
DipTransformation: Enhancing the Structure of a
Dataset and thereby improving Clustering

Benjamin Schelling
Faculty of Computer Science

University of Vienna
Vienna, Austria

Claudia Plant
Faculty of Computer Science and

ds:UniVie
University of Vienna

Vienna, Austria

Abstract—A data set might have a well-defined structure, but
this does not necessarily lead to good clustering results. If the
structure is hidden in an unfavourable scaling, clustering will
usually fail. The aim of this work is to present a technique
which enhances the data set by re-scaling and transforming its
features and thus emphasizing and accentuating its structure.
If the structure is sufficiently clear, clustering algorithms will
perform far better. To show that our algorithm works well, we
have conducted extensive experiments on several real-world data
sets, where we improve clustering not only for k-means, which is
our main focus, but also for other standard clustering algorithms.

Index Terms—Clustering, Dip-Test, Dataset-Transformation

I. INTRODUCTION

The clustering of a data set is strongly dependent on
the structure it contains. If there is hardly any structure or
if the structure is well hidden, clustering will most likely
fail because the boundaries between the clusters are hard
to determine. A strong and clearly defined structure usually
leads to significantly better clustering results. Accentuating the
structure would therefore be useful for clustering, but to the
best of our knowledge there are currently no methods that are
capable of doing so. The most one can try is normalizing the
data set in the hope that this defines the structure more clearly.

We present here DipTransformation1, which is capable of
accentuating structure and turning the data set into a more
clusterable form.

Consider the data shown in Fig. 1 as a 3D scatterplot as
running example. It is actually not a complicated data set,
consisting of three stretched Gaussian distributed clusters, with
different rotations and a third dimension of uniform distributed
noise, which has about the same range as the clusters. The
problem here is twofold: 1) The third dimension, which does
not contain any structure, is given the same weight as the
dimensions that contain the entire cluster structure. 2) The
clusters, while not overlapping and with clear borders, are
most unfavourably scaled.

The standard clustering algorithms are surprisingly bad on
this data set. K-means scores here merely 0.01 in NMI2,
DBSCAN [8], Spectral Clustering [17] and SingleLink [19]

1Source code is found here: https://dm.cs.univie.ac.at/research/downloads/
2Measured in Normalized Mutual Information (NMI) [21]. NMI is scaled

between 0.0 and 1.0, with 0.0 the worst possible score and 1.0 the best.

Fig. 1. Our running Example through this paper shown as a 3D Scatterplot.

Fig. 2. Our running example after the DipTransformation in a 3D Scatterplot.
It is now far easier to cluster.

also perform disappointingly. The best choice would be EM
[6] with scores 0.43 in NMI.

Since the data set consists of a superfluous third dimen-
sion, we try dimensionality reducing techniques in the hope
of adapting the dataset into a more clusterable form. The
combination of clustering and dimensionality reduction is well
established and might yield results here (see [13] for more
details on this). However, neither PCA (0.03 in NMI) nor
ICA (0.01 in NMI) lead to a data set that can be clustered

with k-means. The best choice would be t-SNE which scores
≈0.78, but has highly varying results. (All these techniques
in combination with k-means with correct k.) The clusters
are purely in the first two dimensions - so techniques like
PROCLUS [1] and CLIQUE [2] which search for a clusters
in axis-parallel subspaces could be successful, but they are not
(0.21 and 0.71 in NMI, correct k for PROCLUS).

DipTransformation makes it possible to compensate for the
unfortunate scaling of the features. We stated that the problem
lies therein, that uniform/unimodal features (i.e. essentially
structure-free features) receive the same degree of attention
as such features that deviate from it. The basic assumption
is that multimodal features are more interesting in regards to
clustering since they contain more cluster structure. For k-
means, this implicates that features with more structure should
be larger scaled compared to features with barely any structure.
A larger scaling would lead to a higher impact in k-means
clustering due to the greater effect they have in computing
the centres of the clusters and thus the way the clusters
are determined. This requires a measure that evaluates the
“interestingness” of a feature and therefore its scaling. We
find this in the Dip-test [10] explained in Section II-A. The
Dip-Test gives a appropriate measurement of the structure a
feature has and thus the scaling it “deserves”.

DipTransformation is capable of re-scaling and transforming
our running example into a form that is almost perfectly clus-
terable with k-means. The clusters are better separated from
each other and the structure of the data is more pronounced
(see Figure 2). K-means now reaches an NMI of 0.97.

A. Contributions

This work presents an almost parameter-free method - the
DipTransformation - that is able to improve the structure of a
data set and thus allows k-means to cluster data sets better. The
algorithm does not assume a special distribution for the clus-
ters or data. It simply enhances structure and thereby improves
clustering. Thus, it is not only a preparatory technique for k-
means, it can also be used to improve clustering for various
clustering techniques. DipTransformation is deterministic and
requires no distance calculations. We extensively tested on real
world data sets for a wide range of algorithms.

B. Related Work

The most common approach when a data set cannot be
clustered well by any cluster algorithm is to create a new
algorithm that can handle that data set. The reverse approach
of adapting the data set to the algorithm is the much more
unorthodox approach. It is usually only done in the simplest
way, i.e. by normalizing a data set. In addition, there is the
Z-transformation (sometimes referred to as Z-normalization),
which is also relatively conventional, but is already applied
far less often. Apart from these two methods, however, we are
not aware of any approaches that attempt to adapt a data set
with the aim of enhancing structure for improved clustering.
Of course there are techniques that try to improve clustering,
for instance k-means++ [3], which provides an initialization

strategy for k-means that is often very successful, but trans-
forming a data set is unusual. One might consider SynC [4] as
a transformation technique, because it collapses clusters into
single points using the principle of Synchronization.

Subspace clustering techniques such as the aforementioned
PROCLUS and CLIQUE can be considered related work, since
they intend to reduce dimensionality, i.e. adapt the data set by
removing “unnecessary” information. The DipTransformation
does not remove any information, but - as the analysis of
the Running Example will show - it is very capable in
dealing with such noise information. Of particular interest are
FOSSCLU [9] and SubKMeans [16] which intend to reduce
dimensionality with the goal of finding a subspace compatible
with k-means.

We are also aware of progress in the field of Deep Learning,
where techniques such as DEC [24] and DCN [22] are being
developed, aimed at finding good subspaces using neural
networks.

Spectral clustering takes a data set and transforms it into a
distance matrix, computes its eigenvectors and applies (mostly)
k-means to the data set. It is not necessary to use k-means,
other partitioning algorithms can also very well be used. In
this regard are spectral clustering techniques similar to the
DipTransformation. They take the data set and try to transform
it into a more clusterable form. One of the most well known is
the fundamental technique by Ng, Jordan and Weiss [17]. We
also use the popular Self-Tuning Spectral Clustering [25] as
well as FUSE [23] as comparison methods due to them being
state-of-the-art techniques.

DipTransformation uses the Dip-test for measuring structure
and therefore one can consider all data mining-techniques that
use the Dip-test as related. It was first used in data mining
by DipMeans [11] with the goal of estimating the number
of clusters for k-means. After that, we only found SkinnyDip
[15] using the Dip-test. We conclude, that it is still a rather
unknown tool, that has not yet found full recognition.

One must bear in mind while reading this, that DipTrans-
formation is not a rival for all the mentioned techniques in
the classical sense, but that it can be used as a supporting
technique that eases the difficulty in the task they attempt. We
will show in the experimental section (see Section IV) that
they can all benefit from DipTransformation.

II. THE ALGORITHM

A. The Dip-Test

To understand how the algorithm works, we must first go
into detail about the Dip-test.

The Dip-Test was created by Hartigan & Hartigan in the
1980s as a measure of how much a sample deviates from
unimodality. Unimodality is defined here as a distribution that
is convex until it reaches its maximum and concave thereafter.

The test starts with sorting the sample and then creating
the Empirical Cumulative Distribution Function (ECDF). This
can be seen in Fig. 3. The histogram shows 4 clusters (A, B,
C and D), which can be clearly identified in the ECDF to its
right. The Dip-Test only requires the ECDF; the histogram is

(a) (b)

(c)

Fig. 3. A histogram and the resulting ECDF (empirical cumulative distribution
function). The dip-test uses the ECDF to find out how much it deviates from a
unimodal distribution, i.e. how big the offset is to fit a unimodal distribution.
The offset is the dip-value.

only for visual clarity. It therefore has no bin-width parameter.
In fact, it has no parameter at all.

The Dip-test measures the extent to which the ECDF
deviates from unimodality. It computes how much the ECDF
has to be offset, so that it can fit a unimodal distribution. This
can be seen in Fig. 3(c). The ECDF has been shifted vertically
by a certain value (the dip value), and ECDF+dip and ECDF-
dip is plotted there. This offset is large enough so that a line
can be drawn in between ECDF+dip and ECDF-dip, which is
first convex and then concave. This line is representative of
the closest possible unimodal distribution. The dip-value (or
“dip”) shows how much the ECDF is off from such a unimodal
distribution.

The Dip-Test also gives a second value, a probability of
how likely a sample is unimodal, as well as the interval of
the highest slope, but we only need the offset/dip-value. The
dip-value is always in the interval (0, 0.25], hence it is always
positive.

The Dip-Test has a runtime of O(n), but since its input
must be sorted to create the ECDF, the effective runtime for
this part of the technique is O(n log n). Further details about
the Dip-Test can be found in [10].

B. Applying the Dip-Test

By means of the Dip-Test, we obtain a value, the dip
statistic, which provides a measure of the structure of a di-
mension and thus, as explained in the introduction, a measure
of the “relevance” of the dimension. The more relevant a

(a) (b)

Fig. 4. A simple data set before (a) and after (b) scaling with the Dip-Values.

dimension is, the larger will it be scaled (in relation to the other
dimensions) and the greater its influence on the clustering
result from k-means.

Let us consider this approach with Fig. 4. The dip values
of the individual dimensions are 0.009 for the projection into
the horizontal dimension and 0.063 for the projection in the
vertical one. We rescale the horizontal axis in the interval
[0,0.009] and the vertical one in [0,0.063] and get the dataset
represented in Fig. 4b.

The changed distances make this data set now easily clus-
terable by k-means. The dimension containing the structure is
now much more pronounced and accordingly more influential
for k-means. The improvement of the clustering result is
best described using the NMI value, which increases from an
average value of 0.55 for the unscaled data set to 0.98 for the
rescaled data set (100 random initialisations each). The only
error and the reason why an NMI-value of 1.0 is not reached is
due to some edge-data points that have been falsely assigned,
but could not reasonably be expected to be correctly clustered.

This (somewhat trivial) example shows how important it is
to enhance the structure of a data set. The horizontal axis in
which the data set has barely, if any, structure is reduced to
a very small range and the vertical axis, where the clusters
and structure are located, is now the relevant dimension that
determines the result of k-means.

C. Lopsided Cluster

We do not generally assume axis-parallel stretched cluster.
Let us therefore look at the Whiteside data set depicted in Fig.
5a. The Whiteside data set is a real-world data set.

The clusters are obviously not axis-parallel. We have the
same situation here as in the simple data set shown in Fig. 4,
as in that k-means fares rather badly. To be precise the NMI-
value is 0.006. Scaling the axes with the Dip-Test values is
ineffective; it improves clustering only minimally.

We see in Fig. 5c that the dip value changes greatly
depending on the angle at which the dip value is measured.
If we rotate the Whiteside data set by the angle at which
we find the maximal dip value, the clusters are almost axis-
parallel. Now scaling the axes with their dip value leads to

(a) The Whiteside-data set. (b) Applying the
maximal Dip.

(c) The Dip-value of the Whiteside data
set when rotated.

Fig. 5. The Whiteside-data set and the change of the Dip-value of an axis
when the data set is rotated (0 to 180 degrees) as well as the Whiteside-data
set, when it is rescaled at the maximal dip.

the transformed data set shown in Fig. 5b. This data set can
be clustered considerably better by k-means. In fact, we get
an average NMI of 0.92. This is a massive improvement over
the previous NMI of 0.006, but it is possible to improve even
further, as we will see.

Determining the angle of the maximal Dip-value is not
straightforward. Of course, one could use the brute-force
approach of simply testing as many angles as possible, but
this will prove impractical at the latest when the data set is
of higher dimensionality. A too simple search algorithm will
also not lead to a satisfactory result, since the data, as we have
seen in Fig. 5c, has more than a few local optima. Hence, we
do not try to find only a single maximal dip-angle, but scale
the data set along along several high dip angles. Basically, the
algorithm does not restrict itself to only re-scaling the data set
along the maximal dip-value, but rescales the data set along
multiple such high dip values. This converts the data set into
a more clusterable form. The algorithm scales the data set in
various instances, so that the structure of the clusters become
more clearly defined.

We start with two dip-values, D1 and D2, the two dip values
along the axes. We calculate the ratio between those values
r = Max(D1

D2
, D2

D1
). If r is high, then there is a good chance

that we have hit a good dip-value. Then we rotate the data
set in clockwise direction by an angle of 1

r ∗ c, with c as the
rotation speed parameter. This ensures that we rotate the data
set only by a small angle if chances are good that we are close
to a high dip value and by a bigger angle if the dip values are
similar, i.e. chances are that no high dip value is close. The
rotation speed parameter c can be freely selected. The larger c

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 6. Steps in the DipTransformation of the Whiteside data set and the
final data set. There seem to be big leaps in the transformation; this is due to
the iterations, when the maximal new dip value is smaller compared to the
MaxDip, and thus no scaling takes place. Until a new MaxDip is found
the data set is rotated quite a lot and the changes seem extensive.

is selected, the shorter the runtime, but a smaller c of course
makes it more likely to find high dip-values. (Throughout the
paper, the rotation speed parameter c is set to 5. Its effects are
further explored in Section II-E.) The algorithm remembers
the maximal overall dip value (we refer to it as MaxDip) and
every time it finds a new maximal overall dip value, the axes
are scaled with their respective dip values. The total degrees
the data set has been rotated is remembered and after 360◦ the
algorithm stops. For the Whiteside-data set with c = 5 leads
this to the transformation displayed in Fig.6.

At the beginning of the transformation, the changes are
comparatively small. This is because the dip values of the
axes are not very different and therefore scaling the axes only
leads to limited changes. MaxDip is updated, whenever a new
Maximum is found. The following iterations is the maximal
dip value of the axes not greater than MaxDip and hence
no scaling takes place. However, after several rotations, the
maximal dip value of the axes is greater than MaxDip and
the data set is scaled again. This happens between Fig. 6(c) and
Fig. 6(d). Because the data set is rotated over several iterations,
it has been rotated by a rather large angle and the following
scaling makes the data set look quite different. The algorithm
remembers the new MaxDip. The data set continues to rotate,
but due to the way the algorithm selects the rotation angle, it is
only rotated by a small angle, which is advantageous because
finds high dip values. In the following iterations, the data set

is again scaled several times. In the second row of Fig. 6,
it can be seen that the data set does not change drastically,
but becomes more compact and the clusters are defined more
clearly with each iteration. Fig. 6(g) shows the final state of
the data set. Between Fig. 6(f) and Fig. 6(g) is again a stretch
where the data set is rotated but no new MaxDip is found.

This transformation of the Whiteside-data is very easy to
cluster for k-means. We get an average NMI-value of 1.0
(in 100 iterations), which means that the data set is perfectly
clustered. This result is not specific to a value of c = 5, but
can also be reached by e.g. c = 9, 8, 7, 6, However, the
transformed data set may look slightly different for a different
value of c.

This transformation is easier to cluster, when comparing
to the original Whiteside-data set shown in Fig. 5, but also
when comparing to the transformation along the maximal
Dip-value angle shown in Fig. 5b. One could have expected
these transformations to be more similar, if not identical, but
that is not the case. The transformation here is not along an
orthogonal basis.

Scaling along axes leads to a basis transformation that
stretches the basis vectors, but leaves orthogonality intact.
Applying the transformation method sketched above leads
also to a change in basis vectors, which no longer implies
that two previously normal (i.e. perpendicular) vectors are
normal to each other afterwards.

Theorem 1: The DipTransformation DT is a linear operator.
More precisely, it is a basis-transformation.

Proof. Every rotation in Rn can be expressed as a matrix
R. Scaling a data set in Rn simply means applying a diagonal
matrix S with the scaling-parameters in the main diagonal.
Hence, applying the DipTransformation on a data set is
equivalent with applying the Rotation- and Diagonal-matrices
R1, S1, R2, S2, R3, S3,. . . . Thus, the DipTransformation
DT is the product of matrices, which is again a matrix. A
matrix is a linear operator, hence the DipTransformation is a
linear Operator.
A rotation is an orthogonal matrix with determinant 1, a
scaling matrix has the determinant c1 · · · cn, with ci the
entries in the diagonal. Since the Dip-Test values ci can never
be zero, the determinant of the scaling matrix is non-zero. The
determinant has the property Det(A ·B) = Det(A) ·Det(B),
hence the determinant of the DipTransformation is
Det(DT) = Det(R1) · Det(S1) · · ·Det(Rl) · Det(Sl) =
1 · (c11 · · · cn1) · · · 1 · (c1l · · · cnl) 6= 0. Thus is DT a matrix
with non-zero determinant, i.e. a basis-transformation.

The focus of DipTransformation is on k-means, but we see
from Fig. 6 that other techniques might also benefit from this
approach. We will explore in Section IV how other techniques
are influenced by this (and other) transformed data set(s).

D. More than 2 Dimensions

The algorithm for a 2-dimensional data set was explained in
detail, because it forms the basis for data sets with more than
two dimensions. There are several ways to adapt this approach;
the one that seems to work best is now explained:

The main difference is that there are more than two direc-
tions, the data set can be rotated in. It would seem logical to
rotate the data set in all directions at once following the angle-
computation as before, but there is a problem involved with
that: Rotations are not commutative. That means, it makes a
difference in which order the rotations are executed. Finding
only one non-axes parallel angle in which the data set is
rotated, is anything but straightforward, since all we have are
the dip values of the axes, that we can use to compute axes-
parallel rotation angles. Nevertheless, the algorithm simply
executes one rotation after another. However, since every
rotation changes the data set (slightly), it is better to recalculate
the dip values. This could be omitted to save runtime, but
the recalculated dip values are more precise and this in turn
improves the transformation, especially with larger rotation
speed parameters c. One might expect that changing the
order in which the rotations are executed might improve
the transformation, but this is not the case, according to
the experiments we conducted. We also tried only executing
the rotation with the highest/lowest dip value, but this even
seems to impair the transformation. Through all rotations
the algorithms remembers the maximal dip value found as
MaxDip, just as before. Whenever the rotated data set has
a dip value larger as MaxDip, the data set is scaled and
MaxDip is updated. The rotation angles are calculated in
the same way as for a 2-dimensional data set. Furthermore,
the executed rotations are rotations in the plane given by two
axes-vectors.

One has to keep in mind that in higher dimensional data set,
the algorithm has a larger area to search for high dip values. It
is only a “half-circle” or 180◦ that needs to be traversed for a
2-dimensional data set. (In the interest of precision, however,
the algorithm looks over the full 360◦.) For a d−dimensional
data set, it would be half of a d−dimensional sphere. To
compensate for this, the algorithm assumes that d·360◦ have
to be traversed. This range ascertains that all maxima can
(theoretically) be found. Furthermore, it is not necessary to
find the maximal dip values exactly; being close enough is
sufficient to assure a good transformation.

E. The Rotationspeed Parameter c

The rotation speed parameter c has been explained in
Section II-C and we now want to analyse its effect on the
DipTransformation. Fig. 7 shows how NMI (for k-means)
changes with different values of c and the effect is not very
pronounced. The data sets depicted were chosen, because their
values do not overlap, but the effect is rather similar for all
data sets examined in Section IV.

There is a slight tendency for the clustering results to lose
quality at higher values of c (best visible for the Whiteside
data set), but it is not very pronounced. For an unknown data

Fig. 7. The NMI-value for k-means with correct values for k vs the rotation
speed parameter c for five real world-data sets.

Fig. 8. The time DipTransformation takes in milliseconds depending on the
value of the rotation speed parameter c for five real world-data sets.

set is a smaller value for c nevertheless more recommended.
DipTransformation is dependent on finding the high dip-values
and that is simply more likely for smaller rotation speed. If
runtime is the primary factor (for example, for very large data
sets), then a larger value for c might be more recommendable.
Fig. 8 shows how the runtime is linked to the parameter c and
how it decreases for smaller c. There is a (small) trade off
between clustering quality and runtime, but as a general rule
a high value of c seems not too detrimental. For this work,
however, we stick to the fixed value c = 5.

III. RUNTIME AND PSEUDOCODE

Following the structure of the DipTransformation algorithm
(outlined in Algorithm 1) we can make a runtime estimation:
Scaling of a data set as well as rotating a data set has a
runtime of O(n); Computing the Dip-Values is in the order
of O(n log n), since the values have to be sorted. There are
two For-loops over d, where d stands for the number of
dimensions. If the number of iterations in the while-loop is
l, then the runtime can be estimated as:

O(n) +O(n log n) + l · d · d ·
(
O(n) +O(n log (n)) +O(n)

)
≈ O

(
l · d2 · n log (n)

)
IV. EXPERIMENTS

Persuading someone that a data set is easy to cluster, if
the data set is more than two-dimensional, is difficult. The
goal of the DipTransformation though is to ensure that a
data set becomes easier to cluster. This work will of course

Algorithm 1 DipTransformation
Require: Data D, Rotationspeed c

1: procedure DIPTRANSF(D, c)
2: Degree← 0
3: Compute DipV alues
4: Scale(D,DipValues)
5: MaxDip←Max(DipV alues)
6: while Degree < dim ∗ 180◦ do
7: for i = 1,...,dim do
8: for j = i+1,...,dim do
9: a←Max(Dip(i)/Dip(j), Dip(j)/Dip(i))

10: Turn D(i, j) by angle c/a
11: Degree← Degree+ c/a
12: Compute DipV alues
13: if Max(DipV alues) > MaxDip then
14: Scale(D,DipValues)
15: MaxDip←Max(DipV alues)
16: end if
17: end for
18: end for
19: end while
20: return D
21: end procedure

show with NMI values of experiments on real-world data
set that DipTransformation is capable of doing that, but we
would also like to show that with plots. Fig. 9 shows pairwise
plots of the “Banknote Authentication” data set from the UCI-
Repository [7]. This data set was chosen because it has a small
dimensionality of four, so that all pairwise plots can be shown.
Fig. 9 illustrates the difficulty involved with clustering this data
set. The clusters are not clearly separated and often overlap,
so it is not suited for k-means. In numerical values can this be
expressed as an NMI-value 0.03 for k-means with the correct
value for k. After the DipTransformation (shown in Fig. 10)
the data set is much better structured and the clusters are well
separated. K-means can now identify the clusters rather well.
In fact, the NMI-value for k-means with the correct value for
k is now 0.68.

A. Synthetic Data

The first analysed data set is the synthetic data set given
in Fig. 1. This is a data set that - as we have seen - is quite
difficult to cluster; k-means fares extremely bad and scores
no higher than 0.01 in NMI. Other algorithms are often only
marginally better. Table I shows the NMI-results. Most of them
are not impressive, with 11 of the 20 algorithms scoring below
0.10. Applying the DipTransformation onto the data set leads
to a massively enhanced data set with clearly stronger defined
structure. The three clusters that were before stretched and
scaled quite unfavourable for clustering are now well separated
and compact. Clustering of this data set is far easier and the
results shown in Table I demonstrate this. All of the used
algorithms improve due to the DipTransformation - on average

Fig. 9. Pairwise Plot of the Banknote-Authentication data set before Dip-
Transformation. The dimensions are given as axes-label.

TABLE I
CLUSTERING OF THE RUNNING EXAMPLE BEFORE AND AFTER

DIPTRANSFORMATION. THE AVERAGE IMPROVEMENT IN NMI IS 0.636.

Running Example before after
k-means 0.01 0.97
k-means++ 0.01 0.98
DipMeans 0.00 0.98
SkinnyDip 0.00 0.98
Spectral Clust. 0.36 0.97
STSC 0.00 0.99
FUSE 0.06 0.75
DBSCAN 0.23 0.95
SingleLink 0.01 0.96
EM 0.43 0.50
SubKMeans 0.08 0.63
FossClu 0.60 0.78
SynC 0.05 0.95
PCA 0.03 0.63
ICA 0.01 0.98
t-SNE 0.78 0.80
PROCLUS 0.23 0.92
CLIQUE 0.71 0.98
DEC 0.38 0.53
DCN 0.12 0.58

0.636 in NMI. After the DipTransformation are 12 of the 20
algorithms better than 0.90.

FossClu [9] and SubKMeans [16] try to find an optimal
subspace for clustering while transforming the data set them-
selves. These transformation attempts are also more successful
after DipTransformation has transformed the data set. Even
other transformations profit from the DipTransformation.

Fig. 10. Pairwise Plot of the Banknote-Authentication data set after the
DipTransformation. The clusters are visibly better separated from each other.

B. Real-World Data sets

We have tested the DipTransformation extensively on 10
real world data sets, which differ greatly in dimensionality,
number of data points and number of clusters. The ultimate
goal of the DipTransformation is to enhance the structure
of a data set and thus to improve clustering. To show that
this goal can be achieved, we have transformed these data
sets and applied the basic k-means algorithm on them. The
results can be seen in Table II. The difference in clustering
quality is obvious. While k-means on the original data sets
usually fares somewhat lacking and other algorithms like
Spectral Clustering are often the better choices, it does perform
extremely well on the transformed data sets. Transforming the
data set has enhanced its structure so that k-means can cluster
the data sets better than the compared methods. In 9 of the
10 cases k-means clusters better (or no worse) than the other
methods. Only in one case does it take second place with a
deficit of 0.02.

We chose the algorithms we found to be most rel-
evant as comparison methods here. This included the
data set-transformation techniques of normalizing and Z-
Transformation, the standard data mining algorithms DB-
SCAN [8], EM [6] and SingleLink [19], DipMeans [11] and
SkinnyDip [15] as techniques based on the Dip-Test, Sub-
KMeans [16] and FossClu [9] as the most similar Subspace-
clustering-techniques, the aforementioned Spectral Clustering-
methods, SynC [4], as well as PCA and t-SNE in combination

TABLE II
EXPERIMENTAL RESULTS. ALL NON-DETERMINISTIC RESULTS HAVE BEEN REPEATED 100 TIMES AND THE AVERAGE IS GIVEN. THE CORRECT VALUE

FOR NUMBER OF CLUSTERS IS ALWAYS GIVEN.

Data set Whiteside Skinsegmen. Banknote Iris Prestige Userknow. Mammographic Seeds Breast Tissue Leaf
of data points 56 245057 1375 150 98 258 830 210 106 340
of dimensions 2 3 4 4 5 5 5 7 9 14
of clusters 2 2 2 3 3 4 2 3 6 30
DipTransformation 1.00 0.32 0.68 0.84 0.68 0.53 0.27 0.78 0.51 0.69
k-means 0.01 0.02 0.03 0.70 0.51 0.26 0.11 0.70 0.32 0.65
Normalized 0.01 0.02 0.02 0.68 0.50 0.28 0.27 0.67 0.49 0.69
Z-Transformation 0.01 0.02 0.02 0.68 0.51 0.28 0.28 0.67 0.49 0.69
k-means++ 0.01 0.32 0.03 0.75 0.56 0.22 0.11 0.71 0.18 0.57
DipMeans 0.00 — 0.25 0.55 0.45 0.00 0.00 0.00 0.00 0.45
SkinnyDip 1.00 — 0.34 0.55 0.55 0.30 0.00 0.53 0.26 0.00
Spectral Clust. 0.06 — 0.03 0.60 0.60 0.29 0.09 0.34 0.45 0.69
STSC 0.35 — 0.26 0.39 0.53 0.03 — 0.66 0.31 0.09
FUSE 0.09 — 0.03 0.46 0.06 0.02 0.06 0.15 0.11 0.31
DBSCAN 0.27 — 0.46 0.62 0.54 0.27 0.14 0.50 0.41 0.59
SingleLink 0.11 — 0.03 0.61 0.08 0.05 0.00 0.05 0.27 0.35
EM 1.00 0.23 0.01 0.58 0.28 0.44 0.01 0.63 0.37 0.25
SubKMeans 0.01 0.01 0.01 0.66 0.56 0.22 0.29 0.73 0.45 0.66
FossClu — 0.27 0.44 0.75 0.48 0.50 0.08 0.50 0.32 0.34
SynC 0.12 0.13 0.14 0.58 0.52 0.13 0.24 0.48 0.29 0.27
t-SNE + k-means 0.02 — 0.64 0.31 0.02 0.06 0.11 0.16 0.08 0.35
PCA + k-means 0.01 0.01 0.01 0.64 0.56 0.21 0.26 0.74 0.49 0.69

TABLE III
K-MEANS++ BEFORE AND AFTER THE DIPTRANSFORMATION AS WELL AS K-MEANS AFTER THE DIPTRANSFORMATION. NUMBER OF CLUSTERS IS

GIVEN.

Data set Whiteside Skinsegmen. Banknote Iris Prestige Userknow. Mammographic Seeds Breast Tissue Leaf
k-means before 0.01 0.02 0.03 0.70 0.51 0.26 0.11 0.70 0.32 0.65
k-means++ before 0.01 0.32 0.03 0.75 0.56 0.22 0.11 0.71 0.18 0.57
k-means after 1.00 0.32 0.68 0.84 0.68 0.53 0.27 0.78 0.51 0.69
k-means++ after 1.00 0.44 0.69 0.86 0.68 0.64 0.27 0.76 0.49 0.70

with k-means. For PCA and t-SNE we decided not to reduce
the dimensionality, because there is no straightforward answer
on how far one should reduce the dimensionality and because
DipTransformation also does not reduce dimensionality.

a) Parameters and Determinism: Algorithms like DB-
SCAN always raise the question of how to set the parameters.
To compare the DBSCAN results fairly, we decided to make
the parameters dependent on the average pairwise Euclidean
distance of data points. Let us call it e. We tested all com-
binations of distances in {0.05 · e, 0.1 · e, 0.2 · e, 0.3 · e, 0.4 ·
e, 0.6 · e, 0.8 · e, e} and MinPts in {1, 2, 3, 5, 10, 50}. Only the
best NMI result is reported.

All techniques that require the number of clusters as a
parameter have been given the correct number of clusters
k. The only exception is SingleLink where all values in the
interval [k, 2k] have been tested and only the best result
is reported. This decision is due to the characteristic of
SingleLink to declare single data points or small subsets of
a cluster as clusters.

Non-deterministic algorithms such as k-means have been
iterated 100 times to reduce random effects and provide robust
results.

b) Skinsegmentation: The Skinsegmentation-data set is a
somewhat difficult data set simply due to its size of roughly a
quarter of a million data points. For many of the provided

implementations was the size too large and the execution
failed. This also applies to some of the standard methods like
SingleLink, DBSCAN and Spectral Clustering. These were
tested on more than one implementation on different platforms,
but would not run through anyway.

c) Spectral Clustering: If this paper refers to Spectral
Clustering as an algorithm and not the class of algorithms,
then the classical algorithm by Ng, Jordan and Weiss [17] is
meant.

Besides these considerations it is most noticeable
that k-means++ leads to the same increase in NMI
as the DipTransformation. However, K-means++ and
DipTransformation are by no means mutually exclusive and
can be used together. This in fact leads to an even better
performance on the Skinsegmentation data set. While they
separately reach a level of 0.32 in NMI, they manage 0.44 in
combined form.

C. K-means++ and DipTransformation

As mentioned, k-means++ and DipTransformation are not
mutually exclusive. We tested on all the data sets used in the
experiments whether k-means++ fared better before or after
the DipTransformation. The results are shown in Table III.
Following these, we can say that k-means++ is a bit of a

double-edged sword on the original data sets. On some of
them (Skinsegmentation, Iris) k-means++ is clearly better than
k-means; on some of them (Breast Tissue, Leaf) it is the
other way round. After the DipTransformation, the situation
is far more beneficial for k-means++. Usually, there is only a
small difference between k-means and k-means++ (≤ 0.02),
indicating that there might be fewer local optima, compared
to the original data set. The only times when k-means and
k-means++ do differ (Skinsegmentation, Userknowledge) is
when k-means++ performs quite a bit better than k-means
alone.

DipTransformation can be used together with all types of
support techniques for k-means (or other clustering algo-
rithms). For example, X-means [18] can be used to find the
number of clusters, k-means-- [5] to find outliers, k-means++
to find an initialization, SubKMeans to find a subspace and
all this in combination with the DipTransformation.

D. DipTransformation and Clustering Algorithms besides K-
means

DipTransformation was developed with a focus on k-means,
but as we have stated throughout our work, DipTransformation
only enhances the structure; it does not adapt the data set
so that it only fits k-means and therefore other algorithms
can also benefit from it. We have seen the transformation
of the Whiteside as well as the Banknote-Authentication data
set in Fig. 6 respectively Fig. 10 and both of these do seem
easier to cluster for various algorithms. We have taken 5 of
the data sets used in the real world data sets experiments
and clustered their DipTransformations with 4 standard data
mining algorithms, i.e EM, DBSCAN, SingleLink and Spectral
Clustering. The results can be seen in Table IV. We chose the
standard algorithms because they are well-established in the
community, which makes the results all the more credible. For
the sake of completeness is k-means also included here. In two
cases do we see a tiny decrease in clustering quality of 0.01
in NMI. In two more cases does the quality not change at
all. In the other 21 cases does the quality increase - in some
cases substantially. On average, counting all cases, the quality
increases by 0.223 in NMI.

Combined with Fig. 6 and 10, this should be a very convinc-
ing argument that DipTransformation can play an important
role in Clustering as a support technique applied to the data
set before clustering.

E. Runtime Comparisons

The runtime was estimated to have a O(n log n)-
dependency on the number of data points n. Synthetic data sets
ranging from 1.000 to 15.000 data points were created to test
for this dependency and to compare with other algorithms. The
runtime is plotted in Fig. 11. It is not immediately apparent,
but O(n log n) is a very good estimate for the runtime. We also
see that DipTransformation performs quite well compared to
the other algorithms tested there. DipTransformation is faster
for all data sets. To be fair is in this test also the runtime of k-
means included in the measured time for DipTransformation,

Fig. 11. Runtime relative to the data set size n.

Fig. 12. Runtime relative to the dimensionality of the data set d.

since the other methods cluster data, which DipTransformation
does not do by itself.

Besides the size of the data set is also the influence of
the dimensionality of the data set on the runtime essential.
This is shown in Fig. 12. We created 9 data sets ranging in
dimensionality from 2 to 10 with 1.000 data points each. Here
is DipTransformation (+k-means) again faster than all other
methods, but we do see in the behaviour of the measured time,
that other methods like Spectral Clustering are less affected by
the dimensionality. The estimation of an O(d2) dependency
on dimensionality is again a very good one, so the conjecture
that at some point DipTransformation will need more time
than e.g. Spectral Clustering is a likely one. However, if one
extrapolates from the curves, it seems as if that would happen
at a rather high dimensionality.

The algorithms we found to be most similar to
DipTransformation were chosen here. They were tested in
Java (DipTransformation and FossClu), Scala (SubKMeans)
and R (Spectral Clutering and SkinnyDip) on an Intel Xeon
E5 with 16Gb RAM.

V. LIMITATIONS AND OUTLOOK

DipTransformation is a very powerful technique for im-
proving the structure and emphasizing clusters, but there are
certain limits. For example, if two clusters overlap or interlock,
DipTransformation would by design not be able to separate
them. DipTransformation stretches and scales the data, there-
fore all cluster which do not have a hyperplane in-between
them cannot be separated. The same applies to clusters that
contain more than one mode. The dip test is designed to work
with unimodal distributions. Multimodal clusters can prevent
DipTransformation from working properly.

TABLE IV
VARIOUS CLUSTERING ALGORITHMS BEFORE AND AFTER DIPTRANSFORMATION. THE CORRECT VALUE FOR k IS ALWAYS GIVEN. ON AVERAGE THE

CLUSTERING IMPROVES BY 0.223 (MEASURED IN NMI).

Data set Whiteside Iris Prestige Mammographic Breast Tissue
EM before 1.00 0.58 0.28 0.01 0.37

after 1.00 0.90 0.63 0.00 0.45
DBSCAN before 0.27 0.62 0.54 0.14 0.41

after 0.72 0.61 0.60 0.15 0.45
SingleLink before 0.11 0.61 0.08 0.00 0.27

after 0.82 0.61 0.54 0.16 0.35
Spectral Clustering before 0.06 0.60 0.60 0.09 0.45

after 1.00 0.65 0.65 0.26 0.50
k-means before 0.01 0.70 0.51 0.11 0.32

after 1.00 0.84 0.68 0.27 0.51

In terms of runtime, the main constraint we encountered was
the O(d2)-dependency on the dimensionality of a data set. For
very high dimensional data sets it might be useful to combine
dip transform with a dimensionality reduction algorithm at the
current state.

We do intend to implement a dimensionality-reducing fea-
ture into DipTransformation. The dip-test provides a probabil-
ity estimate of the unimodality of a feature. For the running
example, the dip test gave a probability of 100% for the
third dimension to be unimodal. This is a correct estimate as
the third dimension was constructed as uniformly distributed
noise. If we assume that a unimodally distributed characteristic
is essentially not of great interest, then we could eliminate
this dimension and reduce the running example to a two-
dimensional data set. This two-dimensional data set would
then be treated as explained in this paper. At some point,
however, it might happen that the dip test finds another
unimodal feature to be and the data set can be further reduced.

According to this roadmap, the DipTransformation could be
converted into a technique that improves the structure of a data
set while reducing dimensionality. We intend to do this in the
near future.

VI. CONCLUSION

In conclusion, we can say that we have achieved our goal of
creating a technique that can improve the structure of a data
set and thus its clustering. We have shown that this statement
is true by testing it extensively on various data sets.

For k-means, which was the main focus, this is now
particularly clear. On the tested data sets, k-means was usually
a sub-ideal choice and other algorithms were clearly better.
After the DipTransformation was k-means the best-performing
algorithm on all but one data set.

We have also shown that DipTransformation is compatible
with other algorithms and also improves their clustering
results. DipTransformation can therefore be used as a pre-
clustering step, that enhances the data set, and the clustering
algorithm can be chosen as the user likes best.

REFERENCES

[1] Aggarwal, C. C., Procopiuc, C., Fast Algorithms for Projected Cluster-
ing, SIGMOD, 1999.

[2] Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., Automatic Sub-
space Clustering of High Dimensional Data for Data Mining Applica-
tions, SIGMOD, 1999.

[3] Arthur, D., Vassilvitskii, S., k-means++: the advantages of careful
seeding, SODA, 2007.

[4] Böhm, C., Plant, C., Shao, J., Yang, Q., Clustering by synchronization,
KDD, 2010.

[5] Chawla, S., Gionis, A., k-means--: A unified approach to clustering and
outlier detection, ICDM, 2013.

[6] Dempster, A. P., Laird, N. M., Rubin, D. B., Maximum-Likelihood from
incomplete data via the EM algorithm, Journal of the Royal Statistical
Society, 1977.

[7] Dua, D., Karra Taniskidou, E., UCI Machine Learning Repository,
University of California, Irvine, School of Information and Computer
Sciences, 2018.

[8] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., A density-based algorithm
for discovering clusters in large spatial databases with noise, KDD,
1996.

[9] Goebl, S., He, X., Plant, C., Böhm, C., Finding the Optimal Subspace
for Clustering, ICDM, 2014.

[10] Hartigan, J. A., Hartigan, P. M., The Dip Test of Unimodality, The Annals
of Statistics, 1985.

[11] Kalogeratos, A.,Likas, A., Dip-means: an incremental clustering method
for estimating the number of clusters, NIPS, 2012.

[12] Krause, A., Liebscher, V., Multimodal projection pursuit using the dip
statistic, Preprint-Reihe Mathematik, 2005.

[13] Kriegel, H. P., Kröger, P., Zimek, A., Clustering high-dimensional
data: A survey on subspace clustering, pattern-based clustering, and
correlation clustering, TKDD, 2009.

[14] MacQueen, J. B., Some methods for classification and analysis of
multivariate observations, Berkeley Symposium on Math. Stat. and
Prob., 1967.

[15] Maurus, S., Plant, C., Skinny-dip: Clustering in a Sea of Noise, KDD,
2016.

[16] Mautz, D., Ye, W., Plant, C., Böhm, C., Towards an Optimal Subspace
for K-means, KDD, 2017.

[17] Ng, A., Jordan, M., Weiss, Y., On spectral clustering: Analysis and an
algorithm, NIPS, 2002.

[18] Pelleg, D., Moore A. W., X-means: Extending K-means with Efficient
Estimation of the Number of Clusters, ICML, 2000.

[19] Sibson, R., SLINK: an optimally efficient algorithm for the single-link
cluster method, The Computer Journal, 1973.

[20] Silva, P., Marcal, A., Almeida da Silva, R., Evaluation of Features for
Leaf Discrimination, Springer Lecture Notes in Computer Science, 2013.

[21] Vinh, N. X., Bailey, J., Information Theoretic Measures for Clusterings
Comparison: Variants, Properties, Normalization and Correction for
Chance, JMLR, 2011.

[22] Yang, B., Fu, X., Sidiropoulos, N., Hong, M., Towards K-means-friendly
Spaces: Simultaneous Deep Learning and Clustering, ICML, 2017.

[23] Ye, W., Goebl, S., Plant, C., Böhm, C., FUSE: Full Spectral Clustering,
KDD, 2016.

[24] Xie, J., Girshick, R., Farhadi, A., Unsupervised Deep Embedding for
Clustering Analysis, ICML, 2016.

[25] Zelnik-Manor, L., Perona, P., Self-Tuning Spectral Clustering, NIPS,
2004.

