAL().

Let V L ⊆ V and E L ⊆ E respectively denote the sets of nearly tight nodes and edges, immediately after the initialization
step. The algorithm then performs L − 1 iterations.

At iteration i ∈ {L − 1, . . . , 1}, the algorithm increases the weight x(e) of every slack edge e by a factor of β . Since the
total weight received by every slack node v (from its incident edges) never exceeds cv/(f αβ), this weight-increase step
does not violate any primal constraint. The algorithm then defines V i (resp. Ei) to be the set of new nodes (resp. edges)
that become nearly-tight due to this weight-increase step.

Finally, the algorithm defines V 0 (resp. E0) to be the set of nodes (resp. edges) that are slack at the end of iteration
i = 1. It terminates after increasing the weight of every edge in E0 by a factor of β .

When the algorithm terminates, it is easy to check that x(e) = μ · β−i for every edge e ∈ Ei , i ∈ {0, . . . , L}. We also have
c∗

v ≤ ∑
e∈Ev

x(e) ≤ β · c∗
v for every node v ∈ ⋃L

k=1 Vk , and
∑

e∈Ev
x(e) ≤ β · c∗

v for every node v ∈ V 0. Furthermore, at the end
of the algorithm, every edge e ∈ E \ E0 is nearly-tight, and every edge e ∈ E0 has weight x(e) = μ. We, therefore, reach the
following conclusion.

Claim 2.6. The algorithm described in Fig. 1 returns an (f αβ)-maximal solution to the fractional hypergraph b-matching problem
with the additional property that c∗

v ≤ ∑
e∈Ev

x(e) ≤ β · c∗
v for every node v ∈ ⋃L

k=1 Vk, and
∑

e∈Ev
x(e) ≤ β · c∗

v for every node
v ∈ V 0 .

Our goal is to make a variant of the procedure in Fig. 1 work in a dynamic setting. Towards this end, we introduce the
concept of an (α, β)-partition (see Definition 2.7) satisfying a certain invariant (see Invariant 2.9). The reader is encouraged
to notice the similarities between this construct and the output of the procedure in Fig. 1.

Definition 2.7. An (α, β)-partition of the graph G partitions its node-set V into subsets V 0 . . . V L , where L = �logβ(mμα/

cmin)� and α, β > 1. For i ∈ {0, . . . , L}, we identify the subset V i as the ith “level” of this partition, and call i the level �(v)

of a node v . We also define the level of each edge e ∈ E as �(e) = maxv∈Ve {�(v)}, and assign a “weight” w(e) = μ · β−�(e)

to the edge e.

Given an (α, β)-partition, let Ev(i) ⊆ Ev denote the set of edges incident to v that are in the ith level, and let Ev (i, j) ⊆ Ev

denote the set of edges incident to v whose levels are in the range [i, j].
Ev(i) = {e ∈ Ev : �(e) = i} ∀v ∈ V ; i ∈ {0, . . . , L} (10)

Ev(i, j) =
j⋃

k=i

Ev(k) ∀v ∈ V ; i, j ∈ {0, . . . , L}, i ≤ j. (11)

Similarly, we define the notations Dv and Dv (i, j).

Dv = |Ev | (12)

Dv(i) = |Ev(i)| (13)

Dv(i, j) = |Ev(i, j)| (14)

Given an (α, β)-partition, let W v = ∑
e∈Ev

w(e) denote the total weight a node v ∈ V receives from the edges incident
to it. We also define the notation W v (i). It gives the total weight the node v would receive from the edges incident to it,
if the node v itself were to go to the ith level. Thus, we have W v = W v(�(v)). Since the weight of an edge e in the hierarchical
partition is given by w(e) = μ · β−�(e) , we derive the following equations for all nodes v ∈ V .

W v =
∑
e∈Ev

μ · β−�(e). (15)

W v(i) =
∑

μ · β− max(�(e),i) ∀i ∈ {0, . . . , L}. (16)

e∈Ev

224 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
Fix any node v ∈ V , and focus on the value of W v (i) as we go down from the highest level i = L to the lowest level i = 0.
Lemma 2.8 states that W v (i) ≤ cmin/α when i = L, that W v(i) keeps increasing as we go down the levels one after another,
and that W v (i) increases by at most a factor of β between consecutive levels.

Lemma 2.8. An (α, β)-partition satisfies the following conditions for all nodes v ∈ V .

W v(L) ≤ cmin/α (17)

W v(L) ≤ · · · ≤ W v(i) ≤ · · · ≤ W v(0) (18)

W v(i) ≤ β · W v(i + 1) ∀i ∈ {0, . . . , L − 1}. (19)

Proof. Fix any (α, β)-partition and any node v ∈ V . We prove the first part of the lemma as follows.

W v(L) =
∑
e∈Ev

μ · β− max(�(e),L) =
∑
e∈Ev

μ · β−L ≤ mμ · β−L ≤ mμ · β− logβ (mμα/cmin) = cmin/α.

We now fix any level i ∈ {0, . . . , L − 1} and show that the (α, β)-partition satisfies equation (18).

W v(i + 1) =
∑
e∈Ev

μ · β− max(�(e),i+1) ≤
∑
e∈Ev

μ · β− max(�(e),i) = W v(i).

Finally, we prove equation (19).

W v(i) =
∑
e∈Ev

μ · β− max(�(e),i) = μ · β ·
∑
e∈Ev

β−1−max(�(e),i)

≤ μ · β ·
∑
e∈Ev

β− max(�(e),i+1) = β · W v(i + 1)

We will maintain a specific type of (α, β)-partition, where each node is assigned to a level in a way that satisfies the
following Invariant 2.9. This invariant is a relaxation of the bounds on

∑
e∈Ev

x(e) for every node v stated in Claim 2.6.

Invariant 2.9. Define c∗
v = cv/(f αβ). For every node v ∈ V \ V 0, it holds that c∗

v ≤ W v ≤ f αβ · c∗
v and for every node v ∈ V 0

it holds that W v ≤ f αβ · c∗
v .

Theorem 2.10. Consider an (α, β)-partition that satisfies Invariant 2.9. The edge-weights {w(e)}, e ∈ E, give an (f αβ)-maximal
solution to LP (1).

Proof. By Invariant 2.9, we have W v ≤ (f αβ) · c∗
v = cv for every node v ∈ V . Next, note that w(e) ≤ μ for every edge e ∈ E .

Thus, the weights {w(e)}, e ∈ E , define a feasible solution to LP (1).
We claim that for every edge e ∈ E with w(e) < μ, there is some node v ∈ Ve for which W v ≥ cv/(f αβ). This will imply

that the weights {w(e)}, e ∈ E , form an (f αβ)-maximal feasible solution to the primal LP.
To prove the claim, consider any edge e ∈ E with w(e) < μ. Since w(e) = μβ−�(e) , this implies that �(e) > 0. Let v ∈

arg maxu∈Ve {�(u)}. Note that �(e) = �(v). This implies that �(v) > 0. Hence, by Invariant 2.9, we have W v ≥ c∗
v = cv/(f αβ).

This concludes the proof of the theorem.

2.3. The algorithm: handling the insertion/deletion of an edge

We now show how to maintain an (α, β)-partition under edge insertions and deletions. A node is called dirty if it
violates Invariant 2.9, and clean otherwise. At the beginning of the algorithm the edge-set E is empty, and, thus, every node
is initially clean and at level zero. Now consider the time instant just prior to the tth update. By induction hypothesis, at
this instant every node is clean. Then the tth update takes place, which inserts (resp. deletes) an edge e in E with weight
w(e) = μβ−�(e) . This increases (resp. decreases) the weights {W v }, v ∈ Ve . Due to this change, the nodes v ∈ Ve might
become dirty. To recover from this, we call the subroutine in Fig. 2, which works as follows

Consider any node v ∈ V and suppose that W v > f αβc∗
v = cv ≥ cmin. In this event, the algorithm increments the level

of the node. Since α > 1, equation (17) implies that W v (L) < W v(�(v)) and, hence, we have L > �(v). In other words, when
the procedure described in Fig. 2 decides to increment the level of a dirty node v (Step 02), we know for sure that the
current level of v is strictly less than L (the highest level in the (α, β)-partition).

Next, consider an edge e ∈ Ev . If we change �(v), then this may change the weight w(e), and this in turn may change
the weights {W z}, z ∈ Ve . Thus, a single iteration of the While loop in Fig. 2 may lead to some clean nodes becoming dirty,
and some other dirty nodes becoming clean. If and when the While loop terminates, however, we are guaranteed that every

node is clean and that Invariant 2.9 holds.

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 225
01. While there exists a dirty node v
02. If W v > f αβc∗

v , Then

// If true, then by equation (17), we have �(v) < L.
03. Increment the level of v by setting �(v) ← �(v) + 1.
04. Else if (W v < c∗

v and �(v) > 0), Then

05. Decrement the level of v by setting �(v) ← �(v) − 1.

Fig. 2. RECOVER().

2.4. Data structures used by our algorithm

We now describe the relevant data structures. We maintain for each node v ∈ V :

• A counter Level[v] to keep track of the current level of v . Thus, we set Level[v] ← �(v).
• A counter Weight[v] to keep track of the weight of v . Thus, we set Weight[v] ← W v .
• For every level i > Level[v], we store the set of edges Ev(i) in the form of a doubly linked list Incident-Edgesv [i]. For

every level i ≤ Level[v], the list Incident-Edgesv [i] is empty.
• For level i = Level[v], we store the set of edges Ev(0, i) in the form of a doubly linked list Incident-Edgesv [0, i]. For

every level i = Level[v], the list Incident-Edgesv [0, i] is empty.

When the graph gets updated due to an edge insertion/deletion, we may discover that a node violates Invariant 2.9. Recall
that such a node is called dirty, and we store the set of such nodes as a doubly linked list Dirty-nodes. For every node
v ∈ V , we maintain a bit Status[v] ∈ {dirty, clean} that indicates if the node is dirty or not. Every dirty node stores a pointer
to its position in the list Dirty-nodes.

The collection of linked lists
⋃L

i=0 {Incident-Edgesv [0, i], Incident-Edgesv [i]} is denoted by the phrase “incidence lists
of v”. For every edge e ∈ E , we maintain a counter Level[e] to keep track of �(e). Furthermore, for every edge e ∈ E , we
maintain |Ve| bidirectional pointers corresponding to the nodes in Ve . The pointer corresponding to a node v ∈ Ve points to
the position of e in the incidence lists of v . Using these pointers, we can update the incidence lists of the relevant nodes
when the edge e is inserted into (resp. deleted from) the graph, or when some node v ∈ Ve increases (resp. decreases) its
level by one. Thus, we can always efficiently find a dirty node in step (01) of Fig. 2, and quickly recalculate the value of W v .

2.5. Bounding the amortized update time

We devote this section to the proof of the following theorem.

Theorem 2.11. Fix any ε ∈ (0, 1), α = 1 + 1/ f + 3ε and β = 1 + ε . Starting from an empty graph, we can maintain an (α, β)

partition in G satisfying Invariant 2.9 in O (f log(m + n)/ε2) amortized update time.

The main idea is as follows. After an edge insertion or deletion the data structure can be updated in time O (1), plus the
time to adjust the levels of the nodes, i.e., the time for procedure RECOVER. To bound the latter quantity we note that each
time the level of an edge e ∈ E changes, we have to update at most f lists (one corresponding to each node v ∈ Ve). Hence,
the time taken to update the lists is given by f · δl , where δl is the number of times the procedure in Fig. 2 changes the
level of an edge. Below, we show that δl ≤ t · O (L/ε) = t · O (log(m + n)/ε2) after t edge insertions/deletions in G starting
from an empty graph. This gives the required O (f δl/t) = O (f log(m + n)/ε2) bound on the amortized update time.

Hence, to complete the proof of Theorem 2.11, we need to give an amortized bound on the number of times we have to
change the level (or, equivalently, the weight) of an already existing edge. During a single iteration of the WHILE loop in Fig. 2,
this number is exactly Dv (0, i) when node v goes from level i to level i + 1, and at most Dv (0, i) when node v goes from
level i to level i − 1.

Specifically, we devote the rest of this section to the proof of Theorem 2.12, which implies that on average we change
the weights of O (L/ε) = O (log(m + n)/ε2) edges per update in G .

Theorem 2.12. Set α ← 1 + 1/ f + 3ε and β ← 1 + ε . In the beginning, when G is an empty graph, initialize a counter Count ← 0.
Subsequently, each time we change the weight of an already existing edge in the hierarchical partition, set Count ← Count + 1. Then
Count = O (tL/ε) just after we handle the tth update in G.

Recall that the level of an edge e is defined as �(e) = maxv∈Ve (�(v)). Consider the following thought experiment. We
have a bank account, and initially, when there are no edges in the graph, the bank account has a balance of zero dollars.
For each subsequent edge insertion/deletion, at most 3L/ε dollars are deposited to the bank account; and every time our
algorithm changes the level of an already existing edge, one dollar is withdrawn from it. We show that the bank account
never runs out of money, and this implies that Count = O (tL/ε) after t edge insertions/deletions starting from an empty

graph.

226 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
Let B denote the total amount of money (or potential) in the bank account at the present moment. We keep track of B
by distributing an ε-fraction of it among the nodes and the current set of edges in the graph.

B = (1/ε) ·
(∑

e∈E

�(e) +
∑
v∈V

	(v)

)
(20)

In the above equation, the amount of money (or potential) associated with an edge e ∈ E is given by �(e), and the
amount of money (or potential) associated with a node v ∈ V is given by 	(v). At every point in time, the potentials
{�(e), 	(v)} will be determined by two invariants. But, before stating the invariants, we need to define the concepts of
“active” and “passive” nodes.

Definition 2.13. Consider any node v ∈ V . In the beginning, there is no edge incident upon the node v , and we initialize
a counter κv ← 0. Subsequently, whenever an edge-insertion occurs in the graph, if the inserted edge is incident upon v ,
then we set κv ← κv + 1. At any given time-step, we say that a node v ∈ V is active if μκv ≥ cv and passive otherwise.

It is easy to check that if a node is active at time-step t , then it will remain active at every time-step t′ > t . A further
interesting consequence of the above definition is that a passive node is always at level zero, as shown in the lemma below.

Lemma 2.14. At any given time-step, if a node v ∈ V is passive, then we have �(v) = 0.

Proof. We prove this by induction. Let �(t)(v) and κ(t)
v respectively denote the level of the node v and the value of the

counter κv at time-step t . Further, let W (t)
v denote the value of W v at time-step t . Initially, at time-step t = 0, the graph

is empty, we have W (0)
v = 0, and hence �(0)(v) = 0. Now, by induction hypothesis, suppose that at time-step t the node

v is passive and �(t)(v) = 0, and, furthermore, suppose that the node v remains passive at time-step (t + 1). Given this
hypothesis, we claim that �(t+1)(v) = 0. The lemma will follow if we can prove the claim.

To prove the claim, note that since the node v is passive at time-step (t + 1), we have κ(t+1)
v μ < cv = f αβc∗

v . Since the
node v has at most κ(t+1)

v edges incident to it at time-step (t + 1), and since each of these edges has weight at most μ,
we have W (t+1)

v ≤ κ
(t+1)
v μ < f αβc∗

v . Now, recall Fig. 2. Since �(t)(v) = 0 and since W (t+1)
v < f αβc∗

v , the node v can never
become dirty during the execution of the procedure in Fig. 2 after the edge insertion/deletion that occurs at time-step
(t + 1). Thus, the node v will not change its level, and we will have �(t+1)(v) = 0. This concludes the proof.

We are now ready to state the invariants that define edge and node potentials.

Invariant 2.15. For every edge e ∈ E , we have:

�(e) = (1 + ε) · (L − �(e))

Invariant 2.16. Recall Definition 2.13. For every node v ∈ V , we have:

	(v) =
{(

β�(v)+1/(f μ(β − 1))
) · max

(
0, f α · c∗

v − W v
)

if v is active;
(β/(f (β − 1)) · κv otherwise.

When the algorithm starts, the graph has zero edges, and all the nodes v ∈ V are passive and at level 0 with W v = 0
and κv = 0 < cv/μ. At that moment, Invariant 2.16 sets 	(v) = 0 for all nodes v ∈ V . Consequently, equation (20) implies
that B = 0. Theorem 2.12, therefore, will follow if we can prove the next two lemmas. Their proofs appear in Section 2.6
and Section 2.7 respectively.

Lemma 2.17. Consider the insertion (resp. deletion) of an edge e in E. It creates (resp. destroys) the weight w(e) = μ · β−�(e) , creates
(resp. destroys) the potential �(e), and changes the potentials {	(v)}, v ∈Ve . Due to these changes, the total potential B increases by
at most 3L/ε .

Lemma 2.18. During every single iteration of the While loop in Fig. 2, the total increase in Count is no more than the net decrease in
the potential B.

2.6. Proof of Lemma 2.17

Edge-insertion. Suppose that an edge e is inserted into the graph at time-step t . Then the potential �(e) is created and

gets a value of at most (1 + ε)L units. Now, fix any node v ∈ Ve , and consider three possible cases.

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 227
Case 1. The node v was passive at time-step (t −1) and remains passive at time-step t . In this case, due to the edge-insertion,
the potential 	(v) increases by β/(f (β − 1)).

Case 2. The node v was passive at time-step (t − 1) and becomes active at time-step t . In this case, we must have: cv −μ ≤
μκ

(t−1)
v < cv ≤ μκ

(t)
v . By Invariant 2.16, just before the insertion of the edge e we had:

	(v) = {β/(f μ(β − 1))} · μκ
(t−1)
v

≥ {β/(f μ(β − 1))} · (cv − μ) (21)

Since the node v was passive at time-step (t − 1), by Lemma 2.14 we infer that �(t−1)(v) = 0. Hence, by Invariant 2.16, just
after the insertion of the edge e we get:

	(v) = {β/(f μ(β − 1))} · max
(
0, f α · c∗

v − W v
)

≤ {β/(f μ(β − 1))} · (f αc∗
v)

≤ {β/(f μ(β − 1))} · cv (22)

By equations (21), (22), the potential 	(v) increases by at most {β/(f μ(β − 1))} · (cv − (cv − μ)) = {β/(f (β − 1))}.

Case 3. The node v was active at time-step (t − 1). In this case, clearly the node v remains active at time-step t , the weight
W v increases, and hence the potential 	(v) can only decrease.

From the above discussion, we conclude that the potential 	(v) increases by at most β/(f (β − 1)) for every node v ∈ Ve .
Since |Ve| ≤ f , this accounts for a net increase of at most f · β/(f (β − 1)) = β/(β − 1) = β/ε ≤ L/ε . Finally, recall that the
potential �(e) is created and gets a value of at most (1 + ε)L ≤ 2L/ε units. Thus, the net increase in the potential B is at
most L/ε + 2L/ε = 3L/ε .

Edge-deletion. If an edge e is deleted from E , then the potential �(e) is destroyed. The weight W v of each node v ∈ Ve
decreases by at most μ · β−�(v) . Furthermore, no passive node becomes active due to this edge-deletion, and, in particular,
the counter κv remains unchanged for every node v ∈ V . Hence, each of the potentials {	(v)}, v ∈ Ve , increases by at most
β�(v)+1/(f μ(β − 1)) · μβ−�(v) = β/(f (β − 1)) = ((1 + 1/ε)/ f) ≤ 2L/(ε f). The potentials of the remaining nodes and edges
do not change. Since |Ve| ≤ f , by equation (20), the net increase in B is at most 2L/ε ≤ 3L/ε .

2.7. Proof of Lemma 2.18

Throughout this section, fix a single iteration of the While loop in Fig. 2 and suppose that it changes the level of a dirty
node v by one unit. We use the superscript 0 (resp. 1) on a symbol to denote its state at the time instant immediately prior
to (resp. after) that specific iteration of the While loop. Further, we preface a symbol with δ to denote the net decrease
in its value due to that iteration. For example, consider the potential B. We have B = B0 immediately before the iteration
begins, and B = B1 immediately after iteration ends. We also have δB = B0 −B1.

A change in the level of node v does not affect the potentials of the edges e ∈ E \ Ev . This observation, coupled with
equation (20), gives us the following guarantee.

δB = (1/ε) ·
⎛
⎝δ	(v) +

∑
e∈Ev

δ�(e) +
∑

u∈V \{v}
δ	(u)

⎞
⎠ (23)

Remark. Since the node v is changing its level, it must be active. Hence, by Invariant 2.16, we must have 	(v) =
β�(v)+1/(f μ(β − 1)) · max(0, f αc∗

v − W v). We will use this observation multiple times throughout the rest of this sec-
tion.

We divide the proof of Lemma 2.18 into two possible cases, depending upon whether the concerned iteration of the
While loop increments or decrements the level of v . The main approach to the proof remains the same in each case. We
first give an upper bound on the increase in Count due to the iteration. Next, we separately lower bound each of the
following quantities: δ	(v), δ�(e) for all e ∈ Ev , and δ	(u) for all u ∈ V \ {v}. Finally, applying equation (23), we derive
that δB is sufficiently large to pay for the increase in Count.

Remark. Note that �0(u) = �1(u) for all nodes u ∈ V \ {v}, and E0
u = E1

u for all nodes u ∈ V . Thus, we will use the symbols
�(u) and Eu without any ambiguity for all such nodes.
Case 1: The level of the node v increases from k to (k + 1).

228 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
Claim 2.19. We have �0(e) = k and �1(e) = k + 1 for every edge e ∈ E0
v (0, k).

Proof. Consider edge e ∈ E0
v (0, k). Since e ∈ E0

v (0, k), we have �0(e) ≤ k. Since �0(v) = k and e ∈ Ev , we must have �0(e) = k.
Finally, since �1(u) = �0(u) for all nodes u ∈ V \ {v}, we conclude that �1(e) = �1(v) = k + 1.

Claim 2.20. We have �0(e) = �1(e) for every edge e ∈ E0
v (k + 1, L).

Proof. Consider any edge e ∈ E0
v (k + 1, L). Since �0(e) ≥ k + 1 and �0(v) = k, there must be some node u ∈ V \ {v} such that

�0(u) ≥ k + 1, e ∈ Eu and �0(e) = �0(u). Since �1(u) = �0(u) ≥ k + 1 and �1(v) = k + 1, we infer that �1(e) = �1(u) = �0(e).

Claim 2.21. We have Count
1 − Count

0 =D0
v(0, k).

Proof. This follows immediately from Claims 2.19 and 2.20.

Claim 2.22. We have δ	(v) = 0.

Proof. Step 03 (Fig. 2) is executed only when W 0
v = W 0

v (k) > f αβ · c∗
v . Next, from Lemma 2.8 we infer that W 1

v = W 0
v (k +

1) ≥ β−1 · W 0
v (k) > f αc∗

v . Since both W 0
v , W 1

v > f αc∗
v , we get: 	0(v) = 	1(v) = 0. It follows that δ	(v) = 	0(v) − 	1(v) =

0.

Claim 2.23. For every edge e ∈ Ev , we have:

δ�(e) =
{

1 + ε if e ∈ E0
v (0,k);

0 if e ∈ E0
v (k + 1, L).

Proof. If e ∈ E0
v (0, k), then we have �0(e) = k and �1(e) = k + 1 (see Claim 2.19). Hence, we have �0(e) = (1 + ε) · (L − k)

and �1(e) = (1 + ε) · (L − k − 1). It follows that δ�(e) = �0(e) − �1(e) = (1 + ε).
In contrast, if e ∈ E0

v (k + 1, L), then Claim 2.20 implies that �0(e) = �1(e). Accordingly, we have �0(e) = �1(e) = (1 + ε) ·
(L − �0(e)). Hence, we get δ�(e) = �0(e) − �1(e) = 0.

Claim 2.24. For every node u ∈ V \ {v}, we have:

δ	(u) ≥ −(1/ f) · |Eu ∩ E0
v (0,k)|

Proof. Consider any node u ∈ V \ {v}. If the node u is passive, then we have δ	(u) = 0, and the claim is trivially true. Thus,
for the rest of the proof we assume that the node u is active.

Clearly, we have �0(e) = �1(e) for each edge e ∈ Eu \ Ev . Hence, we get δw(e) = 0 for each edge Eu \ Ev . Next, by
Claim 2.20, we have �0(e) = �1(e) for each edge e ∈ Eu ∩ E0

v (k + 1, L). Thus, we get δw(e) = 0 for each edge e ∈ Eu ∩ E0
v (k +

1, L). We therefore conclude that:

δWu =
∑

e∈Eu\Ev

δw(e) +
∑

e∈Eu∩E0
v (k+1,L)

δw(e) +
∑

e∈Eu∩E0
v (0,k)

δw(e)

=
∑

e∈Eu∩E0
v (0,k)

δw(e)

= |Eu ∩ E0
v (0,k)| · μ · (β−k − β−(k+1))

= |Eu ∩ E0
v (0,k)| · μ · (β − 1)/βk+1

Using this observation, we infer that:

δ	(u) ≥ −
(
β�(u)+1/(f μ(β − 1))

)
· δWu

= −
(
β�(u)+1/(f μ(β − 1))

)
· |Eu ∩ E0

v (0,k)| · μ · (β − 1)/βk+1

= −β�(u)−k · (1/ f) · |Eu ∩ E0
v (0,k)|

≥ −(1/ f) · |Eu ∩ E0
v (0,k)| (24)

Equation (24) holds since either |Eu ∩ E0
v (0, k)| = 0, or there is an edge e ∈ Eu ∩ E0

v (0, k). In the former case, equation (24)
is trivially true. In the latter case, by Claim 2.19 we have �0(e) = k, and since �0(e) ≥ �(u), we infer that �(u) ≤ k and

β�(u)−k ≤ 1.

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 229
Claim 2.25. We have:∑
u∈V \{v}

δ	(u) ≥ −D0
v(0,k)

Proof. For every node u ∈ V such that Eu ∩ E0
v (0, k) = ∅, we have δ	(u) = 0. Hence, we infer that:∑

u∈V \{v}
δ	(u) =

∑
u∈V \{v}:Eu∩E0

v (0,k) =∅
δ	(u) (25)

≥
∑

u∈V \{v}:Eu∩E0
v (0,k) =∅

−(1/ f) · |Eu ∩ E0
v (0,k)| (26)

≥
∑

e∈E0
v (0,k)

f · (−1/ f) (27)

= −D0
v(0,k)

Equation (26) follows from Claim 2.24. Equation (27) follows from a simple counting argument and the fact that the maxi-
mum frequency of an edge is f .

From Claims 2.22, 2.23, 2.25 and equation (23), we derive the following bound.

δB = (1/ε) ·
⎛
⎝δ	(v) +

∑
e∈Ev

δ�(e) +
∑

u∈V \{v}
δ	(u)

⎞
⎠

≥ (1/ε) ·
(

0 + (1 + ε) · D0
v(0,k) − D0

v(0,k)
)

= D0
v(0,k)

Thus, Claim 2.21 implies that the net decrease in the potential B in no less than the increase in Count. This proves
Lemma 2.18 for Case 1.

Case 2: The level of the node v decreases from k to k − 1.
The claim below bounds the increase in Count.

Claim 2.26. We have Count
1 − Count

0 ≤ c∗
vβk/μ.

Proof. The node v decreases its level from k to k − 1. We first claim that due to this event, the level of an edge changes
only if it belongs to the set E0

v (0, k). To see why this is true, note that the levels of the edges not incident on v clearly
do not change. Hence, it suffices to focus on the edges e ∈ E0

v (0, L). Partition these edges into two subsets: E0
v (0, k) and

E0
v (k + 1, L). Every edge e ∈ E0

v (k + 1, L) is incident on some node u = v that is on or above level k + 1. Hence, the level of
an edge e ∈ E0

v (k + 1, L) does not change as the node v moves down from level k to level k − 1. We conclude that only the
edges in E0

v (0, k) can potentially change their levels due to this event.
Consider any edge e ∈ E0

v (0, k). By definition, such an edge has �0(e) ≤ k. Since the edge e is incident on v and �0(v) = k,
we get: �0(e) = k and w0(e) = μβ−k . To summarize, we get:

w0(e) = μβ−k for all e ∈ E0
v (0,k). (28)

Since the node v decreases its level from k to (k −1), Step 04 (Fig. 2) ensures that W 0
v = W 0

v (k) < c∗
v . Applying equation (28),

we now infer that:

c∗
v > W 0

v ≥
∑

e∈E0
v (0,k)

w0(e) = μβ−k · D0
v(0,k).

Rearranging the terms in the above inequality, we get D0
v (0, k) ≤ c∗

vβk/μ. Finally, recall that only the edges in E0
v (0, k) can

potentially change their levels as the node v moves down from level k to level k − 1. Thus, we get: Count
1 − Count

0 ≤
D0

v(0, k) ≤ c∗
vβk/μ. This concludes the proof of the claim.
Claim 2.27. For all u ∈ V \ {v}, we have δ	(u) ≥ 0.

230 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
Proof. Fix any node u ∈ V \ {v}. If the node u is passive, then we have δ	(u) = 0, and the claim is trivially true. Thus, for
the rest of the proof we assume that the node u is active.

If Eu ∩ E0
v (0, k) = ∅, then we have W 0

u = W 1
u , and hence, δ	(u) = 0. Otherwise, as the level of the node v decreases

from k to k − 1, we infer that w0(e) ≤ w1(e) for all e ∈ Eu ∩ E0
v (0, k), and accordingly we get W 0

u ≤ W 1
u . This implies that

	0(u) ≥ 	1(u).

We now partition the edge-set Ev into two subsets, X and Y , according to the level of the other endpoint.

X =
{

e ∈ Ev : max
u∈Ve\{v}

{�(u)} < k

}
and Y = Ev \ X .

Claim 2.28. For every edge e ∈ Ev , we have:

δ�(e) =
{

0 if e ∈ Y ;
−(1 + ε) if e ∈ X .

Proof. Fix any edge e ∈ Ev . We consider two possible scenarios.

1. We have e ∈ Y . Since e is incident on a vertex u = v that is on or above level k, we infer that �0(e) = �1(e), and
accordingly, �0(e) = �1(e).

2. We have e ∈ X . Since the level of node v decreases from k to k − 1, we infer that �0(e) = k and �1(e) = k − 1, and
accordingly, �0(e) = (1 + ε) · (L − k) and �1(e) = (1 + ε) · (L − k + 1).

This concludes the proof of the Claim.

Next, we partition W 0
v into two parts: x and y. The first part denotes the contributions towards W 0

v by the edges e ∈ X ,
while the second part denotes the contribution towards W 0

v by the edges e ∈ Y . Note that X ⊆ E0
v (0, k), which implies that

x = ∑
e∈X w0(e) = μβ−k · |X |. Thus, we get the following equations.

W 0
v = x + y < c∗

v (29)

x = μβ−k · |X | (30)

y =
∑
e∈Y

w0(e) (31)

Equation (29) holds due to Step 04 in Fig. 2.

Claim 2.29. We have
∑

e∈Ev
δ�(e) = −(1 + ε) · x · βk/μ.

Proof. Claim 2.28 implies that
∑

e∈Ev
δ�(e) = −(1 + ε) · |X |. Applying equation (30), we infer that |X | = x · βk/μ.

Claim 2.30. We have:

δ	(v) = (f αc∗
v − x − y) · βk+1

f μ(β − 1)
− max

(
0, f αc∗

v − βx − y
) · βk

f μ(β − 1)
.

Proof. Equation (29) states that W 0
v = x + y < c∗

v . Since �0(v) = k, we get:

	0(v) = (f αc∗
v − x − y) · βk+1

f μ(β − 1)
(32)

As the node v decreases its level from k to k − 1, we have:

w1(e) =
{

β · w0(e) if e ∈ X;
w0(e) if u ∈ Y
Accordingly, we have W 1
v = β · x + y, which implies the following equation.

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 231
	1(v) = max(0, f αc∗
v − βx − y) · βk

f μ(β − 1)
(33)

Since δ	(v) = 	0(v) − 	1(v), the Claim follows from equations (32) and (33).

We now consider two possible scenarios depending upon the value of (f αc∗
v − βx − y). We show that in each case δB ≥

c∗
vβk/μ. This, along with Claim 2.26, implies that δB ≥ Count

1 − Count
0. This proves Lemma 2.18 for Case 2.

1. Suppose that (f αc∗
v − βx − y) < 0. From Claims 2.27, 2.29, 2.30 and equation (23), we derive:

ε · δB =
∑

u∈V \{v}
δ	(u) +

∑
e∈Ev

δ�(e) + δ	(v)

≥ −(1 + ε) · x · βk

μ
+ (f αc∗

v − x − y) · βk+1

f μ(β − 1)

≥ −(1 + ε) · c∗
v · βk

μ
+ (f α − 1)c∗

v · βk+1

f μ(β − 1)
(34)

= c∗
vβk

μ

{
−(1 + ε) + (α − 1/ f) · β

(β − 1)

}

= c∗
vβk

μ

{
−(1 + ε) + (1 + 3ε) · (1 + ε)

ε

}
(35)

≥ ε · c∗
v · βk

μ

Equation (34) follows from equation (29). Equation (35) holds since α = 1 + 1/ f + 3ε and β = 1 + ε .
2. Suppose that (f αc∗

v − βx − y) ≥ 0. From Claims 2.27, 2.29, 2.30 and equation (23), we derive:

ε · δB =
∑

u∈V \{v}
δ	(u) +

∑
e∈Ev

δ�(u, v) + δ	(v)

≥ −(1 + ε) · x · βk

μ
+ (f αc∗

v − x − y) · βk+1

f μ(β − 1)
− (f αc∗

v − βx − y) · βk

f μ(β − 1)

= βk

μ(β − 1)
· {(f αc∗

v − x − y) · β

f
− (f αc∗

v − βx − y) · 1

f
− (1 + ε) · x · (β − 1)

}

= βk

μ(β − 1)
· {αc∗

vβ − αc∗
v − (βx + β y − βx − y)

f
− (1 + ε) · x · (β − 1)

}

= βk

μ(β − 1)
· {αc∗

v · (β − 1) − y(β − 1)

f
− (1 + ε) · x · (β − 1)

}

= βk

μ
· {αc∗

v − y

f
− (1 + ε) · x

}

≥ βk

μ
· {αc∗

v − β(y + x)
}

(36)

≥ βk

μ
· (α − β) · c∗

v (37)

≥ ε · c∗
v · βk

μ
(38)

Equation (36) holds since β = 1 + ε and f ≥ 1. Equation (37) follows from Equation (29). Equation (38) holds since
α = 1 + 1/ f + 3ε and β = 1 + ε .

3. Maintaining a set-cover in a dynamic setting

We first show the link between the fractional hypergraph b-matching and set-cover.
Lemma 3.1. The dual LP (4) is an LP-relaxation of the set-cover problem (Definition 1.1).

232 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
Proof. Given an instance of the set-cover problem, we create an instance of the hypergraph b-matching problem as follows.
For each element u ∈ U create an edge e(u) ∈ E , and for each set S ∈ S , create a node v(S) ∈ V with cost cv(S) = cS . Ensure
that an element u belongs to a set S iff e(u) ∈ Ev(S) . Finally, set μ = maxv∈V cv + 1.

On this instance of the hypergraph b-matching problem, we claim that an optimal solution to the dual LP (4) will
set z(e) = 0 for every edge e ∈ E . To see why the claim holds, consider any feasible solution to the dual LP (4) where
z(e′) = q > 0 (say) for some edge e′ ∈ E . Then we can identify any node v ′ ∈ Ve , and get a new feasible dual solution by
setting y(v ′) := y(v ′) + q and z(e′) := 0. Since μ > cv ′ , the objective of the dual solution will decrease by (μ · q − cv ′ · q) > 0
due to this transformation. It follows that the initial dual solution was not optimal.

Since an optimal solution to the dual LP (4) will set z(e) = 0 for every edge e ∈ E , we can remove the variables {z(e)}
from the constraints and the objective function of LP (4) to get a new LP with the same optimal objective value. This new
LP is an LP-relaxation for the set-cover problem.

We now present the main result of this section.

Theorem 3.2. We can maintain an (f 2 + f +ε f 2)-approximately optimal solution to the dynamic set cover problem in O (f · log(m +
n)/ε2) amortized update time.

Proof. We map the set cover instance to a fractional hypergraph b-matching instance as in the proof of Lemma 3.1. By
Theorem 2.3, in O (f log(m + n)/ε2) amortized update time, we can maintain a feasible solution {x∗(e)} to LP (1) that is
λ-maximal, where λ = f + 1 + ε f .

Consider a collection of sets S∗ = {S ∈ S : ∑e∈Ev(S)
x∗(e) ≥ cv(S)/λ}. Since we can maintain the fractional solution {x∗(e)}

in O (f log(m + n)/ε2) amortized update time, we can also maintain S∗ without incurring any additional overhead in the
update time. Now, using complementary slackness conditions, we can show that each element e ∈ U is covered by some
S ∈ S∗ , and the sum

∑
S∈S∗ cS is at most (λ f)-times the size of the primal solution {x∗(e)}. The corollary follows from LP

duality.

4. Maintaining a b-matching in a dynamic setting

We will present a dynamic algorithm for maintaining an O (1)-approximation to the maximum b-matching (see Defi-
nitions 1.3, 1.4). Our main result is summarized in Theorem 4.8. We use the following approach. First, we note that the
fractional b-matching problem is a special case of the fractional hypergraph b-matching problem (see Definition 1.5) with
f = 2 (for each edge is incident upon exactly two nodes). Hence, by Theorems 2.2 and 2.3, we can maintain a O (f 2) = O (1)

approximate “fractional” solution to the maximum b-matching problem in O (f log(m + n)) = O (log n) amortized update
time. Next, we perform randomized rounding on this fractional solution in the dynamic setting, whereby we select each
edge in the solution with some probability that is determined by its fractional value. This leads to Theorem 4.8.

Notations. Let G = (V , E) be the input graph to the b-matching problem. Given any subset of edges E ′ ⊆ E and any node v ∈
V , let N (v, E ′) = {u ∈ V : (u, v) ∈ E ′} denote the set of neighbors of v with respect to the edge-set E ′ , and let deg(v, E ′) =
|N (v, E ′)|. Next, consider any “weight” function w : E ′ → R+ that assigns a weight w(e) to every edge e ∈ E ′ . For every
node v ∈ V , we define W v = ∑

u∈N (v,E) w(u, v). Finally, for every subset of edges E ′ ⊆ E , we define w(E ′) = ∑
e∈E ′ w(e).

Recall that in the b-matching problem, we are given an “input graph” G = (V , E) with |V | = n nodes, where each node
v ∈ V has a “capacity” cv ∈ {1, . . . , n}. We want to select a subset E ′ ⊆ E of edges of maximum size such that each node v
has at most cv edges incident to it in E ′ . We will also be interested in “fractional” b-matchings. In the fractional b-matching
problem, we want to assign a weight w(e) ∈ [0, 1] to every edge e ∈ E such that

∑
u∈N (v,E) w(u, v) ≤ cv for every node

v ∈ V , and the sum of the edge-weights w(E) is maximized. In the dynamic version of these problems, the node-set V
remains fixed, and at each time-step the edge-set E gets updated due to an edge insertion or deletion. We now show how
to efficiently maintain an O (1)-approximate fractional b-matching in the dynamic setting.

Theorem 4.1. Fix a constant ε ∈ (0, 1/4), and let λ = 4, and γ = 1 + 4ε . In O (log n) amortized update time, we can maintain a
fractional b-matching w : E → [0, 1] in G = (V , E) such that:

W v ≤ cv/γ for all nodes v ∈ V . (39)

w(u, v) = 1 for each edge (u, v) ∈ E with Wu, W v < cv/λ. (40)

Further, the size of the optimal b-matching in G is O (1) times the sum
∑

e∈E w(e).

Proof. Note that the fractional b-matching problem is a special case of fractional hypergraph b-matching where μ = 1,
m = n2, and f = 2.

We scale down the capacity of each node v ∈ V by a factor of γ , by defining c̃v = cv/γ for all v ∈ V . Next, we apply

Theorem 2.3 on the input simple graph G = (V , E) with μ = 1, m = n2, f = 2, and the reduced capacities {c̃v }, v ∈ V .

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 233
Let {w(e)}, e ∈ E , be the resulting (f + 1 + ε f)-maximal matching (see Definition 2.1). Since ε < 1/3 and f = 2, we have
λ ≥ f + 1 + ε f . Since ε is a constant, the amortized update time for maintaining the fractional b-matching becomes O (f ·
log(m +n)/ε2) = O (log n). Finally, by Theorem 2.2, the fractional b-matching {w(e)} is an (λ f + 1) = 9-approximate optimal
b-matching in G in the presence of the reduced capacities {c̃v }. But scaling down the capacities reduces the objective of
LP (1) by at most a factor of γ . Hence, the size of the optimal b-matching in G is at most 9γ = O (1) times the sum ∑

e∈E w(e). This concludes the proof.

For the rest of this section, we set λ = 4, γ = 1 + 4ε and ε ∈ (0, 1/4), as defined in the statement of Theorem 4.1. We
will show how to dynamically convert the fractional b-matching {w(e)} from Theorem 4.1 into an integral b-matching, by
losing a constant factor in the approximation ratio. The main idea is to randomly sample the edges e ∈ E based on their
w(e) values. But, first we introduce a few notations.

4.1. Notations

Say that a node v ∈ V is “nearly-tight” if W v ≥ cv/λ and “slack” otherwise. Let T be the set of all nearly-tight nodes.
We also partition of the node-set V into two subsets: B ⊆ V and S = V \ B . Each node v ∈ B is called “big” and has
deg(v, E) ≥ c log n, for some large constant c > 1. Each node v ∈ S is called “small” and has deg(v, E) < c log n. Define
E B = {(u, v) ∈ E : either u ∈ B or v ∈ B} to be the subset of edges with at least one endpoint in B , and let E S = {(u, v) ∈ E :
either u ∈ S or v ∈ S} be the subset of edges with at least one endpoint in S . We define the subgraphs G B = (V , E B) and
G S = (V , E S). Let E∗ = {e ∈ E : w(e) = 1} be the subset of edges with weight one in the fractional b-matching {w(e)}.

Observation 4.2. We have N (v, E) =N (v, E B) for all v ∈ B , and N (u, E) =N (u, E S) for all u ∈ S .

4.2. An overview of our algorithm

Our algorithm maintains the following structures.

• A fractional b-matching as per Theorem 4.1.
• A random subset of edges H B ⊆ E B and a weight function w B : H B → [0, 1] in the subgraph G B (H B) = (V , H B). The

algorithm ensures that they satisfy Property 4.3.
• A random subset of edges H S ⊆ E S and a weight function w S : H S → [0, 1] in the subgraph G S (H S) = (V , H S). The

algorithm ensures that they satisfy Property 4.4.
• A maximal b-matching M S ⊆ H S in the subgraph G S (H S) = (V , H S), that is, for every edge (u, v) ∈ H S \ M S , there is a

node q ∈ {u, v} such that deg(q, M S) = cq .
• The set of edges E∗ = {e ∈ E : w(e) = 1}.

Property 4.3. Let Z B(e) ∈ {0, 1} be an indicator random variable that is set to one if e ∈ H B and zero otherwise. Then the
following conditions are satisfied.

We always have deg(v, H B) ≤ cv for every small node v ∈ S. (41)

E[Z B(e)] = Pr[e ∈ H B] = w(e) for every edge e ∈ E B . (42)

∀v ∈ B, the events {Z B(e) = 1}, u ∈ N (v, E B), are mutually independent. (43)

For each edge e ∈ H B , we have w B(e) = 1 (44)

Property 4.4. Let Z S(e) ∈ {0, 1} be an indicator random variable that is set to one if e ∈ H S and zero otherwise. Then the
following conditions are satisfied.

E[Z S(e)] = Pr[e ∈ H S] = pe = min(1, w(e) · (cλ log n/ε)) ∀e ∈ E S . (45)

The events {Z S(e) = 1}, e ∈ E S , are mutually independent. (46)

For each edge e ∈ H S ,we have w S(e) =
{

w(e) if pe ≥ 1;
ε/(cλ log n) if pe < 1.

(47)

In Section 4.3, we describe some important properties satisfied by the weight functions w B and w S . We use these prop-
erties while proving the three main lemmas stated below. The proofs of Lemmas 4.5, 4.6 and 4.7 appear in Sections 4.4, 4.5

and 4.6 respectively.

234 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
Lemma 4.5. With high probability, we can maintain the random sets of edges H B and H S , a maximal b-matching M S in G S(H S) =
(V , H S), and the set of edges E∗ in O (log3 n)-amortized update time.

Lemma 4.6. With high probability, each of the edge-sets H B, M S and E∗ is a valid b-matching in G.

Lemma 4.7. We have w(E) ≤ O (1) · max(|E∗|, |H B |, |M S |) with high probability.

The three lemmas stated above implies our main result, which is summarized in Theorem 4.8.

Theorem 4.8. With high probability, we can maintain a O (1)-approximate b-matching in the input graph G = (V , E) in O (log3 n)

amortized update time.

Proof. We maintain a fractional b-matching w : E → [0, 1] as per Theorem 4.1. Next, we maintain the random sets of
edges H B and H S , a maximal b-matching M S in G S (H S) = (V , H S), and the set of edges E∗ = {e ∈ E : w(e) = 1} as per
Lemma 4.5. This requires O (log3 n) amortized update time with high probability. Lemmas 4.6 and 4.7 imply that at least
one of the subsets H B , M S , E∗ ⊆ E is a O (1)-approximate maximum b-matching in G = (V , E). This concludes the proof of
the theorem.

4.3. Some useful properties of the weight functions w B and w S

For ease of exposition, we defer the proofs of Lemmas 4.9 and 4.10 to Sections 4.7 and 4.8.

Lemma 4.9. Let W B
v = ∑

u∈N (v,H B) w B(u, v) denote the total weight received by a node v ∈ V from its incident edges in H B under
the weight function w B . The following conditions hold with high probability.

• For every node v ∈ V , we have W B
v ≤ cv .

• For every node v ∈ B ∩ T , we have W B
v ≥ (1 − ε) · (cv/λ). The set T is defined as in Section 4.1.

Lemma 4.10. Let W S
v = ∑

u∈N (v,H S) w S (u, v) denote the total weight received by a node v ∈ V from its incident edges in H S under
the weight function w S . The following conditions hold with high probability.

• For each node v ∈ V , we have W S
v ≤ cv .

• For each node v ∈ S, we have deg(v, H S) = O (log2 n).
• For each node v ∈ S ∩ T , we have W S

v ≥ (1 − ε) · (cv/λ). The set T is defined as in Section 4.1.

4.4. Proof of Lemma 4.5

We maintain the fractional b-matching {w(e)} as per Theorem 4.1. This requires O (log n) amortized update time, and
starting from an empty graph, t edge insertions/deletions in G lead to O (t log n) many changes in the edge-weights {w(e)}.
Thus, we can easily maintain the edge-set E∗ = {e ∈ E : w(e) = 1} in O (log n) amortized update time. Specifically, we store
the edge-set E∗ as a doubly linked list. For every edge (u, v) ∈ E∗ , we maintain a pointer that points to the position of
(u, v) in this linked list. For every edge (u, v) ∈ E \ E∗ , the corresponding pointer is set to NULL. An edge (u, v) is inserted
into/deleted from the set E∗ only when its weight w(e) is changed. Thus, maintaining the linked list for E∗ does not incur
any additional overhead in the update time.

Next, we show to maintain the edge-set H S by independently sampling each edge e ∈ E S with probability pe . This
probability is completely determined by the weight w(e). So we need to resample the edge each time its weight changes.
Thus, the amortized update time for maintaining H S is also O (log n). Similar to the case of the edge-set E∗ , we store the
edge-set H S as a doubly linked list.

Next, we show how to maintain the maximal b-matching M S in H S . Every edge e ∈ H S has at least one endpoint in S ,
and each node v ∈ S has deg(v, H S) = O (log2 n) with high probability (see Lemma 4.10). Exploiting this fact, for each
node v ∈ B , we can maintain the set of its free (unmatched) neighbors F v(S) = {u ∈ N (v, H S) : u is unmatched in M S }
in O (log2 n) amortized time per update in H S , with high probability. This is done as follows. Since v ∈ B , the onus of
maintaining the set F v (S) falls squarely upon the nodes in N (v, H S) ⊆ S . Specifically, each small node u ∈ S maintains a
“status-bit” indicating if it is free or not. Whenever a matched small node u changes its status-bit, it communicates this
information to its neighbors in N (u, H S) ∩ B in O (deg(u, H S)) = O (log2 n) time. Using the lists {F v (S)}, v ∈ B , and the
status-bits of the small nodes, after each edge insertion/deletion in H S , we can update the maximal b-matching M S in
O (log2 n) worst case time, with high probability. Since each edge insertion/deletion in G , on average, leads to O (log n)

edge insertions/deletions in H S , we spend O (log3 n) amortized update time, with high probability, for maintaining the

matching M S .

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 235
Finally, we show how to maintain the set H B . The edges (u, v) ∈ E B with both endpoints u, v ∈ B are sampled inde-
pendently with probability w(u, v). This requires O (log n) amortized update time. Next, each small node v ∈ S randomly
selects some neighbors u ∈N (v, E B) and adds the corresponding edges (u, v) to the set H B , ensuring that Pr[(u, v) ∈ H B] =
w(u, v) for all u ∈N (v, E B) and that deg(v, H B) ≤ cv . The random choices made by the different small nodes are mutually
independent, which implies equation (43). But, for a given node v ∈ S the random variables {Z B (u, v)}, u ∈ N (v, E B), are
completely correlated. They are determined as follows.

In the beginning, we pick a number ηv uniformly at random from the interval [0, 1), and, in a predefined manner, label
the set of big nodes as B = {v1, . . . , v |B|}. For each i ∈ {1, . . . , |B|}, we define ai(v) = w(v, vi) if vi ∈ N (v, E B) and zero
otherwise. We also define Ai(v) = ∑i

j=1 a j(v) for each i ∈ {1, . . . , |B|} and set A0(v) = 0. At any given point in time, we
define N (v, H B) = {vi ∈ B : Ai−1(v) ≤ k + ηv < Ai(v) for some nonnegative integer k < cv}. Under this scheme, for every
node vi ∈ B , we have Pr[vi ∈ N (v, H B)] = Ai(v) − Ai−1(v) = ai(v). Thus, we get Pr[vi ∈ N (v, H B)] = w(v, vi) for all vi ∈
N (v, E B), and Pr[vi ∈ N (v, H B)] = 0 for all vi = N (v, E B). Also note that deg(v, H B) ≤ �∑vi∈N (v,E B) w(v, vi)� ≤ �W v� ≤
�cv/(γ)� ≤ cv . Hence, equations (41), (42) are satisfied. We maintain the sums {Ai(v)}, i, and the set N (v, H B) using a
balanced binary tree data structure, as described below.

We store the ordered sequence of |B| numbers a1(v), . . . , a|B|(v) in the leaves of a balanced binary tree from left to
right. Let xi denote the leaf node that stores the value ai(v). Further, at each internal node x of the balanced binary tree,
we store the sum Sx = ∑

i:xi∈T (x) ai(v), where T (x) denotes the set of nodes in the subtree rooted at x. This data structure
can support the following operations.

INCREMENT(i, δ): This asks us to set ai(v) ← ai(v) + δ, where δ is any real number. To perform this update, we first
change the value stored at the leaf node xi . Then starting from the node xi , we traverse up to the root of the tree. At each
internal node x in this path from xi to the root, we set Sx ← Sx + δ. The Sx values at every other internal node remains
unchanged. Since the tree has depth O (log n), the total time required to update the data structure is also O (log n).

RETURN-INDEX(y): Given a number 0 ≤ y < cv , this asks us to return an index i (if it exists) such that Ai−1(v) ≤ y <
Ai(v). We can answer this query in O (log n) time by doing binary search. Specifically, we perform the following operations.
We initialize a counter C ← 0 and start our binary search at the root of the tree. At an intermediate stage of the binary
search, we are at some internal node x and we know that y < C + Sx . Let x(l) and x(r) respectively be the left and right
child of x. Note that Sx = Sx(l) + Sx(r) . If y < C + Sx(l) , then we move to the node x(l). Otherwise, we set C ← C + Sx(l) and
move to the node x(r). We continue this process until we reach a leaf node, which gives us the required answer. The total
time taken by the procedure is O (log n).

We use the above data structure to maintain the sets N (v, H B), v ∈ S . Whenever the weight of an edge (u, v), v ∈ S ,
changes, we can update the set N (v, H B) by making one call to the INCREMENT(i, δ), and cv calls to RETURN-INDEX(y),
one for each y = k + ηv , where k < cv is a nonnegative integer. Since cv = O (log n), the total time required is O (log2 n) per
change in the edge-weights {w(e)}.

Since each edge insertion/deletion in G , on average, leads to O (log n) changes in the edge-weights {w(e)}, the overall
amortized update time for maintaining the edge-set H B is O (log3 n).

Similar to the edge-sets E∗ and H S , we store the edge-set H B as a doubly linked list. Each edge (u, v) ∈ H B maintains a
pointer to its position in this list. Each edge (u, v) ∈ E \ H B sets the corresponding pointer to NULL. It is easy to check that
this does not incur any additional overhead in the update time. This concludes the proof of the lemma.

4.5. Proof of Lemma 4.6

Since w B(e) = 1 for every edge e ∈ H B (see Definition 4.3), Lemma 4.9 implies that the edge-set H B is a b-matching
in G with high probability. Next, by definition, the edge-set M S is a b-matching in G S (H S) = (V , H S). Since H S ⊆ E , the
edge-set M S is also a b-matching in G . Finally, since w : E → [0, 1] is a fractional b-matching in G , the set of edges E∗ is
also a b-matching in G .

4.6. Proof of Lemma 4.7

Consider any edge (u, v) ∈ E . If u /∈ T and v /∈ T , then by equation (40), we must have (u, v) ∈ E∗ . In contrast, if there
is some node x ∈ {u, v} such that x ∈ T , then we must have either x ∈ B ∩ T or x ∈ S ∩ T . In other words, every edge (u, v)

satisfies this property: Either (u, v) ∈ E∗ , or it is incident upon some node in B ∩ T , or it is incident upon some node S ∩ T .
Thus, each edge e ∈ E contributes at least w(e) to the sum w(E∗) + ∑

v∈B∩T W v + ∑
v∈S∩T W v . Hence, we get:

w(E∗) +
∑

v∈B∩T

W v +
∑

v∈S∩T

W v ≥ w(E) (48)

Note that w(E∗) = |E∗|. We now consider three possible cases, based on equation (48).

Case 1. w(E∗) ≥ (1/3) · w(E). In this case, clearly w(E) ≤ 3 · max(|E∗|, |H B |, |M S |).

Case 2.
∑

v∈B∩T W v ≥ (1/3) · w(E). In this case, we condition on the event under which Lemma 4.9 holds. Thus, we get:

w(E) ≤
∑

3 · W v ≤
∑

3 · cv ≤
∑

(3λ/(1 − ε)) · W B
v∈B∩T v∈B∩T v∈B∩T
v

236 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
≤ (3λ/(1 − ε)) ·
∑

e∈H B

2 · w B(e) = (6λ/(1 − ε)) · |H B |

Case 3.
∑

v∈S∩T W v ≥ (1/3) · w(E). In this case, we condition on the event under which Lemma 4.10 holds. Thus, we get:

w(E) ≤
∑

v∈S∩T

3 · W v ≤
∑

v∈S∩T

3 · cv ≤
∑

v∈S∩T

(3λ/(1 − ε)) · W S
v

≤ (3λ/(1 − ε)) ·
∑

e∈H S

2 · w S(e) = (6λ/(1 − ε)) ·
∑

e∈H S

w S(e)

≤ (12λ/(1 − ε)) · |M S |.
The last inequality holds since M S is a maximal b-matching in G S (H S) = (V , H S), and since every maximal b-matching is a
2-approximation to the maximum fractional b-matching (this follows from LP duality). Accordingly, we have

∑
e∈H S

w S (e) ≤
2 · |M S |.

4.7. Proof of Lemma 4.9

Lemma 4.9 follows from Lemmas 4.11 and 4.12.

Lemma 4.11. With high probability, we have W B
v ≥ (1 − ε) · (cv/λ) for every node v ∈ B ∩ T .

Proof. Fix any node v ∈ B ∩ T . Note that N (v, E B) = N (v, E), W v ≥ cv/λ, and cv ≥ cλ log n/ε . Linearity of expecta-
tion, in conjunction with equations (42), (44) and Observation 4.2 imply that we have E[W B

v] = ∑
u∈N (v,E B) E[Z B(u, v)] =∑

u∈N (v,E B) w(u, v) = ∑
u∈N (v,E) w(u, v) = W v ≥ cv/λ ≥ c log n/ε . Thus, applying Chernoff bound, we infer that E[W B

v] ≥
(1 − ε) · (cv/λ) with high probability. The lemma follows if we take a union bound over all nodes v ∈ B ∩ T .

Lemma 4.12. With high probability, we have W B
v ≤ cv for every node v ∈ V .

Proof. Consider any node v ∈ V . If v ∈ S , then we have W B
v ≤ cv with probability one (see equations (41), (44)). For the

rest of the proof, suppose that v ∈ B . Applying an argument similar to the one used in the proof of Lemma 4.11, we infer
that E[W B

v] = W v ≤ cv/γ . The last inequality holds due to equation (39). Since γ > (1 + ε) and cv ≥ cλ log n/ε , applying
Chernoff bound we derive that W B

v ≤ cv with high probability. Thus, for each node v ∈ V , we have W B
v ≤ cv with high

probability. The lemma now follows if we take a union bound over all nodes v ∈ B .

4.8. Proof of Lemma 4.10

High Level Overview. In order to highlight the main idea, we assume that pe < 1 for every edge e ∈ E S . First, consider any
small node v ∈ S . Since N (v, E S) = N (v, E), from equations (39), (45), (47) and linearity of expectation, we infer that
E[deg(v, H S)] = (cλ log n/ε) · W v ≤ (cλ log n/ε) · (cv/(1 + ε)). Since cv ∈ [1, c log n], from equation (46) and Chernoff bound
we infer that deg(v, H S) ≤ (cλ log n/ε) ·cv = O (log2 n) with high probability. Next, note that W S

v = deg(v, H S) ·(ε/(cλ log n)).
Hence, we also get W S

v ≤ cv with high probability. Next, suppose that v ∈ S ∩ T . In this case, we have E[deg(v, H S)] =
(cλ log n/ε) · W v ≥ (cλ log n/ε) · (cv/λ). Again, since this expectation is sufficiently large, applying Chernoff bound we get
deg(v, H S) ≥ (cλ log n/ε) · (1 − ε) · (cv/λ) with high probability. It follows that W S

v = (ε/(cλ log n)) · deg(v, H S) ≥ (1 − ε) ·
(cv/λ) with high probability. Finally, applying a similar argument we can show that for every big node v ∈ B , we have
W S

v ≤ cv with high probability.

4.8.1. Full details
For every node v ∈ V , we partition the set N (v, E S) into two subsets – X(v), Y (v) – as defined below.

X(v) = {u ∈ N (v, E S) : p(u,v) = 1} (49)

Y (v) = {u ∈ N (v, E S) : p(u,v) < 1} (50)

Next, for every node v ∈ V , we define:

δX (v) =
∑

u∈X(v)

w(u, v) (51)

δY (v) =
∑

w(u, v) (52)

u∈Y (v)

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 237
Since N (v, E S) ⊆N (v, E) for every node v ∈ V , by equation (39) we have:∑
u∈N (v,E S)

w(u, v) = δX (v) + δY (v) ≤ cv/γ (53)

Since X(v) ⊆N (v, E S) and w S (u, v) = w(u, v) for every node u ∈ X(v), we get:∑
u∈X(v)

w S(u, v) = δX (v). (54)

Lemma 4.13. For every node v ∈ V , if δY (v) ≤ ε/λ, then with high probability, we have:

|Y (v) ∩N (v, H S)| ≤ (1 + ε) · c logn; and∑
u∈Y (v)∩N (v,H S)

w S(u, v) ≤ 2ε/λ.

Proof. Recall that for every node u ∈ Y (v), we have defined Z S(u, v) ∈ {0, 1} to be an indicator random variable that is
set to one if (u, v) ∈ H S and zero otherwise. Clearly, we have E[Z S(u, v)] = (cλ log n/ε) · w(u, v) for all u ∈ Y (v). Applying
linearity of expectation, we get:

E [|Y (v) ∩N (v, H S)|] = E

⎡
⎣ ∑

u∈Y (v)

Z S(u, v)

⎤
⎦ = (cλ log n/ε) ·

∑
u∈Y (v)

w(u, v)

= (cλ log n/ε) · δY (v) ≤ c log n.

Since E [|Y (v) ∩N (v, H S)|] ≤ c log n, applying Chernoff bound we infer that |Y (v) ∩ N (v, H S)| ≤ (1 + ε)c log n with high
probability.

Finally, note that each node u ∈ Y (v) ∩N (v, H S) has w S (u, v) = ε/(cλ log n). This implies that∑
u∈Y (v)∩N (v,H S)

w S(u, v) = ε/(cλ log n) · |Y (v) ∩ H S |.

Since |Y (v) ∩ H S | ≤ (1 + ε)c logn with high probability, we get:
∑

u∈Y (v)∩N (v,H S) w S (u, v) ≤ (1 + ε)ε/λ ≤ 2ε/λ with high
probability. This concludes the proof of the lemma.

Lemma 4.14. For every node v ∈ V , if δY (v) ≥ ε/λ, then with high probability, we have:

(cλ log n/ε) · δY (v)

(1 + ε)
≤ |Y (v) ∩N (v, E S)| ≤ (cλ log n/ε) · (1 + ε)δY (v); and

δY (v)

(1 + ε)
≤

∑
u∈Y (v)∩N (v,H S)

w S(u, v) ≤ (1 + ε)δY (v).

Proof. Let μ = E[|Y (v) ∩N (v, H S)|]. Applying an argument as in the proof of Lemma 4.13, we get: μ = (cλ log n/ε) ·δY (v) ≥
c log n. Hence, applying Chernoff bound, we infer that μ/(1 + ε) ≤ |Y (v) ∩N (v, H S)| ≤ (1 + ε)μ with high probability. This
proves the first part of the lemma.

To prove the second part of the lemma, we simply note that, as in the proof of Lemma 4.13, we have∑
u∈Y (v)∩N (v,H S)

w S(u, v) = (ε/(cλ log n)) · |Y (v) ∩N (v, H S)|.

Lemma 4.15. For every node v ∈ V , we have deg(v, H S) = O ((log n/ε) · cv) with high probability.

Proof. Fix any node v ∈ V . Note that X(v) ⊆ N (v, H S) and w(u, v) = w S (u, v) ≥ ε/(cλ log n) for every node u ∈ X(v). By
equation (54), we have

∑
u∈X(v) w S (u, v) = δX (v) for every node v ∈ V . Thus, we get:

|X(v)| ≤ (cλ log n/ε) · δX (v) = O ((log n/ε) · δX (v)) (55)

Lemmas 4.13 and 4.14 imply that with high probability, we have:

|Y (v) ∩ H S | ≤ max (c logn, (cλ log n/ε)(1 + ε)δY (v))
= O ((log n/ε) · δY (v)) (56)

238 S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239
Since deg(v, H S) = |X(v)| +|Y (v) ∩N (v, H S)|, the lemma follows if we add equations (55) and (56), and recall that δX (v) +
δY (v) ≤ cv (see equation (53)).

Lemma 4.16. For every node v ∈ V , we have W S
v ≤ cv with high probability.

Proof. Lemmas 4.13 and 4.14 imply that with high probability, we have:

∑
u∈Y (v)∩N (v,H S)

w S(u, v) ≤ max (2ε/λ, (1 + ε)δY (v)) (57)

Since the node-set N (v, H S) is partitioned into X(v) and Y (v) ∩N (v, H S), we get:

W S
v =

∑
u∈X(v)

w S(u, v) +
∑

u∈Y (v)∩N (v,H S)

w S(u, v)

≤ (1 + ε) · δX (v) + max(2ε/λ, (1 + ε)δY (v)) (58)

≤ (1 + ε) · (δX (v) + δY (v)) + 2ε/λ

≤ (1 + ε) · (cv/γ) + (2ε/λ) · cv (59)

≤ (1 + ε) · (cv/γ) + 2ε · (cv/γ) (60)

≤ cv (61)

Equation (58) follows from equations (54) and (57), and it holds with high probability. Equation (59) follows from equa-
tion (53) and the fact that cv ≥ 1. Equation (60) holds since γ < λ (see Theorem 4.1). Equation (61) holds since γ > 1 + 3ε
(see Theorem 4.1).

Lemma 4.17. For every node v ∈ S ∩ T , we have W S
v ≥ (1 − ε) · (cv/λ).

Proof. Fix any node v ∈ S ∩ T . Since v ∈ S , we have N (v, E) =N (v, E S). Since v ∈ T , we have W v = ∑
u∈N (v,E S) w(u, v) ≥

cv/λ. Since
∑

u∈N (v,E S) w(u, v) = δX (v) + δY (v), we get:

δX (v) + δY (v) ≥ cv/λ (62)

We also recall that by equation (54) we have:

∑
u∈X(v)

w S(u, v) = δX (v) (63)

We now consider two possible cases, based on the value of δY (v).

Case 1. We have δY (v) ≤ ε/λ. Since cv ≥ 1, in this case, we have δX (v) ≥ cv/λ − δY (v) ≥ cv(1 − ε)/λ. By equation (63), we
infer that W S

v ≥ ∑
u∈X(v) w S (u, v) = δX (v) ≥ cv(1 − ε)/λ. This concludes the proof of the lemma for Case 1.

Case 2. We have δY (v) > ε/λ. In this case, Lemma 4.14 implies that with high probability we have:

∑
u∈Y (v)∩N (v,H S)

w S(u, v) ≥ δY (v)/(1 + ε).

Since the node-set N (v, H S) is partitioned into X(v) and Y (v) ∩N (v, H S), we get:

W S(u, v) =
∑

u∈X(v)

w S(u, v) +
∑

u∈Y (v)∩N (v,H S)

w S(u, v) ≥ δX (v) + δY (v)/(1 + ε)

≥ (δX (v) + δY (v))/(1 + ε) ≥ (cv/λ) · (1/(1 + ε)) ≥ (1 − ε) · (cv/λ)

This concludes the proof of the lemma for Case 2.
Lemma 4.10 follows from Lemmas 4.15, 4.16, 4.17, and the fact that cv = O (logn) for all v ∈ S .

S. Bhattacharya et al. / Information and Computation 261 (2018) 219–239 239
5. Conclusion and open problems

In this paper, we introduced a dynamic version of the primal-dual method. Applying this framework, we obtained the
first nontrivial dynamic algorithms for the set cover and b-matching problems. Specifically, we presented a dynamic al-
gorithm for set cover that maintains a O (f 2)-approximation in O (f · log(m + n)) update time, where f is the maximum
frequency of an element, m is the number of sets and n is the number of elements. On the other hand, for the b-matching
problem, we presented a dynamic algorithm that maintains a O (1)-approximation in O (log3 n) update time. Our work
leaves several interesting open questions. We conclude the paper by stating a couple of such problems.

• Recall that in the static setting the set cover problem admits O (min(f , log n))-approximation in O (f · (m + n))-time.
Can we match this approximation guarantee in the dynamic setting in O (f · poly log(m + n)) update time? As a
first step, it will be interesting to design a dynamic algorithm for fractional hypergraph b-matching that maintains
a O (f)-approximation and has an update time of O (f · poly log(m + n)).

• Are there other well known problems (such as facility location, Steiner tree etc.) that can be solved in the dynamic
setting using the primal-dual framework?

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 340506. Monika Henzinger was also sup-
ported by the EU 7th Framework Programme under Grant Agreement 317532. Giuseppe Italiano was partially supported by
MIUR (the Italian Ministry of Education, University and Research) under Project AMANDA.

References

[1] H.W. Kuhn, The Hungarian method for the assignment problem, Nav. Res. Logist. Q. 2 (1955) 83–97.
[2] G.B. Dantzig, L.R. Ford, D.R. Fulkerson, A primal-dual algorithm for linear programs, in: H.W. Kuhn, A.W. Tucker (Eds.), Linear Inequalities and Related

Systems, Princeton University Press, Princeton, NJ, 1956, pp. 171–181.
[3] R. Bar-Yehuda, S. Even, A linear time approximation algorithm for the weighted vertex cover problem, J. Algorithms 2 (1981) 198–203.
[4] M. Goemans, D.P. Williamson, A general approximation technique for constrained forest problems, SIAM J. Comput. 24 (1992) 296–317.
[5] M.X. Goemans, D.P. Williamson, The primal-dual method for approximation algorithms and its application to network design problems, in:

D.S. Hochbaum (Ed.), Approximation Algorithms for NP-Hard Problems, PWS Publishing Company, 1997, pp. 144–191.
[6] N. Buchbinder, J. Naor, The design of competitive online algorithms via a primal-dual approach, Found. Trends Theor. Comput. Sci. 3 (2–3) (2009)

93–263, https://doi.org/10.1561/0400000024.
[7] S. Bhattacharya, M. Henzinger, G.F. Italiano, Deterministic fully dynamic data structures for vertex cover and matching, in: Procs. 26th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2015), 2015, pp. 785–804.
[8] V.V. Vazirani, Approximation Algorithms, Springer-Verlag, New York, NY, USA, 2001.
[9] S. Korman, On the Use of Randomization in the Online Set Cover Problem, Weizmann Institute of Science, 2004.

[10] D. Eppstein, Z. Galil, G.F. Italiano, Dynamic graph algorithms, in: M.J. Atallah, M. Blanton (Eds.), 2nd edition, Algorithms and Theory of Computation
Handbook, vol. 1, CRC Press, 2009, pp. 9.1–9.28.

[11] S. Baswana, M. Gupta, S. Sen, Fully dynamic maximal matching in O (logn) update time, in: 52nd IEEE Symposium on Foundations of Computer Science,
2011, pp. 383–392.

[12] M. Gupta, R. Peng, Fully dynamic (1 + ε)-approximate matchings, in: 54th IEEE Symposium on Foundations of Computer Science, 2013, pp. 548–557.
[13] O. Neiman, S. Solomon, Simple deterministic algorithms for fully dynamic maximal matching, in: 45th ACM Symposium on Theory of Computing, 2013,

pp. 745–754.
[14] K. Onak, R. Rubinfeld, Maintaining a large matching and a small vertex cover, in: 42nd ACM Symposium on Theory of Computing, 2010, pp. 457–464.
[15] D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. Syst. Sci. 9 (1974) 256–278.
[16] U. Feige, A threshold of ln n for approximating set cover, J. ACM 45 (1998) 634–652.
[17] S. Khot, O. Regev, Vertex cover might be hard to approximate to within 2 − ε , J. Comput. Syst. Sci. 74 (3) (2008) 335–349.
[18] H.N. Gabow, An efficient reduction technique for degree-constrained subgraph and bidirected network flow problems, in: Proceedings of the 15th

Annual ACM Symposium on Theory of Computing, Boston, Massachusetts, USA, 25–27 April, 1983, 1983, pp. 448–456.
[19] K.J. Ahn, S. Guha, Near linear time approximation schemes for uncapacitated and capacitated b-matching problems in nonbipartite graphs, in: Pro-

ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5–7, 2014, 2014,

pp. 239–258.

