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Abstract. Predictive business process monitoring concerns the unfold-
ing of ongoing process instance executions. Recent work in this area fre-
quently applies “blackbox” like methods which, despite delivering high
quality prediction results, fail to implement a transparent and under-
standable prediction generation process, likely, limiting the trust users
put into the results. This work tackles this limitation by basing predic-
tion and the related prediction models on well known probability based
histogram like approaches. Those enable to quickly grasp, and poten-
tially visualise the prediction results, various alternative futures, and
the overall prediction process. Furthermore, the proposed heuristic pre-
diction approach outperforms state-of-the-art approaches with respect to
prediction accuracy. This conclusion is drawn based on a publicly avail-
able prototypical implementation, real life logs from multiple sources and
domains, along with a comparison with multiple alternative approaches.
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1 Introduction

Predictive process monitoring enables to predict the unfolding of ongoing process
executions based on behaviour extracted from historic executions. This includes
the prediction of, e.g., the activity to be executed next. Hereby, the planning
and prioritisation of instances and their resource utilisation can be supported,
e.g., to prevent the violation of Service-Level Agreements (SLAs), cf. [27, 24].

We found that predictive monitoring work, especially if it strives to predict
upcoming activity executions and their timestamps, can largely be categorised
into two main groups based on the applied approach, cf. [18]: At first, probability
based works which transform historic logged execution behaviour into probability
based prediction models to predict, e.g., the most probable future execution
behaviour (e.g., the next activity), cf. [26]. We found those models to be small,
easy to understand, follow, and interpret. Secondly, neural networks are gaining
interest, cf. [18]. Especially, as it was found that they outperform probability
based approaches, for example, with regards to the prediction accuracy, cf. [27].

Unfortunately, the latter struggle with regards to prediction result trans-
parency and understandability – as neural networks are generally assumed as
“black boxes”, cf. [3]. For example, fully understanding and grasping the relation
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and inner organisation between hundreds of neurons, which today’s increasingly
larger and complex neural networks (prediction models, resp.) are composed of,
cf. [27], is extremely challenging. Further, given today’s network complexity, it
is hardly possible to fully grasp why/how such a complex neural network gen-
erated a specific outcome or how changing the network/neurons would affect it,
cf. [21]. So, novel techniques are required which: a) combine the advantages of
probability based techniques (model/result traceability and understandability);
and b) neural network based techniques (high prediction result accuracy).

Hence, inspired by this observation this paper proposes a probability based
prediction technique to predict the next execution event (activity, timestamp).
Formally: Let p be an execution trace of process P for which the next execution
event should be predicted. Further let L hold all historic execution traces t of
P . The key idea is to: first, identify the relevant traces in L for this task, and
secondly to create a probability based prediction model M from them. Here,
trace relevance is measured based on the similarity of the execution events in p
and t. Finally, the most probable next event for p is determined based on M .

So, instead of complex almost unfathomable neural network based prediction
models this work generates and applies simplistic histogram based probability
distributions. Its feasibility is analysed by comparing a prototypical implemen-
tation of the proposed approach with state-of-the-art neural network and prob-
ability based approaches using real-life execution logs from multiple domains.

This paper is organised as follows: Prerequisites and the proposed approach
are introduced in Section 2. The proposed prediction approach (i.e., prediction
model generation and its application) is, in detail, described in Section 2 and
3. Related work is discussed in Section 5 while Section 4 holds the evaluation.
Finally, conclusions, discussions, and future work is given in Section 6.

2 Prerequisites and General Approach

The presented approach enables to predict, based on a given (sub) trace p, the
next execution event (i.e., activity and timestamp). For this a prediction model
M is generated from historic traces L (log, resp.), those are: a) automatically
generated by process engines; b) representing real behaviour (including noise and
ad hoc changes); and c) independent from outdated documentation, cf. [20]. This
section, for the sake of understanding, focuses on next event activity prediction to
outline the general proposed prediction approach. The more complex prediction
of next event timestamps builds on and extends this approach in Sect. 3.

Definition 1 (Execution log). Let L be a set of execution traces t ∈ L;
t := 〈e1, · · · , en〉 holds a non-empty ordered list of execution events ei :=
(ea, et); ei represents the execution of activity ei.ea at timestamp ei.et ∈ R>0;
t’s order is given by ei.et, i.e., the events’ timestamp, cf. [5]. Based on a given
event ei and trace, •ei determines its preceding event, i.e., •ei = ei−1 if i > 1.



This notion represents information provided by process execution log formats,
such as, the eXtensible Event Stream1, but also holds the necessary information
(activities and timestamps) for the prediction of execution events. Accordingly,
the first event e1 for trace t1 of the running example, cf. Table 1, is t1.e1 = (A, 23).
Auxiliary functions: 〈·〉i and 〈·〉[f,k] retrieve the element with index i (former) or

a range of indexes (latter) where f ≤ i ≤ k, while 〈·〉l retrieves the last element.
|T | determines the length and T 0 retrieves a random element from a list/set T .

Fig. 1. Proposed probability based predictive monitoring approach – overview

Fig. 1 gives an overview on the proposed three staged prediction heuristic:
Sect. 2 (activity) and 3 (timestamp). The core component is a probability based
prediction model M which is generated based on a selection of given historic
execution traces t ∈ L and an incomplete executions trace p /∈ L – for which
the next event should be predicted. Both, p and L are assumed as given input
(prerequisites). Not each trace t ∈ L is relevant for the prediction model M .

This is because some traces t ∈ L are too dissimilar from p /∈ L to provide a
glimpse on p’s future behaviour 1 . For example, because t and p follow dissimilar
control flow execution paths in P so that behaviour in t does not allow to draw
reliable conclusions for p’s upcoming events. Compare, for example, trace t4 and
t1 in Table 1, both represent an execution of P1 with vastly different activity
orders and occurrences which could stem, e.g., from different control flow decision
node evaluations. Accordingly, we propose to utilise the dissimilarity/distance
between the given traces when deciding which traces in L are used to build M .

Table 1. Realistic running example log L, cf. Helpdesk-Logs in Sect. 4

Event ei := (ea, et) where ea=activity, et=timestamp
Process P Trace t e1 e2 e3 e4 e5 e6

P1 t1 (A,23) → (E,32) → (E,37) → (F,40) → (E,47) → (D,53)
P1 t2 (A,49) → (E,54) → (F,61) → (E,68) → (B,69) → (D,78)
P1 t3 (A,40) → (F,45) → (E,49) → (F,51) → (E,57) → (D,63)
P1 t4 (C,17) → (A,21) → (A,22) → (A,25) → (F,30) → (E,37)

The applied distance measurement is inspired by the Damerau-Levenstein
distance (DL for short) [10] – a common algorithm to measure the dissimilarity

1 http://www.xes-standard.org – IEEE 1849-2016 XES Standard



between two sequences (traces, resp.). Here, this metric was chosen, over other
approaches, such as, the Levenstein distance [23], which is frequently applied by
existing prediction work, such as, [12]. This is because DL explicitly supports the
transposition of a sequences’ elements, cf. Def 2 – enabling to support parallel
executions with varying activity orders but still comparable behaviour, cf. [27].

Definition 2 (Damerau-Levenstein activity based trace dissimilarity).
Let t and t′ be two traces. Their dissimilarity is measured by determining the most
cost efficient sequence of insert, delete, substitution, and transpositions
operations required so that the order of event activity labels (given by e.ea)
in t, t′ becomes equal. Accordingly, each edit operation gets assigned an indi-
vidual cost: ins, del, sub, tran ∈ N>0. Finally, the dissimilarity of t and t′ is
recursively calculated by applying ∆(t, t′) 7→ N, i.e., comparable to [10]:

∆(t, t′) :=



max(|t|, |t′|) if min(|t|, |t′|) = 0

min



∆(t[1,|t|−1], t
′) + ins

∆(t, t′[1,|t′|−1]) + del

∆(t[1,|t|−1], t
′
[1,|t′|−1]) +

{
0 if tl.ea = t′l.ea

sub otherwise

∆(t[1,|t|−1], t
′
[1,|t′|−1]) + tran

if tl.ea = t′|t|−1.ea ∧ t|t|−1.ea = t′l.ea

In Sect. 3 this definition is extended to analyse activity and temporal be-
haviour at once, cf. Def. 7. Auxiliary functions max(a, b) and min(a, b) deter-
mine and return the maximum (minimum, resp.) value in {a, b}.

Assume that for the event e3 = (E, 37) in trace t1 (i.e., t1.e3) the directly suc-
cessive next event should be predicted, cf. Table 1. For this task we assume, e.g.,
that the subtraces t2[1,3] and t3[1,3] are relevant information sources while t4[1,3]
is not. This is because we assume that t4[1,3]’s execution behaviour (e.g., given
by the order and occurrence of the respective event activities) is too different
from t1[1,3] to draw, based on t4[1,3], conclusions on t1.e3’s next event. The DL
distance reflects this assumption, i.e., the DL distance of t1[1,3] and t2[1,3] = 1,
t3[1,3] = 1, and t4[1,3] = 3; assuming a general edit cost of one, cf. Def 2 and [10].

Further, the DL can naturally be applied on discrete values, such as, event
activity labels, cf. Def. 2 and [12]. However, this work also takes values into
account which origins from a continuous data range, such as, the timestamp
et ∈ R>0 of each event. For this the original DL approach is extended into
a two step approach. Hereby, the first step follows the original idea of exact
equality between event activity labels (i.e., e.ea) while the second step factors in
the partial similarity of an events’ temporal behaviour, cf. Def. 7. Without this
extension very similar traces could be classified as completely dissimilar, solely
because of minimal temporal fluctuations, which we found to be likely, cf. [5].

Subsequently, the ms ∈ N≥1 most similar traces MS ⊆ L are transformed
into a probability based prediction model M 2 . Hereby, the key idea is that the



most probable behaviour, based on the most relevant traces, should become the
predicted behaviour. To implement this key idea the proposed approach:

1) searches ∀t ∈ MS the events er ∈ t which are most representative for the
last known (i.e., most recently occurred) event in p (i.e., pl), cf. Def. 2; to

2) extract the directly successive event of each event er as a potential repre-
sentation of probable successive behaviour for pl, cf. Def. 3; and

3) stores extracted information in M , which is inspired by weighted histograms,
cf. Def. 4. The weights represent the relevance of extracted behaviour based
on the similarity between p and the traces the behaviour was extracted from.

Definition 3 (Prediction behaviour extraction). Let p /∈ L be a trace for
which the next event should be predicted. Let further MS ⊆ L hold historic
traces (t ∈ MS, resp.) which were found to be similar to p. Finally, for each
trace t the events with an index in the range of [|p|−|p|·s, |p|+|p|·s] are analysed.
Hereby, s ∈ R controls which indexes “around” |p| are taken into consideration.
Behaviour extraction function ext(p,MS, s) 7→ L extracts (sub) traces by:

ext(p,MS, s) := {t[1,i+1] ∈MS|i ≥ (|p|−|p| ·s)∧ i ≤ (|p|+ |p| ·s)∧ ti.ea = pl.ea}

Taking the indexes into account enables to represent our assumption that
there is a correlation between the position of an event in a trace and its suc-
cessive events. For example, it was observed that for a given process typically
a correlation between the number of already traversed loop iterations and the
likelihood that another iteration occurs (or not) can be found. Accordingly, the
number of iterations (roughly represented by the event index) also has an im-
pact on the to be predicted successive events. We factor this observation in by
focusing on events which have a similar index than the last event in p (i.e., |p|).

Assume that for t1.e3 = (E, 37), i.e., p = t1[1,3], cf. Table 1, the successive
activity should be predicted while MS = {t2, t3}. For this, a set of all possible
subtraces PS := ext(p,MS, s) is extracted from the traces in MS for which the
same activity, as given in t1.e3.ea = E, occurs roughly at the same index as the
last event in p (pl.ea = E) so MS = {〈(A, 49), (E, 54), (F, 61)〉, 〈(A, 49), (E, 54),
(F, 61), (E, 68), (B, 69)〉, 〈(A, 40), (F, 45), (E, 49), (F, 51)〉} when s = 0.3̇, cf. Def. 3.

From the subtraces given in PS the prediction model M is formed, cf. Def.
4. For this, the last two events (tl and t|t|−1) of each (sub) trace t ∈ PS are
extracted and its weight is determined by its reciprocal DL distance to p, so:

Definition 4 (Weighted prediction model). Let PS hold subtraces from L
which were identified as relevant behaviour sources because of their similarity
to p to form the prediction model M := {(tl, t|t|−1, 1/(∆(t, p) + 1))|t ∈ PS}
Hereby, for each m ∈ M ; m := (e1, e2, w) holds two events e1 and e2 and a
weight w ∈ R>0 representing the subtrace similarity based relevance of m for
the current prediction task at hand, such as, activity or timestamp prediction.

Subsequently, M is used to predict event activities, cf. Def. 5, and times-
tamps, cf. Def. 8 3 . For the sake of understanding solely the prediction of
activities is described here while the timestamp prediction is given in Sect. 3.4.



Definition 5 (Predicting activities). Let M be extracted relevant behaviour
(i.e., the prediction model), cf. Def. 4. Prediction function pa(M) predicts the
most probable activity to be executed next for p (after pl resp.) by pa(M) 7→ ea:

pa(M) := {v|(v, ·, ·) ∈M,∀(v′, ·, ·) ∈M ; sa(M, v) ≥ sa(M,v′)}0.ea

hereby sa(M,v) :=
∑

m∈M m.w where m.e1.ea = v.ea, i.e., sa(M,v) sums
up the weights in M for a given event v based on the events’ activity v.ea. This
enables the identification of the most probable activity to be executed next.

For example, when predicting the successive event for t1.e3 = (E, 37) then
M = {(F, ·, 0.5), (B, ·, 0.3̇), (F, ·, 0.3̇)}; this prediction model is visualised in Fig.
2. Based on that model M , pa(M) = F as the summed up weight for F is 0.83̇.
In comparison the second most probable activity B only achieves a summed up
weight of 0.3̇ – cf. running example in Table 1. Here, in Section 2, we have out-
lined the proposed event activity prediction approach; in Section 3 it is extended
to predict temporal behaviour (event timestamps).

3 Probability based Predictive Temporal Monitoring

This section gives additional details on the approach set out in Fig. 1. It focuses
on the prediction of temporal behaviour (i.e., p’s next event timestamp). Note,
that the prediction of the next events’ activity was already outlined in Sect. 2.

3.1 Applying Intervals to Analyse Continuous Variables

Fig. 2. Exemplary,
weighted histogram
based visualisation of the
prediction model M

The similarity calculation and prediction approach
proposed in Sect. 2 can naturally be applied to dis-
crete values, such as, activities (labels, resp.). How-
ever, to apply them to values which origins from a
continuous data range, such as, timestamps or times-
pans, they must be extended to prevent the gener-
ation of largely incorrect prediction results: similar
temporal behaviour would be recognised as dissimi-
lar due to minor temporal fluctuations. For this, we
propose to represent continuous values as intervals,
cf. [4]. This increases the flexibility as slightly vary-
ing temporal business process execution behaviour is
still recognised as similar as, for example, t1.e1.et =
1, t2.e1.et = 3 both fit in the interval [0, 4].

In the following the temporal process execution
behaviour in L (to define intervals and perform predictions) is represented as
timespans. Here, such timespans refer to the time which has passed between
two directly successive execution event observations. This enables to predict the
most probable timespan between the last known event (i.e. pl) and the time of
execution of the to be predicted next/successive process execution event activity



– which can subsequently be mapped on p’s next event execution timestamp
while not being affected by fluctuations in the specific event execution times.
For example, the timespan between t1.e5 → t1.e6 and t3.e5 → t3.e6 is equal
(i.e., 6) while the individual event timestamps are different (e.g., t1.e5.et = 47,
t3.e5.et = 57), cf. Table 1.

Definition 6 (Timespan extraction). Let L be a set of execution traces and
a, a′ two activities for which all timespans should be extracted from L. Extraction
function ate(a, a′, L) 7→ {d1, · · · , dn} extracts ∀t ∈ L the timespans (d ∈ R≥0)
between directly successive executions of the activities a, a′ as a multiset:

ate(a, a′, L) := {|e.et− e′.et||t ∈ L; e, e′ ∈ t; e.ea = a ∧ e′.ea = a′ ∧ e = •e′}

The timespan extraction starts by selecting a pair of activities (i.e., a and
a′). Subsequently all traces in L are searched for directly successive events (i.e.,
ei, e

′
i+1) where e.ea = a and e′.ea = a′. Finally the timespan d between e, e′ is

calculated by executing d = |e.et− e′.et|, cf. Def. 6. Accordingly, for the running
example in Table 1: ate(A, E, L) = {6, 5} (from t1 and t2) when a = A and a′ = E.

To determine the size and amount of intervals required to represent the
extracted timespans the Freedman-Diaconis rule [4] is utilised. It determines,
for a given list of timespans X, i.e., X = ate(a, a′, L), a suitable interval size:
int(X) := 2 · (IQR(X)/ 3

√
|X|) where IQR(X) is the interquartile range for X.

Based on the prerequisites given in Def. 6 and the Freedman-Diaconis rule
multiple auxiliary functions for temporal behaviour are defined. These functions
are applied, in the following, when predicting the most probable timespan which
has to pass after the timestamp pl.et till the next execution event can be ob-
served, cf. Sect. 3.3 (i.e., enabling the prediction of the next events’ timestamp).

First, bc(a, a′, L) := d(max(X)−min(X))/int(X)e where X := ate(a, a′, L).
It determines the number of intervals the timespans between two successive
activities a, a′ can be divided in – based on the behaviour in L. Secondly,
bi(e, e′, L) := {i|i = 0, · · · , bc(e.ea, e′.ea, L);mi(X, i) < d;mx(X, i) ≥ d}0 where
d = |e.et − e′.et|, X := ate(e.ea, e′.ea, L),mi(X, i) = min(X) + int(X) · i and
mx(X, i) = mi(X, i) + int(X). It determines how many intervals i must be
summed up to cover the timespan d between the directly successive events e, e′.

Finally, bt(e, e′, L) := dmin(X)+ int(X) ·bi(e, e′, L)+ int(X)/2e maps times-
pans/intervals which are related to the events e and e′ (based on L) on a single
value based on the interval size identified by int(X). This is utilised in Section
3.3, for example, to determine if given pairs of events have equal/similar tempo-
ral behaviour. Further, bt(e, e′, L) is applied when determining the most propable
timespan between pl an the to be predicted next execution event occurrence.

Given the example traces in Table 1 the auxiliary functions would behave
as follows: bc(F, E, L) = 2, i.e., the Freedman-Diaconis rule determines that two
intervals (here: [4, 6.4] and [6.4, 8.8]) are required to cover the timespan between
the activities F → E for L’s traces. Hereby, X = {7, 7, 4, 6, 7} and int(X) be-
comes 2.4. Accordingly, the first interval always starts at min(X) and has a size
of int(X). Subsequent intervals always start at the end of the previous one. Ad-
ditional intervals, if necessary, are generated till all timespans in X are covered.



In this example bi(t1.e4, t1.e5, L) = 1, i.e., the timespan between t1.e4 → t1.e5
is covered by the second interval (which is [6.4, 8.8]) as the timespan between
both events is 7. Finally, bt(t1.e4, t1.e5, L) = d4 + 2.4 · 1 + 2.4/2e = d7.6e. Based
on these auxiliary functions the Damerau-Levenshtein distance metric (DL), cf.
Def. 2, is extended to incorporate temporal process execution behaviour.

3.2 Temporal Behaviour based Trace Similarity

Sect. 2 argues that the relevance of historical execution traces t ∈ L, for the pre-
diction of future events, for a given incomplete trace p, is related to the similarity
between p and L’s traces. So, Sect. 2 applies the DL distance to measure activity
focused trace similarities. However, the unaltered DL algorithm is too sensible
to be applied on continuous data, such as, timestamps or timespans. This is be-
cause temporal behaviour is frequently fluctuating, e.g., the timespan between
two activity executions is sometimes a bit shorter or longer. Such fluctuations
would result in determining similar execution behaviour (traces) as completely
dissimilar. So, we propose to extend the DL algorithm to address this limitation.

Definition 7 (Extended Damerau-Levenstein operation cost). Let e, e′

be two events in L’s traces. Further, let c ∈ N>0 be the cost assigned to a
chosen DL edit operation, such as, ins. The individual operation cost, taking
the temporal differences into account for e, e′, is calculated by tc(c, e, e′) 7→ R:

tc(c, e, e′) :=


c if eqa(e,e’) = false

co(c, e, e′, L) if eqa(e,e’) = true ∧ eqt(e,e’,L) = false

0 if eqa(e,e’) = true ∧ eqt(e,e’,L) = true

where eqa(e, e′) := e.ea = e′.ea∧•e.ea = •e′.ea and eqt(e, e′, L) := bi(e, •e, L) =
bi(e′, •e′, L) determine if the activity (eqa(e, e′)) or timespan interval (eqt(e, e′, L))
of e, e′ and their directly preceding events are equal. Further co(c, e, e′, L) :=
c · (1− (|bi(e, •e, L)− bi(e′, •e′, L)|)/bc(e.ea, e′.ea, L)) calculates the relative edit
cost if eqa(e, e′) = true and eqt(e, e′, L) = false. The latter is the case if the
activities represented by both events are equal but the temporal behaviour is not.

The proposed extension of the DL algorithm, cf. Def. 2 and Def. 7, replaces
the cost variables ins, del, sub, tran with a cost function tc(c, e, e′); where c ∈
{ins, del, sub, tran} represent the configured costs and e, e′ represent two events
to be compared. Hereby three scenarios can emerge: 1) unequal event activity:
full cost (i.e., c); 2) equal activity, dissimilar temporal behaviour: fraction of c,
relative to the temporal dissimilarity; 3) equal activity and timespan interval:
cost = 0. The following examples are based on the running example given in
Table 1 and cover all three scenarios given above with exemplary event pairs:

1) Unequal event activity: e.g., t1.e1 = (A, 23) and t2.e2 = (E, 54), cost = c;
2) Equal activity, dissimilar temporal behaviour: t1.e5 = (E, 47) and

t3.e3 = (E, 49) both cover the same activity (i.e., equal activity label, t1.e5.ea =



t3.e3.ea). Accordingly, the timespan d between these two events (t1.e5 and
t3.e3) and their relative directly preceding event (i.e., t1.e4 and t3.e2) is
analysed to take temporal differences into account: for the activity transi-
tion F → E five timespans can be extracted from L, such that, ate(F, E, L) =
{7, 7, 4, 6, 7} = X. For this int(X) = 2.4, such that, two timespan intervals
become relevant, first, [4, 6.4] representing t3.e3 and, secondly, [6.4, 8.8] rep-
resenting t1.e5. So both events are represented by different adjacent intervals,
such that, the cost becomes c · (1− (|0− 1|)/2) = c · 0.5; and finally

3) Equal activity and temporal behaviour: e.g., t1.e6 = (D, 53) and t3.e6 =
(D, 63). For these events the activity and the transition timespan (i.e., 6)
interval from the preceding events is equal, i.e., the dissimilarity/edit cost=0.

3.3 Temporal Behaviour: Predicting Event Timestamps

Predicting timestamps of upcoming/next events follows the same key idea as
the prediction of upcoming event activities, cf. Def. 5. However, instead of di-
rectly predicting the most probable next event execution timestamp an indirect
approach is applied. So, the proposed approach predicts the most probable times-
pan between the last known activity execution event in p (i.e., pl) and the most
probable occurrence of the “to be predicted” next event. For this, initially, com-
parable to the activity prediction, the model M , which holds the most relevant
behaviour for the current prediction task, is formed, cf. Sect. 2 and Def. 8.

Definition 8 (Predicting timespans). Let M be extracted relevant behaviour
in L where m ∈ M ; m := (e1, e2, w), cf. Def. 5. Here the weight w ∈ R>0 is
calculated by using the DL algorithm given in Def. 2 and its extension given
in Def. 7, i.e., the proposed cost function; which enables to take temporal dis-
similarity into account. Further, let mwp ∈ R>0 control the minimum relevant
relative weight to handle highly fluctuating temporal behaviour. Finally, function
pt(M,mwp) 7→ R>0 predicts the most probable timespan, which is expected to
pass after pl.et, till p’s next execution event (activity execution) will be observed:

pt(M,mwp) :=

⌈∑o
i=0,(at,·,o)∈SF at∑

(·,·,o)∈SF o

⌉
assuming MF := {(e1, e2, w) ∈ M |e2.ea = pa(M)} filters M based on the

activity prediced by pa(M) and gt(m) = bt(m.e1,m.e2, L) determines an average
timespan for m; MFF (at) := {m ∈ MF |gt(m) = at} filters MF based on the
average transition timespan. Further, S := {(at, g, o)|m ∈MF ; at := gt(m), o :=
|MFF (at)|, g :=

∑
m∈MFF (at)m.w} maps triplets in MF onto average interval

driven timespans along with the relevant metadata. Finally, minW (S,mwp) :=
{s.g|s ∈ S;∀s′ ∈ S; s.g ≥ s.g′}0 ·mwp determines the minimal relevant weight
and SF := (s ∈ S|s.g ≥ minW (S,mwp)) filters S accordingly.

We found that, the behaviour hold by M can further be focused/filtered. For
this the next activity a = pa(M), cf. Def. 5, can be predicted and utilised to



remove all triples from m ∈M where m.e2.ea 6= a (such that, M becomes MF ).
Hereby, the data is further condensed to only hold the most relevant behaviour
which is related to the most probable next activity execution (optional step).

Subsequently, all m ∈ MF are condensed to form triplets (at, g, o) ∈ S.
Hereby a single triplet in S can represent one or more entries in M . In each
triplet at identifies the relevant average timespan given by bt(m.e1,m.e2, L),
g ∈ R>0 represents the summed up weights (cf., m.w), and o ∈ N>0 represents
the number of entries m ∈MF which were condensed to form this triplet in S.
Note, all entries in m ∈ M which result in the same at := bt(m.e1,m.e2, L) are
mapped on the same triplet in S. Finally, the triplets in S are utilised to predict
the timespan till p’s next execution event will most probably be observed.

For this, all s ∈ S are filtered to identify the ones which have a s.g ≥
minW (S,mwp) where mwp ∈ R>0. Here, the user chosen mwp enables to han-
dle situations were multiple timespans have an equal or close probability. For
example, it was found that when timespans are heavily fluctuating (e.g., from
minutes to days) between successive events in L then the Freedman-Diaconis
rule does not choose the interval sizes perfectly. In such cases a large amount of
observations is assigned, for example, in two adjacent intervals which would, if
only the most probable timespan is determined, result in large prediction errors.

The use of mwp enables to take this into account. So, not the single most
probable timespan is used but the average timespan of the mwp “most probable”
ones. For this, the average timespans (i.e., at) of the filtered (SF := (s ∈ S|s.g ≥
minW (S,mwp))) triplets (at, g, o) ∈ SF are multiplied by o and summed up.
Finally, the resulting summed up timespan is divided by the summed up number
of condensed entries (cf. o) of all relevant triples to determine the most suitable
average timespan between the last known and the, to be predicted, next event.

Assume that, based on the running example in Table 1, the timespan between
t1.e4 and t1.e5 (F→ E) should be predicted (i.e., p = t1[1,4]). Assuming thatms =
4; all traces t2, t3, t4 are relevant. Accordingly, M = {((F, 61), (E, 68), 0.289),
((F, 45), (E, 49), 0.227), ((F, 51), (E, 57), 0.217), ((F, 30), (E, 37), 0.2)} when s = 1
and a general DL edit cost of 1 is assumed (following related raw DL distances
were calculated: 2.46̇, 3.4, 3.59, 4). Hereby, the first triplet, is motivated by t2,
the last triplet from t4 and the remaining ones represent behaviour from t3.

In this example, MF = M , i.e, as pa(M) = E filtering M has no effect. Sub-
sequently, S = {(5.2595, 0.444, 2), (7.7785, 0.489, 2)} as two intervals ([4, 6.519]
and [6.519, 9.038]) need to be created when mapping the triplets from MF ;
int({7, 4, 6, 7}) = 2.519. When assuming mwp = 0.9 then minW (S,mwp) =
0.4401 (i.e., 0.489 ·0.9) so that both triplets in S are identified as being relevant,
such that S = SF . Accordingly pt(M,mwp) = d(5.2595 + 5.2595 + 7.7785 +
7.7785)/(2 + 2)e = 7 which matches to the observed timespan for t1.e4 → t1.e5.

3.4 Predicting future Execution Events

Predicting the next execution event en := (ea, et), cf. Def. 1, for an incomplete
execution trace p requires to predict the events’ activity en.ea and timestamp
en.et. [27] found that both are interdependent. Accordingly, this work initially



predicted, based on Def. 5, the next activity en.ea. Subsequently en.ea can be
applied when prediction the timespan d ∈ R≥0 between the last known event
pl and en.et. Hence, for predicting en.et the most probable timespan d between
pl.et and en.et is predicted, cf. Def. 8, and added to pl.et to get en.et := pl.et+d.

3.5 Fostering Understandability and Trust

Recent predictive monitoring approaches are commonly applying blackbox like
prediction techniques, such as, neural networks, see Sect. 5. For those approaches
typically an outstanding prediction performance (e.g., a high activity prediction
accuracy) is reported. However, simultaneously they fall short when required to:

1) explain alternative futures which were not classified as being most probable;
2) explain the aspects which motivated the specific prediction results; or
3) understand how and why a prediction result would most probably change

when adapting the prediction logic, configuration, or model in certain ways.

We assume, that these drawbacks limit the acceptance and applicability in
the respective predictive monitoring target group (e.g., management or produc-
tion planning staff). For example, when only providing the most probable futures
but not providing any alternatives expert knowledge can hardly be incorporated
into the prediction. However, based on expert knowledge a user can decide, e.g.,
that not the most probable, but the second or third most probable activity will
most probably be observed next, potentially, because of some external factors
which cannot (or not yet) be grasped by the prediction algorithms, cf. [19].

Further, providing information also about less probable futures enables to
perform random walks, cf. [14]. Those enable, for example, to depict and clarify
how multiple potential futures will unfold – enabling users to build trust into
the results and quickly grasp the related uncertainty and potential developments.
For this, we assume, that the low number of simple configuration parameters,
applied here, is advantageous, i.e., it gives the users a simple “knob” to play with
and explore different configurations, predictions, and futures quickly, cf. [19].

The proposed approach can support users during result and prediction pro-
cess interpretation based on weighted histogram like visualisations which can
directly be derived from the generated and utilised weighted prediction models
M and MF , cf. Fig. 2. We assume that this enables users to grasp, but also
learn, for example, how a (potential) configuration change has affected the per-
formed prediction steps and results – fostering trust and understandability, cf.
[28]. However, the question remains if the listed limitations of blackbox like pre-
diction work may not be acceptable given the overall prediction performance of
such neural network based techniques. To address this question, the following
section will evaluate the feasibility of the proposed approach and compare it
with multiple state-of-the-art predictive monitoring approaches.

4 Evaluation

The evaluation utilises real life process execution logs from multiple domains in
order to assess the prediction quality and feasibility of the proposed approach,



namely: BPI Challenge 20122 (BPIC) and Helpdesk3. Both logs are also utilised
by existing state-of-the-art approaches, such as, [27] – enabling to compare the
proposed approach with multiple alternative approaches: [1, 16, 6, 27]. Hereby, we
especially focus on incorporating neural network based prediction approaches as
those are generally assumed as outperforming probability based ones, such as,
the one proposed in this work, cf. [27]. Overall the evaluation, execution logs,
and how the evaluation is carried out is similar to [27] to ensure comparability.
BPIC 2012 log: The BPIC 2012 log2 is provided by the Business Process Intelli-
gence Challenge (BPIC) 2012 in conjunction with a large financial institution. It
contains traces generated by the execution of a finance product application pro-
cess. This process consists out of one manually and two automatically executed
subprocesses: 1) application state tracking; 2) handling of application related
work items; and 3) offer state tracking. The comparison approaches, such as,
[27] are only interested in the prediction of manually performed events. Accord-
ingly, this and the comparison work narrow down the events to the work items
subprocess to ensure comparability. The same motivation resulted in filtering
this log to only contain events whose type is defined as complete. Overall 9,657
traces with 72,410 execution events were retained for the work items subprocess.
Helpdesk log: This log3 is provided by an Italian software company and con-
tains execution traces generated by a support-ticket management process. Each
trace starts by generating a novel ticket and ends with closing the ticket when
the related issues were resolved. Overall the utilised process consists of 9 activi-
ties while the log holds 3,804 traces which consist of 13,710 execution events. We
assume the helpdesk log as being more challenging than the BPIC log. This is
because the temporal fluctuation is larger and the number of activities is higher
while the amount of traces, from which behaviour can be learned, is lower.
Comparison approaches: The proposed approach is compared with seven al-
ternative prediction approaches described in [1, 16, 6, 27]. Four of those can be
categorised as probability based techniques which apply finite state automata
or transition systems. The latter can further be subdivided into set, bag, or se-
quence abstraction – depending on the applied transition system building and
abstraction techniques. Three approaches apply neural networks. Either in the
form of Recurrent Neural Networks (RNN) – which incorporate feedback chan-
nels between the neurons a network is composed of – or Long Short-Term Mem-
ory (LSTM) based neural networks. The latter (LSTM) were found to deliver
consistent high quality results in a wide range of domains by coupling neural
networks with the capabilities to “remember” previous internal states, cf. [27].

4.1 Metrics and Evaluation

This section analyses the feasibility of the presented prediction approach. For
this, two metrics are applied to determine and compare the prediction result
quality of multiple prediction approaches. First, Mean Absolute Error (MAE)

2 DOI: 10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
3 DOI: 10.17632/39bp3vv62t.1



is utilised to analyse the prediction quality for temporal behaviour, i.e., the
difference between the observed real event timestamps in the given log traces and
the predicted event timestamps. Hereby, MAE was chosen as it is less affected by
outliers, where the timespan between two events is unusually large, cf. [27], than
other approaches, such as, the Root Mean Square Error. Secondly, for activity
prediction the accuracy is measured. For this, the percentage of predicted events
for which the predicted and the observed event activities are equal is determined.

While performing the evaluation the first 2/3 of the chronologically ordered
traces hold by the logs are utilised as training data, e.g., to form prediction
models. The remaining 1/3 of the traces are utilised to evaluate the activity
and event timestamp prediction performance of the proposed and comparison
approaches (testing data). For this, basically, all possible subtraces with t[1,n]
where 2 ≤ n < |t| are generated from the testing data and the n + 1 event
(activity and timestamp) is predicted. Note, that only subtraces with a size of
≥ 2 are used so that sufficient behaviour is known to base the prediction on, cf.
[27]. Further, the evaluation results were only calculated once as the proposed
approach contains no random aspects, i.e., deterministic results were observed.

4.2 Evaluation Results

The results were generated based on the BPIC 2012 and Helpdesk process exe-
cution logs. The implementation was found to execute the required preparatory
(e.g., similar trace extraction) and next event prediction steps fast enough to
output the predicted events almost instantaneously (i.e., below one second).

It was found that this performance could only be achieved because the pro-
posed approach filters and separates the given traces into traces which are rele-
vant or non-relevant for the prediction task at hand. This significantly reduces
the amount of data which must be processed during the main prediction steps.
Further, the initial similarity based relevance calculations were found to be exe-
cuted quickly. Computationally intense temporal behaviour focused calculations
and their results can be stored and reused for multiple predictions in a row. This
suggests an applicability onto even larger process repositories and execution logs.

Primary tests were applied to identify appropriate configuration values for
each log and prediction task – which are summarised in Table 2. This is ms ∈
N>0, i.e., the amount of most similar traces hold by MS, s ∈ R, i.e., the index
spreading control variable for the prediction behaviour extraction, cf. Def. 3,
and, mwp ∈ R which enables to configure how less probable temporal behaviour
is incorporated to compensate less than ideal interval definitions which can stem
from heavily fluctuating temporal execution behaviour, Def. 8. Finally, ps ∈ N>0

controls the maximum number of events which are taken into account during the
similarity calculation by creating and using a subtrace with the length of at most
ps events (e.g., t[|p|−ps,|p|]) for the similarity based trace relevance analysis.

Different configurations were used for different prediction tasks (activity vs.
timestamp) and logs to reflect the unique characteristics of each task and log.
Given the low amount of simple numeric configuration values those can, likely,
also be automatically optimised and defined based on computer algorithms. In,



general, it was observed that choosing an overly high value for the configuration
variables ms, s, and mwp could result in being affected by irrelevant behaviour
and noise while too low values could result in not extracting sufficient behaviour
for the prediction task at hand. In comparison, the value ps seems to mainly
affect the amount of computational effort which must be invested (higher=more).

Finally, following edit costs are utilised for the original and the extended
DL algorithm: del = 2, sub = 3, tran = 2, ins = 1. Hereby, each cost was
chosen based on our assumption how strongly the related edit operation (e.g., to
delete an event) would affect the effective trace behaviour. For example, sub was
defined as three as it combines a delete (cost 2) and insert (cost 1) operation at
once. In comparison tran “solely” moves events towards a new trace index.

Table 2. Evaluation configuration for each execution log and prediction task

Configuration ms s mwp ps
BPIC Event Activity Prediction 200 0.2 0.05 10
Helpdesk Event Activity Prediction 10 0.1 0.05 10
BPIC Event Timestamp Prediction 50 0.2 0.2 20
Helpdesk Event Timestamp Prediction 200 0.2 0.2 6

The achieved evaluation results are summarised in Table 3 (event timestamp
prediction) and 4 (event activity prediction) for all compared approaches (bold
= best). As can be seen, the proposed probability based approach consistently
outperforms the alternative probability and neural network based comparison
approaches for all logs. Overall, an average improvement of 5% for the event
timestamp and 4% for the event activity prediction can be observed over the
best performing comparison approach given in [27]. In general, we found that
the observed advantage, of the proposed approach, over the compared approaches
is even increasing when the analysed process execution behaviour along with the
prediction task becomes more challenging. This indicates that the observed ad-
vantage would further increase at more challenging prediction tasks/behaviour.

Further it was found that the time, but also computational effort which is
required to prepare and execute the predictions is substantially lower for the
proposed approach than for the compared neural network based approaches. For
example, the authors in [27] utilise an expensive professional high end NVidia
Tesla k80 GPU and still need between “15 and 90 seconds per training iteration”
[27, p. 483] – of which, typically, tens of thousands are required for a single neu-
ral network to achieve reasonable results. Moreover, multiple prediction models
(neural networks) must be prepared for each process and sub-trace length, i.e.,
for t[1,2], t[1,3], t[1,4] · · · t[1,n] where n ∈ N>0 is the longest expected trace length: if
traces become longer than n, approaches, such as, [27] are no longer applicable.

In comparison cheap general purpose processors used in today’s office PCs
are sufficient for the proposed approach to quickly perform predictions. This
enables users to dynamically and quickly explore the impact of different configu-
ration values and the related futures – which we assume as helpful when in need



to understand the unfolding of complex process executions. Finally, given the
computational performance of the proposed approach it is not necessary to exe-
cute lengthy prediction model preparations for individual sub-trace lengths, i.e.,
there is no predetermined upper limit on the trace lengths which are supported.

Table 3. Evaluation Results: Execution Event Timestamp Prediction MAE

Mean Absolute Error (MAE) in days

Proposed
Probability

Set
abstraction
Probability

[1]

Bag
abstraction
Probability

[1]

Sequence
abstraction
Probability

[1]

LSTM
Neural

Network
[27]

Recurring
Neural

Network
[27]

Helpdesk 3.54 5.83 5.74 5.67 3.75 3.98
BPIC 2012 1.49 1.97 1.97 1.91 1.56 N.A.4

Table 4. Evaluation Results: Execution Event Activity Prediction Accuracy

Activity prediction accuracy

Proposed
Probability

LSTM
Neural

Network
[16]

Finite
automaton
Probability

[6]

LSTM
Neural

Network
[27]

Recurring
Neural

Network
[27]

Helpdesk 0.77 N.A.4 N.A.4 0.71 0.66
BPIC 2012 0.77 0.62 0.72 0.76 N.A.4

This evaluation shows the feasibility of the proposed approach. However, due
to space restrictions the user focused application benefits, compared to related
neural network based approaches, are only discussed, but not yet evaluated, cf.
Fig. 2 – which will be done, based on user studies, in future work, cf. Section 6.

5 Related Work

Overall, it was found that existing work mainly addresses four areas: a) predict-
ing the next event [27]; b) estimating remaining execution times [27]; c) classi-
fying and predicting instance outcomes [9]; and d) predicting risks which could
hinder successful instance completions [2]. Here, we assume a) as most relevant.

In general it was observed that early related work was mainly focusing on
probability based approaches using transition networks, state automata, (Hid-
den) Markov Models, frequent (sub) sequences, and fuzzy logic, cf. [25, 17, 18, 7].
Later work, mainly starting in 2015, heavily focused on neural networks, initially,

4 Results denoted as “N.A.” are not available as the compared/related work does not
cover the respective log or prediction task during its respective evaluation.



starting with recurring neural networks (RNN) and later extending RNNs with
Long Short Term Memory (LSTM) capabilities, cf. [18, 27, 13, 15]. Extending
neural networks with LSTM capabilities enables the neurons, a neural network
is composed of, to remember historic internal “states” over arbitrary time inter-
vals, cf. [27], resulting in an improved prediction quality. Overall, recent work,
such as, [27] has indicated that neural network based approaches significantly
outperform alternative approaches, e.g., the probability based ones. However,
this should be reconsidered as the probability based approach given in this work
was found to outperform both, i.e., RNN and LTSM based neural networks, cf.
Sect. 4. Alternative machine learning techniques, such as, Support Vector Re-
gression [8] or (regression) trees [11], seem to be rarely applied – in comparison.

We assume that the reported advantages, cf. [27], of RNN and LTSM based
approaches over alternative approaches origin from the memory capabilities of
RNN (limited capabilities) and LTSM (extensive capabilities). Hence, LTSM
based approaches can factor in a wide range of instant dependent historic states
and observations throughout the prediction. In comparison alternative approaches,
such as, Markov Chains, heavily focus on the most recently observed event
(pl) during the prediction phase without taking previously observed instant be-
haviour (e.g., the number of loop iterations) sufficiently into account. Further,
existing probability based work was found to apply a global prediction approach,
namely, incorporating all known historic trace behaviour during each prediction
task at hand – even if a majority of the historic traces are unsuitable for this
task as they are significantly dissimilar from the instance p which is predicted
upon, cf. [22]. Accordingly, the behaviour representation of previous alternative
probability based approaches is assumed by us as overly generic and abstract –
resulting in the observed unsatisfying prediction performance and quality.

In comparison the proposed approach builds, on the fly, individual predic-
tion models which are tailored specifically for each incoming novel and unique
prediction task – exploiting that it requires only a low amount of computational
effort to perform the prediction model generation and to execute the required
prediction steps. Accordingly, “optimal” prediction models are generated which
factoring in the most similar and so most relevant behaviour – enabling so called
“local” prediction, cf. [22]. Section 4 shows that this enables to outperform ex-
isting work in the area of activity and timestamp based predictive monitoring.

The dynamic and fast prediction model generation also enables to react
quickly on changes, such as, concept drift, as time intense training phases, re-
quired by alternative machine learning approaches, such as, neural networks, are
no longer necessary. Further, this also enables to apply the proposed approach in
dynamic flexible online prediction scenarios where the timespan between a) when
the most recent execution event becomes available; and b) the prediction result
becomes obsolete (as the process progressed) is small. This becomes relevant, for
example, when execution events are constantly streamed by a process execution
engine at a steady high pace, e.g., as production facilities and their ever changing
processes cannot be “halted” till a prediction algorithm has drawn a conclusion.



6 Discussion and Outlook

This paper focuses on two main challenges a) to outperform existing state-of-the-art
predictive monitoring approaches (next event prediction); while b) striving to
implement a transparent prediction approach to foster the trust users put into
the results. We conclude that this paper was able to meet the first challenge as
the conducted evaluation shows that we outperform the second best compared
prediction approach (based on LTSM neural networks) by 4 to 5 percent.

With regards to the second challenge we assume that the results generated
by predictive monitoring approaches can have a significant impact on an organ-
isation. For example, a prediction result could trigger a reorganisation of staff/
project assignments resulting in the fulfilment or, given incorrect results, the
violation of SLA agreements. Accordingly, we argue that prediction processes
should be transparent and understandable. One the one hand to foster the trust
in the results but also to enable experts to draw informed decisions while fac-
toring in their unique domain knowledge. Accordingly, the proposed approach
strives to provide a transparent prediction process which enables users to grasp
the prediction model and the possible different prediction results. For this the
prediction models are deliberately simple, contain all relevant futures along with
their probability, and could, as we assume, be visualised as weighted histograms.

Future work will concentrate on two aspects: a) further improving the pre-
diction result quality; and b) evaluating if the proposed approach is capable
of fostering the trust in the predicting results, e.g., by providing a transparent
and understandable prediction result generation process. The first aspect will be
tackled by further extending the proposed approach, for example, by combining
it with alternative techniques to incorporate their unique advantages. For the
latter we will concentrate on expanding and evaluating the proposed approaches’
result and prediction process understandability/transparency. Accordingly, visu-
alisation, cf. Fig. 2, and management tools will be created that enables to handle
the provided information (e.g., which potential futures are probable) in an inter-
active manner. Further, user studies will be performed to assess the benefits of
the proposed approach on predictive monitoring driven management decisions.
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