
KMN - Removing Noise from K-Means
Clustering Results

Benjamin Schelling and Claudia Plant

University of Vienna

Abstract. K-Means is one of the most important data mining tech-
niques for scientists who want to analyze their data. But K-Means has
the disadvantage that it is unable to handle noise data points. This paper
proposes a technique that can be applied to the k-Means Clustering result
to exclude noise data points. We refer to it as KMN (short for K-Means
with Noise). This technique is compatible with the different strategies
to initialize k-Means and determine the number of clusters. Moreover, it
is completely parameter-free. The technique has been tested on artificial
and real data sets to demonstrate its performance in comparison with
other noise-excluding techniques for k-Means.

1 Introduction

A scientist who has not had much contact with data mining will use the sim-
plest algorithms when he decides to use data mining techniques. The simplest
and best known is probably k-Means [12]. More refined techniques, that offer
the possibility of achieving better results are likely to be applied at a later stage,
once the scientist has become familiar with the automatic labelling of the data
and has learned to appreciate the additional information that such techniques
might yield. K-Means is something like a gateway to data mining techniques.
It has many advantages that predestine it for this purpose: Its simplicity, the
comparatively good results and its runtime. But k-Means also has some disad-
vantages that are not to be neglected: The initialization that determines which
(local) optimum the algorithm converges to, the need to set the k parameter
and its inability to handle noise. This can be seen in Figure 1. K-Means will
add each data point to a cluster, since the possibility, that a data point is a
noise point is simply not supported in the algorithm. The first two problems,
initialization and setting k, were examined in detail and various (sometimes very
capable) strategies have been proposed, the last problem however received less
recognition. This may be partly due to the fact that publicly available data sets
rarely contain noise, which is why k-Means-based techniques that find and char-
acterize noise did not seem so important at first. Recently, however, there have
been more and more techniques that take noise into account when clustering.

1.1 Related Work

Clustering in the presence of noise is a classic field of research in data mining.
Many techniques like DBSCAN [6] have been suggested and studied extensively.

Fig. 1. A typical clustering result of k-Means, if the value of k is chosen correctly, and
how the clustering actually should look like.

However, few of them are based on k-Means, hence will not be a likely first
choice for a new user of data mining techniques. The focus here is exclusively on
techniques which adapt k-Means to noisy data sets and thus offer the possibility
to stay within the framework of k-Means while they are still dealing with noisy
data sets.

The best known of these clustering-in-the-presence-of-noise techniques based
on k-Means is k-Means-- from Chawla et al. [5]. The problem is that it asks
for the number of outliers as a parameter for the functionality of the technique.
Chawla et al. stated in their paper that ”all existing outlier-detection methods
use one or more parameters”. This seems to be largely correct for the outlier
clustering techniques that are based on k-Means. Similarly, the algorithm KMOR
proposed by Gan et al. [7] asks for two additional parameters, one of which is
the maximum number of outliers. The algorithm ODC [1] has the ”difference”
between outliers and real data points as a parameter, while Neo-k-Means [16]
asks for two parameters α and β, which are also related to the assignment of
data points to a cluster, i. e. the number of outliers.

The aim of this work is to find a way to remove noise points from the clus-
ters without additional parameters. Having to set parameters will most likely
prevent inexperienced users from using data mining techniques, hence, the ideal
clustering technique is one completely without parameters. One could argue that
the other problems of k-Means might have already detered possible users, but
these problems have many solutions, many of which are implemented in pub-
licly available software. It is easy to add the option of, say, X-Means [14] to
estimate the value of k and k-Means++ [2] to achieve a good initialization. The
ideal solution would be to add the option to remove noise too, without setting
additional parameters.

1.2 Contribution

We present here a k-Means based technique that adapts and expands k-Means
to noisy data sets.

– The technique presented in this work, KMN, can efficiently remove noise
from k-Means clustering results without additional parameters.

– It does so, while being deterministic. For a k-Means clustering result, the
excluded noise points are always the same.

– KMN offers a higher independence from the chosen k for k-Means. This work
demonstrates in section 3 how KMN fares for wrongly chosen values of k and
shows the resilience it gives in relation to these values.

– It is fully compatible with other k-Means-based techniques that aim to im-
prove k-Means like X-Means and k-Means++.

2 The algorithm

The main intention of this work is to present an approach to exclude noise from
the clustering result of k-Means, to which we refer to as KMN. The algorithm
starts with a k-Means clustering result and tries to locate the areas where noise
is prevalent. K-Means follows a centre-oriented approach, in which data points
are assigned to the nearest centre. The centre is then updated as the mean of
the assigned data points. This means that the closer a datapoint is to a centre,
the more likely it is to be assigned correctly (provided that k-Means is a fitting
technique for the dataset and k is correctly selected). Or in other words: the
closer a data point is to the centre, the more likely is it correctly assigned. The
further away, the more likely is it that it should be assigned to another centre
or regarded as noise.

The search for noise should therefore begin at the locations furthest from
the cluster centres. The clusters in k-Means are Voronoi cells and between two
neighbouring Voronoi cells there is a hyperplane that separates them. At the in-
tersections of these hyperplanes one will find the point farthest from the centres,
as shown in Figure 2. Let us call this point m.

In an d-dimensional data space d + 1 voronoi cells determine such an inter-
section point. This point m is basically defined as the point in the data space,
where ||vj−m|| = r, j ∈ {1, 2, . . . , d+1}, holds; vj are the centres of the voronoi
cells, i.e. the centres that k-Means finds, r is the distance of m to the centres of
the voronoi cells. If one of the voronoi cell centres had a distance to m unequal
r, m would be assigned to the voronoi cell with the smallest distance.

When these intersections are found, the assumption is valid that the area of
these intersections should be considered to contain noise data points. Retaining
the spirit of k-Means, the algorithm then simply opens a new Voronoi cell at the
intersection, but one in which all data points within its boundaries are regarded
as noise (see Figure 2.2). It may not always be a good decision to open such a
noise voronoi cell, because it is possible that such a noise voronoi cell contains
data points and not (only) noise points. It is necessary to have a criterion to

Fig. 2. Three simple clusters and two outliers. The squares are the centres of the
clusters as found by k-Means which determine the voronoi cell walls. This shows, if
k-Means is a suitable technique, that the data points near the centres are correctly
assigned, while the more distant data points are more likely to be wrongly assigned.
When a new Voronoi cell is opened at the intersection of Voronoi cells, the noise data
points are separated from the clusters.

decide whether or not to open such a noise voronoi cell. KMN uses the principle
of Minimum Description Length (MDL).

MDL is a well established principle in the Data Mining community and is
used in various technique like X-Means [14]. The basic assumption behind MDL
is that the coding cost for a clustering result depends on how good the clustering
is. The coding cost is basically an estimate of how much memory is needed to
encode the clustering. If the clustering is good, only little memory is needed, but
if the clustering is far off, i. e. the model used to encode the data is not fitting,
the encoding requires a lot of memory.

If the criterion is applied and the Voronoi cells are either retained or dis-
carded, the next iteration can begin. We see in Figure 2.2 that there are new
Voronoi cell intersections and the same steps can be taken as before. Before this
happens, the centres of the clusters are updated. The process is iterated until
no more intersection improve the clustering, according to the criterion.

This is, very briefly, the procedure of the algorithm. Let us now elaborate on
that.

2.1 Finding the Voronoi Intersections

There are several ways to find the intersections of the Voronoi cells. The most
obvious way would be to find m using geometric calculations. In this approach
one would to work with the equation ||vj−m|| = r directly. This equation is the
formula for a sphere with radius r and middlepoint m. The d + 1 points vj are
given and therefore uniquely determine the centre m. To calculate m, this would
entail inverting a d+ 1× d+ 1-matrix, which would mean computations in the
order of O((d+ 1)3). While this might be acceptable, the difficulty lies with the

choice of the vj . If there are k centres of k-Means in a d-dimensional data space,
without knowing the adjacencies of the centres, one would have to compute all(
k
d+1

)
possible combinations to find the correct combinations of voronoi cells.

This is comparatively expensive and should be avoided.

Fig. 3. Convex Hull and intersection. The three clusters determine one voronoi cell
intersection, which is represented by the white square. The centres of the other clusters
as well as the projections of its own centre determine a bounded polytope, i.e. the
voronoi cell.

This technique uses the Avis-Fukuda algorithm [3], which is specialized in
finding Voronoi intersections. More precisely, Avis-Fukuda takes the centre of
each Voronoi cell, i. e. the centres that k-Means finds, as input and calculates
the intersection points of these Voronoi cells. The algorithm is based on a linear
optimization approach. It works according to the following principle: it starts
with a centre of a Voronoi cell and the other centres that bound it. This forms a
convex hull around the centre, a polyhedron, with the corners of this hull being
the intersections we are looking for. It calculates the nearest vertex with a linear
optimization approach and then follows the beams of the convex hull along to
find the other vertices. Avis-Fukuda follows the optimal path and finds all nodes,
i. e. all Voronoi intersections. The algorithm uses ”Bland’s rule” to ensure that
the path is the optimal one and that all vertices are found. In this way, all corner
points of a convex hull, i. e. all Voronoi intersections, are found.

A very simple example of this is illustrated in Figure 3. The point of inter-
section between the three Voronoi cells is easy to find, but the Voronoi cell is
unbounded. Therefore, we project the centre for all Voronoi cells beyond the data
set boundaries, so that all clusters have a limited convex hull defined by the cen-
tres found by k-Means and the added projections. The Avis Fukuda algorithm
can then be used to find the vertices (represented in Figure 3.2 as white squares).
The algorithm continues by finding such an vertex and then moving on to the
others. In a two-dimensional environment like this, it is rather straightforward.
After the first step, there is always only one direction in which the algorithm can

advance. It follows the rays of the convex hull until it reconnects with the first
vertex. The Avis-Fukuda algorithm has then found all nodes, i. e. all Voronoi
intersections for the cluster.

The Avis-Fukuda algorithm is estimated to have a runtime of O(k · d · v),
where v is the number of vertices. Since we apply the algorithm for each of the
k voronoi cells, we have a runtime of k · O(k · d · v).

2.2 The MDL-Criterion

The algorithm has found the possible intersections of the Voronoi cells. However,
the question now arises as to whether the algorithm should open new Voronoi
noise cells or not. MDL assumes that lower coding costs imply a better clustering.
Thus, if the new Voronoi noise cell reduces the total coding costs, the algorithm
keeps the new Voronoi noise cell. The coding costs consist of two parts: The
coding costs for the model L(M) and the coding costs for the data L(D|M).
The total coding cost is therefore L(M,D) = L(M)+L(D|M). K is the number
of clusters Ci; N is the number of data points x; pi is the number of parameters.
Hence, coding cost is given by the following equation:

L(M,D) =L(M) +L(D|M)

=

K∑
i=1

|Ci|∑
j=1

log2(
N

|Ci|
) +

K∑
i=1

pi
2
log2(|Ci|) −

K∑
i=1

∑
x∈Ci

log2(pdf(x))

The model coding costs L(M) is not difficult to calculate. Basically, one only
needs to know the cluster sizes. The data encoding cost L(D|M) is the more
cumbersome part, since one needs to know the distribution of the data points.
For algorithms like DBSCAN [6] that are not based on a probability distribution,
this can be difficult, but k-Means is based on the assumption of a Gaussian
distributed cluster, where the variance is the same in all directions. Therefore
we assume the data points to be Gaussian distributed in a cluster. Since the
variance is the same in all directions, the distance of a data point from the centre
is sufficient to determine its probability. We need two parameters to calculate the
normal distribution of a cluster, the expected value and the variance/standard
deviation of the cluster. The expected value is easy to calculate, it is simply the
centre of the cluster. The variance is a slightly more difficult one.

Let x be a random point in the Gaussian cluster. We assume the cluster to
be centred at 0. Every axis of the cluster is N(0, α) distributed, i.e. normal dis-
tributed with variance α, and we want to find α as it is the variance we are looking

for. We calculate the distance of x to the centre dist(x, 0) =
√∑d

i=1(αXi)2, with

Xi being a N(0, 1) distributed random variable, so αXi is N(0, α) distributed.
We have:

dist(x, 0) =

√√√√ d∑
i=1

(αXi)2 =

√√√√α2

d∑
i=1

(Xi)2 = α

√√√√ d∑
i=1

X2
i

The term Y =
√∑d

i=1X
2
i is known in the literature (e.g. [9]) as being Chi-

distributed and with that we have its probability distribution, which we label as

pdf(x). The difference is that we have α
√∑d

i=1X
2
i , but probability theory tells

us, if
√∑d

i=1X
2
i ∼ pdf(x), then α

√∑d
i=1X

2
i ∼ 1

|α|pdf(x
|α|). We now know the

form of the probability distribution.
The formula for the variance is V ar[Y] = E[Y 2] − E[Y]2. We can rewrite

E[Y 2] to E[Y 2] = E[
(√∑d

i=1(αXi)2
)2

] = α2E[
∑d
i=1X

2
i]. The literature tells

us Y 2 =
∑d
i=1X

2
i is Chi-squared distributed and has a mean of d. Hence:

V ar[Y] = α2d− E[Y]2

α =

√
V ar[Y] + E[Y]2

d

The variance and mean values are the variance and mean of the distances of all
data points to the centre, therefore we can compute them directly and get α.

pdf(x) =
xd−1e−

x2

2α2

2
d
2−1αdΓ (d2)

is therefore the probability density we were looking for. Γ is the standard
Gamma-function.

One could also estimate the variance differently, e. g. like X-Means [14], but
this approach seems to be more compatible with the heuristics of our approach.
Both have the same mathematical validity, but the use of the chi distribution
for the pdf seems to take better account of the distortion of Gaussian spheres by
outliers in the dataset. With the probability density function found, the coding
costs of the data can be calculated and the MDL criterion is set up to test the
Voronoi intersections.

The question that remains is which PDF should be used to model the noise.
The obvious notion is to assume uniformly distributed noise, but this has the
disadvantage of being massively distorted by outliers. Assume that the data set is
completely within the [0.1]d-cube. A single data point (2,2, . . . , 2) would change
the volume of the data set from 1 to 2d and thus also change the probability of
a noise data point by a factor of 2d. To make it more resistant to such extreme
outliers, the algorithm assumes that the noise is also Gaussian distributed. The
parameters for the noise distribution are calculated as before, whereby the mean
value is the average value of all data points and the variance of the noise is the
variance of all data points.

Let us go through the steps of the algorithm so far with Figure 4. We have
the old Voronoi noise cells in white that are given by the centres of k-Means
and the projections of the cluster centres. They now determine the Voronoi cell
intersections that are shown in gray. The MDL criterion is used to check whether
the new Voronoi noise cells are to be opened at these intersections. Three of the

Fig. 4. The convex hull of a cluster in the course of one iteration. First, all potentially
neighbouring Voronoi cells are determined (here only represented by their centres) and
the intersection points of the cells are calculated; then those intersection points that
open ”good” noise cells, according to the MDL principle, are retained. Finally, those
noise cells that are no longer adjacent are removed.

four are accepted because they either do not change or reduce the coding cost.
The fourth option would, however, massively increase the coding cost as it would
move many data points from the cluster to a noise cell. Therefore, only three of
these intersections are kept and the new convex hull of the cluster is described
by the Voronoi cells, which centres can be seen in Figure 4.2. One can see that
not all these centres are necessary any more, since two of the old centres are no
longer adjacent to the Voronoi cell. When eliminated, the situation would be as
shown in Figure 4.3.

If one were to keep these unnecessary noise cells, the next iteration would
take slightly longer and the next one somewhat longer. Depending on the number
of iterations the runtime would increase massively, so the question arises how to
eliminate the unnecessary centres.

2.3 Finding the Voronoi Adjacencies

The Avis-Fukuda algorithm offers the possibility to calculate the Voronoi cell
adjacencies, but is not focused on this by default. Mendez et al [13] created an
algorithm based on linear optimization, which specializes in this.

The algorithm translates the Voronoi adjacency problem into the linear op-
timization version of it and then continues the dual problem as it is more prac-
tical to solve. It begins with the equivalent of two randomly selected centres
of Voronoi cells and tests whether the point in the middle is located in one of
the two Voronoi cells. If this is the case, the Voronoi cells are adjacent to each
other. If this is not the case, the dual problem forms the basis for the linear op-
timization problem, which could contain information about the neighbourhood
of several other Voronoi cells. Therefore, the algorithm is faster than the Avis
Fukuda algorithm, which calculates the adjacency of all pairs of Voronoi cells
(see [13] for details). Mendez et al. estimate the runtime of their algorithm as
O(k2 · f(k, d)), where f is unknown, but not worse than polynomial.

By using the Mendez algorithm, our technology can now eliminate the un-
necessary centres for our problem. The next iteration would now start with the
centres shown in Figure 4.3 and repeat the same steps as before. The algorithm
updates the centres of the clusters in the same way as k-Means, resulting in a
small change of the Voronoi cell structure. If the algorithm rejects all new pos-
sible Voronoi noise cells of an iteration, then it is converged and the cluster is
marked as ”fully cut out”.

Algorithm 1 KMN

Require: k-Means clustering result D
1: procedure KMN(D)
2: Initialize: Compute initial voronoi cell adjacencies . O(k2 · f(k, d))
3: while Coding cost decreases do . l times
4: Find v voronoi cell intersections . k · O(k · d · v)
5: Check intersections v with MDL . O(v · n)
6: Compute adjacencies . O(k2 · f(k, d))
7: Update cluster centres . O(k · n)
8: Compute coding cost . O(n)
9: end while

10: return Cluster C1, . . . , Ck and Noise N
11: end procedure

2.4 Pseudo Code

Following the pseudocode shown in Algorithm 1 we can assume that the runtime
of this approach is in the order of O(l · k2 · d · v2 ·n · f(k, d)). This shows us that
this approach is relatively stable in terms of the data size n, but is somewhat
more influenced by the dimensionality d and the number of clusters k. This
is logical because the algorithm has to calculate the Voronoi cell intersections
and adjacencies. This is independent of the size of the data set itself and could
also be seen as a constant; the algorithm itself would then have a purely linear
dependency on n, like k-Means itself has.

2.5 Performance on Running Example

The theory behind this technique has been presented, now let us see how it per-
forms on our running example. In Figure 5a we have the result of k-Means on a
simple dataset, consisting of 5 clusters and 10% noise. The clusters are Gaussian
distributed, as k-Means assumes, and differ quite strongly in density and size.
The data set is well suited for k-Means and all clusters are well separated by it.
The main error lies in the wrongly assigned noise points.

The algorithm iteratively computes the intersections, tests them with the
MDL criterion, excludes noise points and updates the centres. The convex hulls

(a) k-Means with k=5.
NMI is 0.82.

(b) The first iteration (c) Most noise is found af-
ter the second iteration.

(d) The convex hulls have
clearly shrunk.

(e) Some of the convex
hulls do not change any
more.

(f) The final result. The
clusters are separated from
the noise. NMI is 0.94.

(g) Ground truth.

Fig. 5. The stages of KMN from the result of k-Means to the final clustering. Cluster
are displayed in different colours. Cluster-centre as white squares, centre of adjacent
Voronoi cells with grey squares. The last Figure shows the ground truth. Figures best
viewed in colour.

shrink until no more Voronoi noise cells are kept. For some of the clusters, this
happens earlier than for others due to their spread. At the end almost all noise
points are found and the clusters are cut out near ideally. The improvement can

also be measured with the help of the ”normalized mutual information”-measure
(NMI) [15]. The NMI value increases from 0.82 for the k-Means result to 0.94
for the result of our approach. Some of the outliers are located in the middle
of a cluster and therefore cannot be recognized as such. Nevertheless, they are
considered to be outliers. Therefore, a perfect NMI of 1.0 is impossible to obtain
and 0.94 is almost the best result one can get.

Fig. 6. The behaviour of the algorithm for a too small value of k = 3. Depicted is the
Result of k-Means, the state after the first iteration, the second iteration and the final
result.

3 Resilience in Regards to k

This technique has another advantage, which we would like to present now. For
regular k-Means, setting k is one of the most important decisions and k is often
difficult to estimate. Tools like X-Means [14] help the user with this decision, but
are not necessarily correct. KMN now gives some leeway for this decision. We see
this in our current example with a wrong k. If we have chosen a value of k that
is too small, e.g. k = 3, k-Means can by default not separate all clusters. The
clustering result will necessarily look similar to the one in Figure 6.1, where two
clusters are merged into one. KMN now has the advantage that it eliminates data
points from a cluster if they do not fit. We see the result in the first iteration. The

sub-clusters were (mostly) excluded and added to the noise points. The centre is
updated (we see that it moves from Figure 6.2 to Figure 6.3) and moves to one
of the correct clusters in the following iterations. At the end (Figure 6.4) three
of the five clusters are found and separated from the noise, while two of them
are simply added to the noise.

Fig. 7. K is here set to 6. Depicted is the result of k-Means, the state after the first
and the second iteration, as well as the final result.

This resilience is also supported in the opposite direction. In Figure 7.1 we
have k set to 6. Therefore, k-Means assigns some of the noise points to a sep-
arate cluster consisting only of noise points. We see that this ”wrong” cluster
loses some of its data points in the following iteration (Figure 7.2). It decreases
from iteration to iteration until it is practically emptied (Figure 7.4). KMN has
reduced the value of k from 6 to 5 by declaring a cluster as completely empty.
We see that this is no coincidence if we choose an even bigger k of 10. The result
is shown in Figure 8.1 to 8.3. K-Means has found three of the correct clusters
(with some extra noise), three clusters consisting of pure noise and divided two
clusters into half. When KMN is now applied to this result, the three correct
clusters iteratively lose noise and converge to their correct shape. The clusters,
which are divided into two halves, also lose their noise points, but remain divided
into two halves. KMN does not currently have a function to merge clusters, but
we hope to extend KMN to do so in the future. The three ”false” clusters that
consist only of noise, get most of their data points reassigned to noise. In the
end, they consist of no or almost no data points. They effectively disappear.

We see that in the end, KMN may not be a technique for correctly estimating
k, but it gives quite some leeway for the correct estimation. This does take some
pressure from the estimation of k and techniques like X-Means are given a wider
range of correct values.

Fig. 8. K is here set to 10. Depicted is the result of k-Means, the state after the first
iteration and the final result.

4 Experiments

Synthetic data We have compared the algorithms on the running example
and the clustering results are shown in Table 1. The reason for using NMI as
a measure for clustering lies in the opinion to see KMN as a clustering-in-the-
presence-of-noise-technique. K-Means-- has been given the correct value for the
outliers, for Neo-k-Means we used the internal estimator for the parameters. If
a data point was assigned to more than one cluster by Neo-k-Means, it was
assigned to the nearest centre. Each experiment was repeated 50 times and the
average value is displayed in Table 1. We can see that KMN clearly outperforms
k-Means-- and Neo-k-Means if the correct value of k is specified, but even if k
is off.

Table 1. NMI Values for our running example for varying values of k.

k=5 k=2 k=3 k=4 k=6 k=10

KMN 0.874 0.412 0.675 0.813 0.850 0.780
k-Means-- 0.824 0.410 0.595 0.749 0.816 0.712
Neo-k-Means 0.760 0.354 0.546 0.713 0.808 0.722
k-Means 0.765 0.352 0.554 0.708 0.793 0.755

Real world data The difficulty of testing outlier detecting cluster techniques
lies in the lack of suitable datasets, i. e. datasets containing noise data points.
Campos et al. have compiled a list of possible datasets that can be used for such
techniques [4]. Most of these are UCI datasets for which some of the classes have
been declared noise. Most of these are also somewhat unsuitable for k-Means-
based techniques, since the cluster results of k-Means have a very low quality
(i.e. very low NMI). So there are very few datasets that we can use. Due to

this, we have also included another UCI dataset showing the behaviour of the
algorithm on an outlier-free datasets.

Table 2. NMI Values for real word data sets.

Hayes-Roth Glass WBC

KMN 0.10 0.34 0.56
k-Means-- 0.08 0.33 0.34 (l=120) 0.78(l=241) 0.45 (l=361)
Neo-k-Means 0.08 0.34 0.00

The first dataset in Table 2, Hayes-Roth, is without outliers. The outlier
parameter of k-Means-- was therefore set to 0, which means that k-Means--
gives the same results as k-Means. Therefore, we see that KMN improves on
the result of k-Means. This is because k-Means assigns some data points to the
wrong cluster, which KMN finds and identifies as noise. KMN notices that they
do not belong in the current cluster. Clustering noise-free datasets often yields
a small improvement in clustering quality compared to k-Means. Not enough to
use KMN on a data set, where noise is known not to be present, but enough to
warrant mention.

The data sets Glass and WBC both contain outliers. One has to keep in
mind that k-Means-- needs to know the number of outliers, which is often very
difficult to estimate, while KMN is parameter-free. On the WBC data set k-
Means-- fares better when given the correct number of outlier. The NMI-values
become identical when the outlier-number is off by roughly 30% and when the
value is off by more than that, KMN delivers the better results.

The data sets were each clustered 50 times per algorithm. The runtime of
KMN for WBC proved to be quite high and hence only one iteration was per-
formed. All cluster-algorithms were given the correct values of k on the data
sets.

5 Outlook and Conclusion

We wanted to create an algorithm that would be able to remove noise data
points from a k-Means clustering and could achieve this without any additional
parameters. In Figure 1 we see how much a k-Means clustering result can deviate
from the correct clustering, even though the data set is well suited for k-Means,
simply due to the noise data points that k-Means cannot account for. Through
KMN we have now developed an additional algorithm for k-Means, which can
be used to remove noise data points. Due to its modular design it can be used
after k-Means has run its course, which means that it is completely compatible
with other extensions of k-Means, such as k-Means++. Moreover, we were also
able to show that KMN makes k-Means more robust in terms of too small or big
k value.

For future work we have the goal to extend KMN towards a general noise
extracting algorithm that can be applied as an addition for any clustering algo-
rithm. For this goal it is necessary to abolish the voronoi cell structure of this
algorithm, since that is inherent for k-Means, but not necessarily for other algo-
rithms. Removing the voronoi cell structure might also lead to a more dynamic
approach that would give us a greater flexibility.

References

1. Ahmed, M., Naser, A., A novel approach for outlier detection and clustering im-
provement, ICIEA, 2013.

2. Arthur, D., Vassilvitskii, S., k-means++: the advantages of careful seeding, SODA,
2007.

3. Avis, D., Fukuda, K., A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra, Discrete & Computational Geometry, 1992.

4. Campos, G., et al, On the evaluation of unsupervised outlier detection: measures,
datasets, and an empirical study, Data Min Knowl Disc, 2016.

5. Chawla S., Gionis A., k-means–: A unified approach to clustering and outlier de-
tection, ICDM, 2013.

6. Ester, M., Kriegel, H.-P., Sander, J., Xu, X., A density-based algorithm for discov-
ering clusters in large spatial databases with noise, KDD, 1996.

7. Gan G., Kwok-Po Ng M., k-means clustering with outlier removal, Pattern Recog-
nition Letters 90, 2017.

8. Hawkins D., Identification of Outliers, Chapman and Hall, 1980.
9. Johnson, N., Kotz, S., Balakrishnan, N. Continuous Univariate Distributions,

Houghton Mifflin, 1994.
10. Lichman, M, UCI Machine Learning Repository, University of California, Irvine,

School of Information and Computer Sciences, 2013.
11. Mangasarian, O., Wolberg, W., Cancer diagnosis via linear programming, SIAM

News, 1990.
12. MacQueen, J. B., Some methods for classification and analysis of multivariate

observations, Berkeley Symposium on Math. Stat. and Prob., 1967. Computing
Voronoi Adjacencies in High Dimensional

13. Mendez J., Lorenzo J., Computing Voronoi Adjacencies in High Dimensional
Spaces by Using Linear Programming, Mathematical Methodologies in Pattern
Recognition and Machine Learning, 2013.

14. Pelleg, D., Moore A. W., X-means: Extending K-means with Efficient Estimation
of the Number of Clusters, ICML, 2000.

15. Vinh, N. X., Bailey, J., Information Theoretic Measures for Clusterings Compari-
son: Variants, Properties, Normalization and Correction for Chance, JMLR, 2011.

16. Wangh, J.J., Dhillon, I., Gleich, D., Non-exhaustive, Overlapping k-means, SDM,
2015.

