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Abstract. The distributed data management system Rucio manages all data of
the ATLAS collaboration across the grid. Automation, such as data replication
and data rebalancing are important to ensure proper operation and execution of
the scientific workflow. In this proceedings, a new data allocation grid service
based on machine learning is proposed. This learning agent takes subsets of the
global datasets and proposes a better allocation based on the imposed cost met-
ric, such as waiting time in the workflow. As a service, it can be modularized
and can run independently of the existing rebalancing and replication mecha-
nisms. Furthermore, it collects data from other services and learns better allo-
cation while running in the background. Apart from the user selecting datasets,
other data services may consult this meta-heuristic service for improved data
placement. Network and storage utilization is also taken into account.

1 Introduction

Scientific collaborations provide experimental and simulated data for research and analysis.
For this purpose, grids capable of storing and processing large quantities of data are estab-
lished. The grid in which the scientific workflow of ATLAS[1] is established, is the world-
wide Large Hadron Collider (LHC) Computing Grid (WLCG). Events from the experiment
are recorded and stored as new files in the main data center CERN and shipped to outside
data centers. Simulation data is generated globally to allow users parallel computation across
the comprised data centers.

Usual computations in the workflow take place as jobs running at computing resources.
These jobs arise from higher-level tasks, which process a collection of datasets, i.e. a larger
set of files. The task is divided up into jobs and each job takes on a subset of the constituent
files, i.e., its input dataset derived from the collection of datasets. A job outputs new files
upon completion. Jobs are distributed to data centers following a method that minimizes the
overall waiting time. A new job must join behind a waiting queue of already assigned jobs.

An important criterion for job execution is that the input dataset is locally available. After
a data center has been chosen for a job, according to the policy of dynamic balancing between
data availability and work load, missing files of the input dataset are copied to the data center.
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During this stage-in process, file transfers to the destination contribute to the waiting time.
The job broker generally tends to a majority decision with respect to the input files. In the best
case, the dataset already lies at the local data center where the job is placed to. In summary,
the job broker mainly attempts to balance out these two major time components: waiting time
for execution versus waiting time for input data.

2 Motivation

Users from different institutions and work groups access data and submit tasks to be per-
formed on the grid. After a task is broken down into jobs, each job is mapped onto shared
computing resources. There are two major bottlenecks affecting the performance of the work-
flow.

• The computing power of each data center dealing with the workload: This determines how
fast a job will be executed on average.

• The network comprises WAN (wide-area network) links between data centers: The band-
width of a WAN link determines the average transfer rate of files.

Due to load balancing, different resources at computing centers, and distributed data, trans-
fers must be triggered. Subsequently, delay times over network links affect the workflow. A
priori file allocation can lead to an average reduction in file transfers in spite of significant
uncertainties in the use of datasets and in the assignment of the corresponding jobs to data
centers. These uncertainties may be addressed by measuring access frequencies and estimat-
ing values for upcoming jobs. Simulations based on usual access patterns can predict which
datasets will be used. There are also variances in the number of jobs and their locations
depending on job type. For example, a job with high memory constraint may only run at
data centers complying with the requirements. Reducing the number of file transfers on jobs
benefits the workflow in a two-fold manner: Firstly, the network load is reduced and better
response times are achieved during times of heavy demand. Secondly, fewer file transfers are
triggered in each job, resulting in a faster stage-in of the dataset and a reduced waiting time
for each job.

The current standard procedure for file placement of ATLAS is to distribute data accord-
ing to so-called ’memoranda of understanding’, i.e., kinds of service level agreements, which
are broken down to policies in data services. Users interact with the grid file system, cleaning
and moving data with the aim to keep work-in-progress datasets on fully performing data
centers and to move obsolete datasets to free storage. Furthermore, grid data services main-
tain and improve the file arrangement related to the workflow. Services for rebalancing and
replicating data rank as the most essential.

3 State of the Art

In order to increase availability or performance in networks, effective data allocation is uti-
lized. The data allocation problem has been analyzed in the past when distributed databases
were studied and parallelization had to be utilized. A linear model for file allocation with
storage and transmission costs is elaborated in [2], and the simulation covers five files in a
network of three computers. Data placement is further modeled on different abstraction levels
in [3]. This theoretical work shows that the data placement problem is extremely difficult to
solve. The proof is given that the data placement problem is NP-Complete. Meta-heuristic
algorithms were also applied to this kind of problem. In [4], data allocation strategies have
been investigated to reduce transaction costs. A genetic algorithm was used here, with the
goal of limiting communication effort between data centers by balancing the load.
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algorithms were also applied to this kind of problem. In [4], data allocation strategies have
been investigated to reduce transaction costs. A genetic algorithm was used here, with the
goal of limiting communication effort between data centers by balancing the load.

Other database approaches attempt to arrange data effectively over the network nodes,
such as in [5, 6]. However, these studies investigate idealized database cases. For example,
they focus on a single query type or do not consider any constraints on communication char-
acteristics. These studies could be improved by using behavior and workflow characteristics.
Analysis of access patterns would be beneficial for network utilization.

A well-known approach is ranking data according to the number of accesses per time
unit. This characteristic is referred to as data popularity [7]. In [7], a successful popularity
model is established which uses different structured and unstructured sources for collecting
historical data. A popularity model is implemented as an autonomous service for finding
obsolete data and used in the cleaning process in [8, 9].

In [10], a data placement optimizer is presented for the hybrid storage network of the
LHCb physics collaboration. Hybrid means that different storage technologies are used and
different cost factors are thereby assigned in the machine learning algorithm, which further
includes the popularity of data. The LHCb Grid Simulator provides a platform for simulating
an LHCb computer model in which different types of computer jobs are distinguished [11].
For the job broker system, two pull methods are considered: In the Simple Model, a job is
sent to the first available site. In the Data Availability Model, a job is sent to the first site
which provides the job’s input data.

Replication and rebalancing are important tasks to ensure stable operation and a flawless
workflow. On the ATLAS data grid, a replication service, called C3PO, creates secondary
copies of datasets and distributes them to free storage nodes [12]. Secondary copies are
replicated versions of datasets that increase accessibility and performance across the grid. In
order to ensure full functionality of single storage nodes on the grid, the rebalancer service,
called BB8, monitors free capacities and the ratio between primary and secondary copies of
files [13]. In a sub-optimal case defined by policies, it deletes local data or moves data to
other storage nodes.

In summary, research and application often concentrate on models applied in particular
cases. In the data allocation context, storage resources and the use of data have to be appro-
priately treated in the process of file placement [14]. This proceedings outlines one approach
that aims to improve the data-intensive workflow. Meta-heuristic techniques shall be incor-
porated into a data allocation algorithm as a service which extends the possibilities for better
data allocation on the grid.

4 Data Allocation Service

The aim is to carry out data allocation that uses methods that reduce time-related costs in the
workflow as far as possible. When observing the workflow, two major time delays can be
identified. Jobs are designated in a manner that balances out the computing and the network-
ing load:

• The job broker system places jobs onto data centers, where jobs are in turn allocated to
workers. Normally, a newly created job waits in a queue within the data center due to the
constant incoming load. This wait makes up a significant component of the total job time,
particularly when compared to its run time. The job broker attempts to reduce this waiting
time through job allocation to worker nodes.

• The job broker also aims to effectively allocate jobs in order to reduce a second major time
delay. This delay equates to waiting time for a job’s necessary input data. Missing files
from the job’s input dataset must be transferred to the target data center, which results in
waiting time. It is highly evident that data allocation has an impact on the time component.
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The allocation task attempts to minimize the waiting time for input data. In order to effec-
tively achieve this, one should consider placing files as close as possible to their correspond-
ing jobs. In the stochastic domain of the dataset access, at least two obstacles arise:

• What are the interesting files, say, the files that are more likely to be accessed? The predic-
tion of this is attached to uncertainties.

• Where will a job be placed and run, given an input dataset? This depends heavily on dataset
distribution and the changing load on data centers. Therefore, hidden uncertainties should
be taken into account when predicting the job’s target node.

ATLAS is using straightforward approaches and an algorithmic placement which exhibits
throughput problems. In this R&D, possibilities are explored to use machine learning as an
alternative. Data allocation based on heuristics remains a difficult albeit necessary task. Such
a core allocation algorithm is incorporated into a service component compatible with the data
services described above and must meet the following requirements:

• Allocation optimization may be applied iteratively each time files are transferred.

• The allocation service must attend to other data services and take into account the current
state of the grid. The replication service as well as the rebalancing service influences the
data arrangement. Users interact continuously with the workflow management system to
manipulate datasets. Already used concepts, e.g. data popularity, can be incorporated to
support the data allocation.

• For automatic reallocation acting on preselected datasets, the service must have the correct
transfer rate in order not to impose too many transfers on the network.

4.1 Allocation and Reallocation

The core concept of the allocation algorithm is based on a meta-heuristic algorithm such as
in [15], where the datasets containing files to be optimally allocated are passed on to the
optimization algorithm. This input set can be moved around in the file system, whereas the
complementary set is not allowed to move. The allocation algorithm runs several optimization
iterations, from which the best is carried out. For any dataset selection, the target metric
indicates the improvement gained from the possible optimization step. There are two working
methods within an allocation algorithm:

• Automatic reallocation: New files packed into datasets originating at data centers can be se-
lected for reallocation, which will be then moved towards lower costs under the constraints.
On top of new datasets, used datasets can be also included in the selection.

• Semi-automatic reallocation: A data service wants to copy or move a certain set of datasets.

4.2 Constraints

The allocation algorithm operates at dataset level. Datasets are user-defined collections of
files that correspond to each other. For example, events collected in one LHC run are com-
monly packed into one dataset. They are tendentially not divided and placed onto several
nodes. Datasets can be categorized and analyzed by their attributes via mining and machine
learning techniques. Special values such as popularity and dependency can be associated
with datasets. Popularity is a heuristic that predicts how likely the dataset will be accessed by
an upcoming job in a certain time window. A noticeable portion of the total datasets does not
provide popularity values, causing them to be ranked lower. Dependencies between datasets
indicate how similar datasets are. For dataset overlaps, it can be predicted how likely files of
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Figure 1. The learning agent ADAS plays an auxiliary role in delivering better data allocation and
proposing information on it.

two datasets will be processed by an upcoming job, and popularity can be derived. Datasets
can be further clustered to super-datasets for generating collections and finally allocated to
free gaps at storage nodes [15].

The size of the dataset selection taken in one optimization step can be increased or de-
creased by the transfer rate according to how much network load can be put on the network.
Shipping large amounts of data back and forth must be avoided. Larger subsets give more
optimization potential. Due to storage and network constraints, smaller subsets are chosen
in each iteration step. A global solution embracing all datasets would be incomparably more
complex to achieve and vast load could not be handled by the network. For efficiency, a use-
ful subset of network nodes – the most important data centers from a storage point of view
– are covered by the allocation algorithm. Local optimization within these nodes leads to a
strong overall improvement. In the concrete example of the ATLAS data grid, it can be seen
that the ten biggest data centers hold over a half of the total data.

5 Model

The allocation algorithm shall be deployed as a service component. ADAS – the ATLAS Data
Allocation Service – will run in the background, being independent of the other services. The
cooperative interaction between ADAS and other data services within the workflow allows
possibilities for improving the operation of these services. The service may be switched to
fully automatic for temporary allocation improvements. This pushes the situation towards a
more optimal arrangement. Generally speaking however, automatic reallocation is concurrent
with the other data services, since they operate independently and do not pay attention to
external actions. Common datasets could be transferred multiple times when interfering with
another data service.

The information flow is depicted in Figure 1. ADAS occupies another place among the
grid data services. Before any dataset placement, a service can consult ADAS about a possible
group of datasets. ADAS replies with a list of datasets that should be moved. For instance,
it is better for a dataset that has recently been moved in the allocation process to remain
stationary, since it is already part of an improved, cost-reducing allocation. New promulgated
locations for datasets are optional. If the service is unable to move files in the first place, or
when it contradicts performed actions or internal policies, it simply ignores the proposed
target. The datasets will then not be flagged as reallocated in ADAS. The interface to other
components works as follows:
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• The rebalancer service dynamically rebalances data between data centers in order to avoid
possible overloads at the storage nodes. The intention is to keep free storage capacity or to
free storage up if necessary on monitored storage nodes. One possibility is the deletion of
secondary copies of datasets, i.e. copies not needed at this time. The second possibility is
that the rebalancer moves datasets whose target can be determined by ADAS.

• The placement service places secondary copies of datasets to distinguished storage re-
sources. Each time a replication of a dataset is made, the location can be determined by
ADAS.

• Sometimes the user will be in a position to indicate important datasets that will be used
more frequently. This information should be put into ADAS, which increases the popularity
values of these datasets.

• Other services such as analytics services deliver updates on popularity values (Pop) or
dataset dependency values (DSD).

For the core allocation algorithm, a meta-heuristic evolutionary algorithm has been deployed
[15]. It implements the two previously described heuristics data popularity and dataset de-
pendency to ensure that more similar datasets with higher access likelihoods are collected
at certain single storage nodes. The evolutionary method is able to take file system snap-
shots across storage nodes and to find a better reallocation for a subset of these data. The
solution space is constrained with the available storage spaces determined by the overall data
allocated and storage capacities available. In an evolutionary iteration, swaps of allocated
subsets of datasets are tested by the imposed cost metric. This process is undertaken until a
good solution is found, which can be executed by moving of chopped up subsets between the
storage nodes. To ensure that the file system consistently remains in a good state, file system
snapshots must repeatedly be taken in order to evaluate the current state. After a file system
snapshot becomes obsolete, i.e., data have been moved or deleted, the optimization method
has to be triggered again to determine a new collection of datasets and its allocation. In gen-
eral, this collection of datasets to be moved, can be selected based on a tournament selection
of several subsets of datasets. The subsets of a tournament are initially chosen based on the
following: Each subset takes high dependent datasets. Datasets with higher popularity have
priority over others. Already allocated datasets are down-ranked. This evolutionary process
between selected collections ensures a wider extent of the search of minima, as opposed to a
more limited case.

In a simplified experiment, a model with 20 data centers in a network is implemented.
Each of the data centers gets a random storage capacity and can hold between 200 and 2000
files for the sake of runtime of the simulation on a single personal computer. This adds up
to approximately 20 k files and 1 k datasets. Datasets comprise different numbers of files
with a variance based on real datasets. The simulation initiates multiple runs in different
configurations. Jobs access different shares of the popular datasets in each configuration.
A configuration with 20 % popularity comprises jobs with an expected 20 % access rate to
datasets with some popularity and 80 % to purely random datasets. The majority of datasets
don’t possess any popularity, i.e., their popularity is 0. Highly popular datasets are accessed
more likely than others. Figure 2 presents the results of the optimized file allocations for
different configurations. The random case shows the initial datasets spread across available
network storages. The optimized case gives the achieved outcomes from the allocation algo-
rithm in the experiment. The horizontal axis depicts the number of popular datasets among
all datasets. The vertical axis shows the number of file transfers per job. The overall network
load is lessened with this data allocation algorithm, resulting in a cost reduction of computa-
tional jobs in relation to expected WAN transfer time. Even though the experiment is based on
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Figure 2. Runs with 20 data centers comprising different job configurations in terms of used data
popularity

a simplified model, it shows how data access can be improved by data placement. However,
the implemented algorithm must be upgraded, for example, with the necessary interfaces for
passing enabled datasets and setting a transfer rate.

6 Conclusion

Improving the file allocation within the grid is an important task to ensure quick execution
of the workflow. Regarding automatic file allocation on the grid, the following drawbacks
should be noted:

• Concurrency occurring among several services.

• The complexity is high.

• Automatism might not be trusted. Users want to have the control.

This proceedings proposes an integral approach to combat these shortcomings with the
service component ADAS. The approach can be integrated in the established environment
with data rebalancing service and the data placement service in the distributed data manage-
ment system Rucio of the ATLAS collaboration at CERN. Generally speaking, an automatic
mode would not be necessary due to data services running on the grid. On the other hand, an
automatic mode would prove useful when important datasets, say for an upcoming confer-
ence, are chosen and given to ADAS. The allocation service ADAS then acts pro-actively on
user-enabled datasets, which are processed in the described manner of taking turns of smaller
portions each. Through regulating by a transfer rate, the number of reallocated datasets per
time unit can be set, to target a ’gentle’ and continuous background improvement. Combined
with other services, ADAS utilizes important information, e.g. the popularity of datasets, and
works out an improved data allocation. The heuristic approach including network and storage
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utilization in the target metric may lead to better data allocation, and enabling a faster paced
workflow.
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