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Abstract. Business process compliance has been widely addressed re-
sulting in works ranging from proposing compliance patterns to check-
ing and monitoring techniques. However, little attention has been paid
to a specific type of constraints known as instance spanning constraints
(ISC). Whereas traditional compliance rules define constraints on pro-
cess models, which are checked separately for each instance, ISC impose
constraints that span multiple instances. This paper focuses on ISC evo-
lution and its impact on process compliance. In particular, ISC change
operations, as well as change strategies are defined, and the impact on
both the ISC monitoring engine and the process instances during run
time are analyzed. The concepts are prototypically implemented.

1 Introduction

Constraints imposed on business processes evolve constantly, for example, when
new constraints are added or existing constraints are updated. Whereas business
process changes have been investigated in detail (e.g., [18,19]), constraint changes
– also in interplay with process changes – have lacked attention so far. Some
approaches address the impact of business process change on constraint checking
[12], but concepts for the evolution of the constraints and the impacts on other
constraints and business processes are missing. This holds particularly true for
so called instance-spanning constraints (ISC), i.e., constraints that span multiple
instances of one or several business processes [4]. In this work we revisit change
strategies as formulated for business process evolution, i.e., versioning, migration,
and clean state [1] for ISC changes and investigate the related change impacts
along the following research questions:

RQ1 How to define atomic ISC change operations?
RQ2 How can ISC changes be handled (7→ change strategies)?
RQ3 How to visualize and measure the impact of ISC changes?
RQ4 How to realize versioning in the context of ISC change?

Answering the questions is challenging due to the complexity of the ISC: ISC
consist of structural patterns referring to the underlying processes and conditions
concerning data, time, and resource aspects [14]. Whereas these parts can be
also found for intra-instance constraints, i.e., independent constraints that can
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be verified for each process instance in a separated way, ISC can also contain
trigger and action parts. These parts define the “active” components of an ISC
such as putting the instance execution to a suspend state for synchronization
[13,4]. Moreover, ISC might “share” data and resources. Hence, changing one
ISC might affect other ISC even over different versions. Finally, ISC change and
impact have to be considered during both, design and runtime.

This work tackles RQ1 – RQ4 as follows: At first, ISC change operations are
defined (7→ RQ1) in accordance with business process change patterns [17] and
constraint changes proposed in literature [10], i.e., ISC change operations for
adding, deleting, and updating ISC are proposed. The complexity of ISC adds
several elements to defining change operations as each of the parts concerning
structure, data, time, resources, and trigger/actions might be adapted. Estab-
lished process change strategies such as versioninig, migration, and clean state
are transferred to ISC change (7→ RQ2). This is also connected with a motivation
on which ISC formalism and inference techniques can be selected, in this work
Event Calculus and RETE. The impact of ISC changes on the ISC themselves as
well as on associated process instances is systematically studied at an abstract
level and implemented using the RETE matching algorithm ( 7→ RQ3). As the
field of ISC evolution is entirely new, a first ISC versioning algorithm is proposed
and a prototype proof of concept is presented ( 7→ RQ4).

2 Preliminaries

While process instances reflect the actual execution of a business process, ISC
are means to define and enforce restrictions over multiple process instances. As
an illustrative example, we use the process scenario of Fig. 1 [8]. It depicts an
integrated energy management solution to deliver end-to-end advanced metering.
Assume that the provider aims at ensuring that 99% of all readouts (of different
instances) are performed within 6 hours and the aggregate read out value does
not exceed x. This constraint is considered as an ISC since it imposes restrictions
over multiple instances. The ISC meta model follows the IUPC structure [14].

Definition 1. [ISC] An ISC is defined as a tuple ISC(context+, connection+,
condition∗, behavior+) where:

– a context refers to the process/process instances subjected by an ISC.
– a connection defines the events required to check an ISC (e.g., activity started

or time trigger event).
– a condition is a constraint on either resources, time or process/rule data.
– a behavior is an action triggered when all conditions are met (e.g., suspend

a task, resume a task).
– + denotes an at-least-one, while ∗ denotes an optional quantifier

Definition 2. [Event] An event represents the occurrence of an action (e.g.,
execution of a process task) at a given time and is defined as a tuple (event id,
type, timestamp, payload∗) where type is the event name, timestamp is the
time of its occurrence and payload holds the event related data.
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Fig. 1. Process Example from the Energy Domain, taken from [8]

Example 1 [Event] (id, readout meter, time,meter, readout value) is an event
of type readout meter that provides the value of the readout of a given meter.

Example 2 [ISC] The ISC described in Fig. 1 can be defined as follows:
ISC(Context(readout process), Connection(readout meter, global readout start),

Condition(total readout > x), Condition(at global readout start.t + 6 less than

99% of total meters are finished ), Behavior (send alert)). The event (id, global readout
start, t) is a time trigger to launch all read-out instances at the same time t.

The ISC representation employed in this paper is simplified and needs to be
converted into a rule engine language in order to be executed and monitored
[8] by an ISC monitor. ISC formalization using, e.g., Event Calculus (EC) is
proposed in [4,8]), which we implement on top of a Rete rule engine acting as
the ISC monitor. EC is a logic programming approach to model time and change.
It uses first order predicate logic (FOL) as the basis and introduces fluents and
domain-independent predicates to assert fluents for the ability to model time-
varying state. Sect. 4.2 gives an overview of ISC implementation based on EC.

3 Atomic ISC Change Operations

ISC changes can range from deleting an ISC attribute (e.g., condition or con-
nection) to adding or updating new or existing attributes respectively. Similar
to process change operations [17], three main change operation groups can be
identified, i.e., delete, add, and update. Each of these groups include various
change operations with different impacts on both the process instances and the
ISC monitor, cf. Def. 3.

Definition 3 (Change Operations).

Change operation ::= Operation type(ISC ,Component)|Delete(ISC )

|Add(ISC ,Context+,Connection+,Condition∗,Behavior+)

Operation type ::= Delete|Add|Update
Component ::= Context |Connection|Condition|Behavior

While the first change operation acts on a specific attribute of an existing
ISC using one of the three change types (i.e., Delete, Add and Update), the
second change operation deletes an entire ISC and, the third adds a new ISC.
Based on Fig. 2 we selectively illustrate some delete change operations, while
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Fig. 2. Change Operations: Delete and Add Examples

omitting add operations due to space constraints. Note that the action part is
considered as “send alert” by default.

Delete Context A context represents the process model to which an ISC
refers. Monitoring an ISC requires execution events of the corresponding process.
Multiple contexts might be defined within the same ISC. Deleting a context
implies that all related events are no longer required for its monitoring, and
automatically removes all corresponding linkages, i.e., (context, connection). In
Fig. 2 (CONTEXT), the ISC has changed from considering both processes of
electricity and gas meter readouts respectively, to only electricity.

Delete Connection A connection refers to the events necessary for checking
an ISC. Within a single ISC, multiple connections can be specified, which might
refer to different contexts, i.e., events from different process executions. There-
fore, deleting a connection reduces the number of event types to be checked by
an ISC. Note that deleting all connections of a same context implies the deletion
of the latter. In Fig. 2 (CONNECTION), it is checked at both times 12:00 and
14:00 whether the aggregate readout value of all meters is less than the thresh-
old x. Deleting trigger time 12:00 means that the monitor will still receive the
readout events, but will check the threshold condition at 14:00 only.

Delete Condition An upcoming event or set of events, in order to be con-
sidered for an ISC, needs to match its conditions. Conditions are defined as
constraints on the data associated with the events; e.g., process data, resources,
time. Multiple conditions might be combined for the same ISC, and therefore,
deleting a condition releases a restriction on the events used for the ISC. In
Fig. 2 (CONDITION), the condition on the threshold value was removed, which
means that the latter will not be checked when the change becomes effective.

Delete Behavior As aforementioned, a behavior is an action that is exe-
cuted if an ISC has fired; e.g., a stop or wait task. Deleting a behavior reduces
the number of actions to be enacted when all conditions evaluate to true. In Fig.
2 (BEHAVIOR), the action stop is removed. Consequently, only the action send
alert is executed when the ISC fires. This might have impacts on the process
instances that are stopped before the change. Compensation actions might be
required in order to continue those instances.



4 ISC Evolution Approach
This section introduces the general approach for performing ISC Evolution, start-
ing with an overview of the concepts applied.

4.1 General ISC Evolution Strategies

Inspired by the strategies for process evolution in [1], we introduce three general
change strategy approaches for managing ISC evolution. These are versioning,
migration, and clean state. Fig. 3 illustrates the differences between these strate-
gies by comparing how the same change sequence is handled in each case. The
illustrative case shows how an initial set of ISC, i.e., {ISC10.ISC20} are changed
over time, abstracting from the concrete atomic change operation applied. At
time t ISC10 is changed into ISC11. At time t+ 1 there are three changes: (1)
the previously changed ISC11 transformed to ISC12, (2) the change of ISC20
to ISC21, and (3: only in the versioning case) the original ISC10 change to
ISC13. Critical to the evolution of ISC is state management, where state refers
to any part of an ISC(context, connection, condition, behaviour) being shared
among different ISC. For example, state S1 is the state shared between two ISC:
ISC10 and ISC20, which in the running example (Fig. 1) might represent the
aggregate read-out value from all smart meters, e.g., parts of the condition at-
tribute of both ISC. State management is performed differently among the three
strategies.
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Fig. 3. General ISC Evolution Strategies

Migration In the migration case, a domain-specific abstract transformation
function f is applied to S1 at time t. A concrete function f needs to be de-
termined on a case by case basis for each change scenario. Furthermore, in this
case f is bound by the change of ISC10 to ISC1, as well as by the actions that
ISC10 has already performed. In the latter case, compensation actions inverse
to the original ones may need to be executed. An example could be in a medical



scenario where 10 patients are pre-approved for a novel operation, where new
test results suggest the requirement to reevaluate these patients. The change
from ISC10 to ISC11 represents the change in verification of the approval pro-
cess. The concrete function f in this case reduces the pre-approved 10 patients
using the now correct approval logic, e.g., 6 pre-approved patients. Similarly,
at time t + 1 f ′ is applied for migrating state S1′ to S1′′, which is bound by
both changes ISC11 to ISC12 and ISC20 to ISC21. In that way, the migration
transformation function f and f ′ are domain and case dependent.

Clean State The clean state strategy can be seen as an instance of the
migration strategy where the function f is fixed as the function reset. This state
management function, as the name implies, resets all the information within a
state to their default values, which depend on their data types. In the running
example (Fig. 1), this could be the resetting of the aggregate read-out values to
the default value: 0. This reset function does not depend on the changes being
performed, but only on the data types being modified within the states. This
makes the reset function domain and case independent.

Versioning The versioning strategy also has a domain and case independent
state transformation function: copy. Also unique to the versioning strategy is
the concept of namespacing ISC and associated states, to allow the differing ISC
versions to coexist. At time t, the versioning strategy creates a new namespace for
each changed ISC to occupy, together with any associated state. For example, at
time t, the change of ISC10 to ISC11 leads to the creation of a new namespace
for ISC11 and its associated copied state S1′. Notice that the original namespace
spanning ISC10, ISC20, and S1 are still maintained, representing the previous
version of ISC1. At t+1: while case (1) leads to the usual namespacing for the
new ISC12, cases (2) and (3) lead to the creation of a common namespace due to
the common state S1′′′. Namespacing is directly tied to the state being copied,
establishing a separate context for the newly changed ISC, allowing them to
be processed independently from coexisting ISC versions. It can be imagined
how the versioning approach can be merged with the other two approaches. For
example, after establishing the new namespace for S1′ at time t, a domain and
case dependent transformation function f could be applied to the copied state
S1′ to further customize the state.

4.2 ISC Implementation Overview

We now focus the discussion on a concrete ISC evolution implementation. As
depicted in Fig. 4, there are two views on the implementation of ISC: (1) the
formalism view and (2) the inference technique view. In [4] we have conducted
an extensive analysis of various formalisms in regards to applicability of express-
ing ISC. From that analysis we have chosen Event Calculus due to its ability to
reason on events as well as facts over time, i.e., fluents, and its expressitivity by
extending domain-specific functions to cover all components of an ISC (cf. Def.
1). For the purpose of runtime checking using EC, we have adapated the RETE
algorithm [8] as the inference technique, specifically due to its forward chain-
ing, reactive nature of dealing with events. Additionally, the visualization of the
RETE network helps with understanding the impact of the atomic ISC change



operations. Alternatives to RETE are available, e.g., in the form of Mobucon EC
[15], which uses an embedded prolog inference technique combined with cached
fluents for improved performance. In this case, EC is compiled to embedded pro-
log as the target language. Alternatively, CEP implemented via Drools could be
employed. While rule management and offline versioning is supported through
a plugin (Guvnor), runtime versioning is not available due to lack of state man-
agement. In all cases, the general algorithms proposed in this paper need to be
specialized for the chosen inference technique to support runtime ISC evolution.

Event-B TLA+ LTL CTL PDL… Event CalculusFormalisms

Inference Techniques Native Prolog Embedded Prolog GATORRETE TREAT Drools Jess

…

… …DecReasoner

CEP

Esper

Fig. 4. Formalisms and Inference Techniques

Internally, a RETE rule engine represents an ISC in a specific structure (e.g.,
Rete graph), which reflects all its attributes (e.g., connections, conditions, be-
havior). While a process instance represents the actual execution of a process
model (within the process engine), an ISC instance represents the actual execu-
tion of an ISC structure (within the rule engine). This implies that the conditions
and fact evaluations (e.g., aggregate readout value) of an ISC define its state at
run-time, i.e., ISC instance. Each event occurrence might change the state of an
ISC instance and consequently the evaluation of a condition or a variable over
time. An ISC instance terminates when all its actions are enacted. Changing
an ISC not only impacts its structure (i.e., static impacts), but also the related
process instances as well as the ISC instance itself (i.e., dynamic impacts).

Additionally, ISC can share state (i.e., conditions, connections, or contexts).
This means that deleting a connection or condition from an ISC does not nec-
essarily result in its removal from the ISC monitor as it can still be used by
another ISC. Similarly, adding a new condition to an ISC does not necessarily
result in its implementation in Rete as it might have been already implemented
by another ISC that shares the same condition. Deploying a new ISC does not
always result in a completely new structure (e.g., Rete graph) inside the monitor.
The monitor will only add those parts of the structure that did not exist before.

Another challenging problem is that multiple ISC are running simultane-
ously, and consequently changing an ISC might cause conflicts with other ones.
Therefore, it is necessary to ensure that no conflicts among ISC are generated as
a result of a change. Furthermore, ISC generally refer to events related to task
executions or process context data at run-time. As such, it is primordial to check
whether a change affects the ISC compliability (cf. [3]) with the corresponding
process models (e.g., referring to events that are not produced by the process
execution). As discussed in a previous work [4], ISC can be checked at both
design and runtime. While the former focuses on verifying ISC compliability
with process models as well as detecting conflicts between multiple ISC, runtime
checking aims at identifying ISC violations by monitoring execution events. A
priori checking of ISC using Event Calculus (EC) requires both process models



and ISC to be transformed into EC and then fed into an EC solver (e.g., De-
cReasoner1) to detect either conflicting constraints or incorrect specification. As
mentioned in [4], design time checking is not always decidable due to loops or
quantification over infinite sets (e.g., arbitrary data objects). In this work, we
assume that all ISC as well as change operations are specified correctly, which
means that the application of a change operation does not result in inconsisten-
cies within the ISC structure, e.g., adding a condition that refers to connections
not specified in the changed ISC. Analyzing the correctness of ISC is not the
focus of this paper. For more details on how ISC are modeled and checked with
EC, the reader may refer to [4].

4.3 Rete-based ISC Monitoring

Having established EC as the chosen formalism and RETE as the inference tech-
nique for executing EC, we now introduce the fundamentals of ISC monitoring
based on the RETE algorithm [8] on which we specialize and implement the ISC
evolution strategies introduced in Sect. 4.1. In this context, the paper shows only
the fundamentals of the RETE algorithm for discussing ISC evolution. To see
how EC can be mapped to RETE for complete runtime execution, please refer
to [8]. The ISC Monitor listens to a stream of events sent by the process engine
and performs actions defined by the ISC, e.g., suspend/continue activities. This
process follows the knowledge-based world view, where each event structure is
deconstructed as individual facts and fed to a knowledge base. From there, the
inference engine applies the Rete pattern matching algorithm [6] to derive the
updated states based on the newly submitted facts. We use a variation of the
Rete algorithm as outlined in [8] to improve the matching performance for ISC.
An ISC is fired when all of its conditions match some subset of facts from the
knowledge base and the associated behaviour is to be executed. This behaviour
can consist of one or many actions and may affect the process engine (e.g., when
suspending a running process instance). Figure 5 shows a sample Rete network
representing parts of the ISC (cf. Fig. 1) for verifying that (1) all meters are
read out within six hours from the read out event starting at 00:00 and (2) the
aggregated value of these read out values does not exceed a certain value. A Rete
network consists of three main components: knowledge base, alpha network and
beta network.

Knowledge Base The knowledge base collects the set of facts previously
submitted in the form of events sent by a governing process engine. These facts,
also called working memory elements (WME) are defined as follows.

Definition 4 (Fact). A fact is an element that is decomposed from an event
structure (cf. Def. 1): (id, attribute, value), where value represents the value of
attribute and (id, attribute) is a composite key.

An event occurrence might change the valuation of one or multiple facts.
For example, an incoming event holding a single readout value as the pay-
load of a single meter, might affect the fact representing the aggregated value:
accumulated values. We define the id part to be a tuple of (eventid, instanceid).

1 http://decreasoner.sourceforge.net



Whereas the eventid is a globally unique identifier for the specified event (e.g.,
completion of activity ”Readout Value”), the instanceid is a globally unique
identifier referring to a process instance.
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Fig. 5. ISC Monitor: Inside view of the Rete Network (adapted from [8])

Alpha Network The alpha network is a projection network to match facts
from the knowledge base and store them inside alpha nodes. A pattern is as-
sociated to each alpha node where the triple structure for facts is reused for
matching: (id const | ?id, attribute const | ?attribute, value const | ?value). Each
part of the triple structure can be either a constant value or a variable. The
latter is marked with a prepended ? to its name. For example, the triple (?id,
type, ”read-out meter end”) is a pattern that matches all facts having any value
inside the id part, the exact value type in the attribute part and the exact value
”read-out meter end” inside the value part. Thus a fact ((event1, instance1),
type, ”read-out meter end”) represents the event which has been emitted by the
process instance id = 1 and event id = 1 where the activity ”read-out meter”
has completed. In Fig. 5 this fact would be stored as f1 in the alpha node A1.

Beta Network The beta network is responsible for joining together facts
that match certain conditions. This is accomplished by join nodes, each one
connecting a single alpha node with its parent beta node. Attached to join nodes
can be an arbitrary number of join tests, matching facts stored in alpha nodes
with tokens stored in beta nodes. The default join test behaviour is to check
whether the id part of the facts contained in the beta and alpha nodes are
equal, i.e., (eventalphaid , instancealphaid ) = (eventbetaid , instancebetaid ). This enables



joining together the string of facts originating from the same instance as well as
event, which is simplified as ?id =?id in Fig. 5. Arbitrary complex join tests at
this level can be employed to relate two facts in various ways. For example, time-
based comparison operators would be employed here. In the case of a successful
join test, tokens referencing the matching WMEs are stored to all children beta
nodes, allowing subsequent join tests to be performed. Following this series of
successful join tests until the end will lead to the firing of production nodes which
contain the sequence of actions that need to be executed.

4.4 Change Strategy: Versioning

We now discuss the specialization of the ISC evolution strategies using the
RETE-based ISC monitor. In Sect. 4.1 we have discussed the differences be-
tween the three ISC evolution strategies, as well as the necessary operations
required to conduct state management. In this section we will specialize the ver-
sioning change strategy and propose a concrete versioning algorithm, as well as
define proper state management for RETE-based ISC. First we discuss the role of
the time of change tc. Even after employing the necessary versioning techniques
(namespacing and state copy), events need to be relayed to the correct version
of the ISC at runtime. For this purpose, the time of change tc becomes criti-
cal and necessitates the concept of a router, that routes events to the correct
ISC instance. Given two ISC: ISC old and ISC new, versioning aims at keep-
ing both in place at the same time. Notably, process instances started before tc
are monitored through ISC old, while the instances started after tc are checked
against ISC new. Thus, it is important for the ISC monitor to have the informa-
tion about each instance start time. The latter helps correlating future instance
events with the appropriate version. Indeed, each event includes information to
which process instance it belongs, i.e., instance identifier. Using the latter in
combination with the event related to instance start time, it becomes possible
to find out whether the event belongs to an old or new instance.

Definition 5 (Shared Variable and Shared ISC). A variable is an alpha
node that follows the fact structure (id, attribute, value) (cf. Def. 4). A shared
variable is a variable that satisfies one of the following conditions:

Condition 1: Given two ISC ∆ and ∆′ with variables v ∈ V and v′ ∈ V ′, v is
a shared variable iff v.id = v′.id∧v.attribute = v′.attribute∧v.value = v′.value.
In this case ∆ and ∆′ are also shared ISC.

Condition 2: Given a function π : (var, action) 7→ Bool, which returns true
when a variable var is modified by action, an ISC ∆ with variables v ∈ V and
actions α ∈ A, then any variable where π(v, α) = true holds is also a shared
variable due to it being modified in the behaviour part of an ISC.

Isolation of versioned ISC Shared variables become a source of complexity
when versioning is considered. Imagine an ISC (ISC old) from the energy domain
(cf. Fig. 1), implementing the readout example, which alerts whenever a certain
threshold is exceeded. Furthermore, consider a new version of the ISC (ISC new),
which changes the threshold value to be higher before triggering an alert. The
usage of the same shared variable causes both versions to be evaluated, and in
consequence, both ISC old and ISC new could be triggered, which is not the



intended behaviour. Since we want all process instances that have started after
the time of change (> tc) to fall under ISC new, we can introduce isolation
of shared variables to achieve the intended behaviour. This isolation can be
conducted by creating a copy of the original shared variable and storing it under
a unique namespace intended for ISC new. Namespacing can be realized in Rete
by defining the shared variables to have a unique prefix in the id part of the
fact triple (cf. Def. 4). Furthermore, the production node needs to know which
namespace of the shared variable it is supposed to access (i.e. when updating
the aggregated read out value after each successful readout event). Namespacing
thus affects both the alpha nodes (representing the shared variables) as well as
the production nodes.

Definition 6 (Namespacing of Shared Variables). Given a shared variable
v, η(v) returns a new variable v′, such that ¬∃v′′ ∈ V : v′′.id = v′.id and thus
does not satisfy Condition 1 of Def. 5. Furthermore, any action that modifies
a shared variable, α ∈ A : π(v, α) = true, needs to be namespaced as well
η(α, v′) 7→ α′, such that α.id 6= α′.id ∧ v′.id = α′.id.

Now that all shared variables are namespaced uniquely for ISC new, fact
evaluation and ISC triggering happen in isolation from ISC old. What happens
if there is a shared ISC (cf. Def. 5), ISC shared, connected to the same shared
variable, having unrelated behaviour to both ISC old and ISC new? At the cur-
rent state, due to ISC new being isolated using its unique namespace, anytime
ISC old evaluates the fact related to the shared variable, the shared ISC will
also be affected. ISC shared needs to independently evaluate the shared variable
from both ISC old and ISC new. Therefore, both ISC old and ISC new need to
be namespaced, leading to three distinct namespaces for the same initial shared
variable. Creating isolated namespaces for ISC old and ISC new raises the ques-
tion of how the shared variables should be initialized. Two options are available:
1) copying the original value of the shared variable (default) or 2) applying a
custom function f to re-initialize the shared variable, which could be just re-
setting it to the default value, depending on its data type. For example, in the
case where the shared variable is an integer variable, re-initializing could be set
to the default value 0. It is part of the versioning specification to deal with the
initialization of namespaced shared variables.

Definition 7 (Initializing Shared Variable). Given the set of options ops =
{copy, reinit}, a shared variable s, a namespaced shared variable s′ (where
η(s) = s′), and a custom transformation function that performs a domain-
specific action to re-initialize s: f , the initialization of the shared variable s′

is defined as

init(s, s′, op, f) =

{
s.value = s′.value, if op = copy

s.value = f(s.value), otherwise

Preserving previously evaluated facts Namespacing an ISC ∆ trans-
forms it into a new ISC ∆′ to be added to the Rete graph. Since only one of
those ISC two can exist at any one time, the original ISC ∆ needs to be re-
moved, while at the same time trying to avoid loss of previously evaluated facts



Algorithm 1: Unbounded Versioning Algorithm for Rete-based ISCs

Input: {∆1, ..., ∆n}, ∆′, tc, opold, opnew, fold, fnew

1 Begin

2 // (1) adjust the last ISC for proper routing based on tc, if necessary

3 if length({∆1, ..., ∆n}) = 0 then
4 // no previous ISC to adapt, ∆′ is submitted as is

5 rete add(∆′); return

6 else if length({∆1, ..., ∆n}) = 1 then
7 // This is the first time the ISC is versioned, add router condition

8 ∆last = last({∆1, ..., ∆n})
9 ∆′

last = ∆last.alpha nodes ∪ {?id, instance start time, ?ist, {?ist < tc}}

10 else if length({∆1, ..., ∆n}) > 1 then
11 // Router condition exists, add proper join test to this condition

12 ∆last = last({∆1, ..., ∆n})
13 ∆′

last = ∆last.router.join tests ∪ {?ist < tc}

14 // (2) adapt the new ISC for proper routing

15 ∆′ = ∆′.alpha nodes ∪ {?id, instance start time, ?ist, {?ist >= tc}}
16 // (3) Namespacing and Initialization of shared variables (cf. Def. 6 and Def. 7)

17 ∆′
last.S = {init(s, η(s), opold, fold) | ∀s ∈ ∆last.S, s

′ ∈ ∆′.S : s′ = s}
18 ∆′

last.A = {η(α, s) | ∀α ∈ ∆′
last.A, s ∈ ∆

′
last.S : π(s, α) = true}

19 ∆′.S = {init(s, η(s), opnew, fnew) | ∀s ∈ ∆last.S, s
′ ∈ ∆′.S : s′ = s}

20 ∆′.A = {η(α, s) | ∀α ∈ ∆′.A, s ∈ ∆′.S : π(s, α) = true}
21 // (4) ISC Fact evaluation preserving change from ∆last to ∆′

last(cf.Def.8)

22 rete add(∆′
last); safe delete(∆last, ∆

′
last); rete add(∆

′)

(i.e. tokens inside the beta nodes). Simply removing the original ISC ∆ causes
all related nodes within the beta network to be removed, including the tokens
which represent the previously evaluated facts. A safe delete of the original ISC
∆ needs to be performed which ensures that such tokens shared by both ∆ and
∆′ are not removed when deleting ∆.

Definition 8 (Safe Deletion of an ISC). Given an ISC ∆ and a shared ISC
∆s, a safe delete(∆,∆s) operation ensures that the structurally shared beta and
join nodes, which hold the previously evaluated facts (i.e. tokens) remain intact
when deleting ∆. A safe delete can be realized by recursively deleting from the
bottom production node (representing the ISC ∆), up to the root beta node, while
only deleting those nodes which do not reference ∆s.

ISC Versioning Algorithm We are now able to define an ISC Versioning
Algorithm (cf. Algorithm 1) that utilizes the Rete graph structure for unbounded
versioning of an ISC. The algorithm deals with the three previously discussed
aspects: (1) utilizing the router concept to detect which version of the ISC should
handle the incoming event, (2) Namespacing (cf. Def. 6) and the subsequent
Initialization (cf. Def. 7) of shared variables to isolate the different versions of
an ISC, and (3) the preservation of previously evaluated facts (i.e. tokens) using
safe delete (cf. Def. 8). As input, the algorithm requires the list of previous
versions of the ISC {∆1, ...,∆n}, the modified ISC itself ∆′, where γ(∆n) 7→ ∆′

is assumed, the time of change tc and the type of operation for initializing the
shared variables opold and opnew. Whereas opold is the operation to be performed
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Fig. 6. Change Impact Evaluation: Adding Condition + Versioning

when initializing the shared variables in ∆n, opnew is responsible for initializing
∆′. Both are assumed to be one of {copy, reinit} (cf. Def. 7).

For illustrating the algorithm, we take the original ISC defined in Fig. 5,
which does not include the 99% of all smart meters condition, and apply it using
the add condition operation combined with the versioning change strategy. This
change is visualized in Fig. 6. The color of the nodes identifies the associated ISC:
white being the common path for shared attributes (i.e, same context, connection
and condition). Orange nodes and edges represent the old ISC, whereas the blue
elements representing the new ISC.

Lines 1 - 16 of Algorithm 1 deal with the router aspect (1). Here three
subcases are handled. The simplest case is where ∆′ has never been versioned
before, signaled by an empty {∆1, ...,∆n}. In this case neither routing, nor
isolation of shared variables, nor the preservation of previous facts are necessary.
In the case where ∆′ represents the first versioning event of ∆n, the router needs
to be setup for the first time. This is accomplished by adding the pattern (?id,
instance start time, ?ist) to the alpha nodes and linking it to both ∆n and
∆′. As previously mentioned, the process instance’s starting time is a unique
discriminator to identify which ISC version is responsible for handling an event.



Here ∆n is picked for dealing with cases where the process instance’s starting
time is smaller than tc, otherwise ∆′ is responsible for handling the event. The
appropriate join tests are added to the routing pattern (e.g. {?ist < tc} for
∆n, or {?ist >= tc} for ∆′). In the case where the routing pattern already
exists, which happens when the versioning algorithm has been applied once, then
the same routing pattern can be reused in the alpha nodes. Only the new join
tests are added in that case. Applying the algorithm recursively in this fashion
allows unbounded versioning of the same ISC. In the illustration, the routing
behaviour is reflected in the creation of the alpha nodes A4, representing old
process instances whose instance start time is < tc , and correspondingly A6,
representing new process instances started after tc. On the dynamic impact level,
we trigger a reindexing process where facts are matched for the newly created
alpha nodes A4 and A6. We assume that there is an event with eventid = 0 that
registers the process instance’s start time, which in Fig. 6 are transformed to
facts f8 and f9 representing the two process instances goverened under ISC old.
There are no facts yet matching A6 for ISC new.

The second aspect is concerned with the isolation of shared variables (lines
17-22) through namespacing and initialization. Namespacing both the shared
variable for ∆′, as well as for ∆n, ensures that all shared ISC are independent of
each other allowing new process instances after tc to trigger independently from
those before tc. Noticeable here is that A5 is reused from the old ISC, responsible
for maintaining the shared variable of accumulated readout values for ISC old.
For maintaining the state for ISC new, A7 is created as the result of namespacing
the shared variable accumulated values by copying its value to a new shared
variable accumulated values′. Additionally for ISC new, a new shared variable
is introduced (A8) to maintain the actual number of meters being read out. On
the dynamic impact for this part of the alpha network, the facts f10 and f11
are initialized and matched to A7 and A8 respectively. Whereas f10 is a simple
copy of an existing shared variable (accumulated values), f11 is initialized as
the counter 0. From this point on the two shared variables accumulated values
and accumulated values′ diverge in processing of subsequent facts and represent
the ISC instances of ISC old and ISC new respectively, effectively isolating the
two different ISC versions.

5 Technical Evaluation
We implemented the concepts introduced in this paper as a prototypical proof-of-
concept, extending the ISC Monitor [8]2. For conducting this technical evaluation
we followed the methodology outlined in Figure 7 in order to tackle research
questions RQ2 to RQ4. Concretely, we (1) analyse the correctness of the ISC
versioning algorithm, (2) observe the effectiveness of safe delete for avoiding
costly reindexing of facts during ISC versioning and (3) highlight the change
impact on the Rete graph aggregated by change operation type.

Collected Dataset In [4] and [20] we collected ISC examples from five dif-
ferent domains (i.e., health care, security, transport / logistics, manufacturing

2 The full source code, as well as supplementary material can be found under
http://gruppe.wst.univie.ac.at/projects/crisp/index.php?t=iscevolution



and energy). Some parts of these example scenarios have been simulated on the
Cloud Process Execution Engine (CPEE) [21] and subsequently logged as event
logs in the Extensible Event Stream (XES) format. Through this collection phase
we can already map the common ISC types related to the domain. Consequently,
the most likely change operation for the ISC operating under certain domains
can be classified. For example, 53% of the collected ISC examples are classi-
fied as single-context, meaning that for those cases an add context operation is
appropriate.
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Fig. 7. Evaluation Methodology

Scenario Specification In addition to the modeled examples, we aim to ex-
tend the number of event logs to test multitude of realistic scenarios in various
domains. For this purpose, we have implemented a scenario generator that takes
as input a scenario specification. The latter is a formal specification of the sce-
nario, which is used to generate event logs. The specification allows the realistic
definition of structural control flow as well as data elements. In addition, care
has been taken to generate realistic timestamps which follow the known proba-
bilistic distribution from collected scenarios. In this fashion we have specified in
total 10 scenarios, each varying in the number of process instances being gener-
ated [10, 100, 1000, 10K]. Along with the scenario specification we associate the
corresponding ISC that governs the monitoring.

Generate Change Events In order to study the impacts of ISC changes,
as well as verify the change process, we embed change events into the event logs.
We perform this embedding step randomly over the event logs, following the
probability distribution of change operations that could occur depending on the
scenario domain (e.g. a change on condition referring to resource occurs only
very rarely in scenarios in the energy domain. Most ISC in that domain refer
to execution data). The change events are not completely random, as to avoid
invalid change operations. We thus specify the valid base of change operations
per scenario, and limit the randomization based on these operations. To ensure
an equal distribution of ISC old and ISC new events, we automatically pick tc
for each scenario based on the generated event stream, such that the difference
in number of events between the ISC versions remains within a max. deviation
of 5%.



ADD Cond. ADD Conn. ADD Context Avg.

N=1000

(M2)[avg. evaluation time < tc in ms] 0 0 0 0

(M2)[avg. evaluation time >= tc in ms] 2 14 17 11

(M3)[avg. evolution time in ms (4/†)] 394/71† 434/64† 484/73† 434/69†

(M4)[change impact on alpha/beta/join] 2/1/2 5/5/6 6/6/7 4.33/4/5

(M4)[change impact on tokens (4/†)] 834/332† 834/332† 834/332† 834/332†

DEL Cond. DEL Conn. DEL Context Avg.

N=1000

(M2)[avg. evaluation time < tc in ms] 1 1 1 1

(M2)[avg. evaluation time >= tc in ms] 27 10 9 15.33

(M3)[avg. evolution time in ms (4/†)] 484/71† 414/64† 424/65† 434/66†

(M4)[change impact on alpha/beta/join] 6/5/6 4/1/2 5/2/3 5/2.66/3.66

(M4)[change impact on tokens (4/†)] 834/175† 834/332† 834/332† 834/279.66†

4=with safe delete, †=without safe delete

Table 1. Representative Metrics for ISC Versioning from the energy domain

Feed event streams to the ISC Monitoring Engine Finally, the gener-
ated event streams for each domain are fed into the Rete-based ISC Monitoring
Engine, which implements the proposed ISC versioning algorithm. Whenever a
change event is met, the versioning algorithm is applied. Any other event is fed
normally for processing. Key metrics (cf. Table 1) are determined per domain al-
lowing us to analyse various aspects of the algorithm. Additionally, we also track
(M1) the actual number of ISC activations for each version to ensure correctness
of the ISC versioning algorithm.

Analysis: ISC Versioning Algorithm Correctness. The first question
to tackle is the correctness of the ISC versioning algorithm. Towards that goal
we split up three different ISC sets to the same event stream for a given tc. The
first set (S1) consists solely of the original ISC (ISC old), with the additional
pattern that it only handles process instances with starting time < tc. Similarly,
the second set (S2) consists of ISC new handling instances with starting time
>= tc. The third set (S3) utilizes the ISC versioning algorithm to maintain
both ISC old and ISC new. M1 confirms that the number of ISC activations in
S1 equals the ISC old activations of S3, and the same for S2 for ISC new in
S3. This confirms that the router logic, namespacing and initialization logic of
shared variables work correctly as intendend.

Analysis: Change Impact by change operation type. Table 1 shows
the collected metrics M2-M4 for scenarios within the energy domain. Generally
we can observe that the lowest cost (in terms of evaluation time, evolution time
and number of nodes affected) is by performing an ADD Condition operation,
which only affects a single alpha node (twice due to namespacing). The next
level in complexity is the operation ADD Connection, which can be explained
due to the necessity of adding facts related to another activity in the same event
stream. Finally, ADD Context can be interpreted as an additional alpha node,
representing the new process model, being added on top of a ADD Connection.
The effectiveness of utilizing safe delete in terms of evolution time and reduced
fact reindexing can be seen through metrics M3+M4. M3 shows that the aver-



age evolution time with safe delete for both add and delete is nearly 37% faster
compared to the variant without safe delete, i.e., 43ms vs 69ms. Similary, only
25% of the tokens need to be processed when using safe delete, compared to
without, i.e., 83 vs 332 (M4).

6 Related Work
Change and evolution in PAIS have been research topics for many years, focus-
ing on the definition, soundness, and realization of process schema and instance
changes [17]. The impact of process schema and instance changes on compliance
constraints has been addressed in [12] by reducing the effort of compliance verifi-
cation to those compliance constraints that are affected by the changes. Different
change scenarios have been considered ranging from ad hoc instance changes to
process evolution with concurrent instance changes. Compliance of constraints
after ad hoc instance changes has been also subject to the work presented in [11].
Here three states can be distinguished after an instance change, i.e., valid, par-
tially valid, and invalid. Changes of compliance constraints for central processes
have been addressed in [10]. The work describes a unified compliance manage-
ment framework that also considers changes of constraints (adding, changing,
and deleting). Some approaches address change and compliance in distributed
processes. In [9], algorithms are proposed in order to detect the effects of chang-
ing private processes on global compliance rules. [9,5] follows up by stating chal-
lenges for the evolution of collaborative processes and their compliance rules.
In a similar direction, [2] aims at finding alignments between the monitoring of
business networks and compliance at the presence of change at both levels. If
a change occurs, a set of actions is determined in order to maintain the ability
to monitor the business network. Despite the interest in studying the impacts
of process and compliance change, evolving ISC and their impacts on processes
and vice versa have not been considered yet. In general, supporting ISC in PAIS
is a emerging topic where some approaches have dealt with ISC selectively in
the area of, for example, batching [16] or security [22]. In [4], the relevance and
modeling of ISC has been addressed in a general way. [8] has proposed tech-
niques for checking and monitoring ISC. A visual notation for ISC has been
introduced in [7]. However, none of these approaches has dealt with evolving
ISC and processes.

7 Conclusion
This paper addressed ISC evolution in process aware information systems. In
particular, it identifies atomic ISC change operations (RQ1) and revisits gen-
eral change strategies for ISC evolution (RQ2). On the basis of EC as the ISC
formalism and Rete as the implementation technique, ISC versioning has been
concretely discussed in detail, implemented and evaluated (RQ3+RQ4).
Acknowledgment This work has been funded by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15-072.
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