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Abstract—Enterprise Integration Patterns (EIPs) and their
extensions denote the informally described building blocks of
current Enterprise Application Integration (EAI) systems. Al-
though a recent approach strives to provide an EIP formalization
based on Coloured Petri Nets (CPNs), it does not completely
consider EAI requirements, such as complex data, transacted
resources and time. In the absence of a comprehensive formal
definition, the patterns cannot be verified, and thus a formal
foundation of EAI is missing. In this work, we leverage the
novel db-net approach that finds a better balance between the
data and process-related aspects than CPNs and we extend it
according to the EAI requirements that we systematically collect
on a pattern level. Then we discuss pattern realizations, and
evaluate our approach for comprehensiveness, test correctness,
and show its applicability.

I. INTRODUCTION

With the growing number of cloud and mobile applications,
the importance of Enterprise Application Integration (EAI) [15]
immensely increases. Integration scenarios — essentially
compositions of Enterprise Integration Patterns (EIPs) [11]
and their recent extensions [21], [23] — describe typical
concepts in designing messaging systems as used for EAI
(e. g., the communication between these applications). The
current EAI system vendors use many of the EIPs as part of
their proprietary integration scenario modeling languages [21].
However, these languages are not ground on any formalism and,
hence, may produce models that are subject to design flaws
such as functional errors, missing or incomplete functionalities.
Currently, detection and analysis of these flaws are by large
performed manually. Hence, EIPs can rather be considered as
a set of informal design solutions than a formal language for
modeling and verifying correctness of integration patterns, thus
leaving the EAI vendors with their own proprietary semantics.

Besides one proposal to formalize integration scenarios on an
extended control flow graph level [20], our recent survey [21]
identified only one attempt towards formalization of some EIPs
using Coloured Petri nets (CPNs) [9]. Although the CPN colors
abstractly stand for data types and CPNs support the control
flow through control threads (i. e., tokens) progressing through
the net, carrying data conforming to colors, they cannot be used
to model, query, update, and reason on requirements inherent
to the extended EIPs [11], [21], [23] such as persistent data or
timings. To overcome these issues, we set three objectives, that
allow to (i) formalize and (ii) simulate EIPs, as well as (iii)
verify their realizations, and argue that existing approaches do
not fully support them.

*All the work is carried out by the author is prior to joining Amazon.
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Fig. 1: Aggregator pattern variant as a timed db-net

In this work, we leverage db-nets [17] as a database-centric
extension of CPNs (incl. atomic transactions) and extend them
by further EAI requirements like time. For example, Fig. 1
specifies semantics of a commonly used stateful Aggregator
pattern [11] as an extended CPN, which we call timed db-
net. Here, the aggregator collects messages in a persistent
storage that is accessed via a special view place chp, and then
aggregates them based either on the completion condition (e. g.,
sequence status is complete, modeled via Aggregate
transition) or on time-out of 30 sec (modeled via transition
T3). To collect messages and assign them to correct sequences,
the net correlates every incoming msg token to those in chp
place, that, in turn, stores pairs of sequences and lists of
messages that have been already collected. If the message is
the first in a sequence, new entries, one containing information
about the message and another containing data about the
referenced sequence, are added to tables called Messages
and Sequences, respectively. This is achieved by firing
transition T1 and executing action CreateSeq attached
to it. Otherwise, a message is inserted into Messages by
firing T2 and executing UpdateSeq. However, the update by
UpdateSeq fails, if a message is already in the database or
a referenced sequence has already been aggregated due to a
timeout (i.e., status is expired). In this case the net switches
to an alternative roll-back flow (a directed arc from T2 to chin)
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Fig. 2: EIP requirement categories (with Control (Crtl.), Resource (Res.), Transaction (Tx.))

and puts the message back to the message channel chin.
In summary we address the following research questions:

Q1 What are relevant EAI requirements for the formal
definition of EIPs?

Q2 Which formalism allows to specify, simulate and verify
EIPs under extracted requirements?

Q3 How to realize the EIPs and real-world integration
scenarios?

We approach them following the methodology from [18] and our
contributions: categorization of EIPs, timed db-net extension
and pattern realization, as well as an application to a real-world
scenario. In Sect. II, pattern requirements are harvested from the
literature (i. e., existing catalogs with 166 integration patterns)
in a quantitative analysis (cf. Q1). Then, in Sect. III, we briefly
introduce db-nets and, following objectives (i)–(iii) for single
patterns, build on top of the existing CPN approach [9] by
adding persistent data and time, consecutively deriving the
timed db-net formalism, for which we also study decidability
of reachability (cf. Q2). Several of the patterns are then realized
using timed db-net in Sect. IV1. In Sect. V, we elaborate on
the comprehensiveness of the formalism in a quantitative study,
show a prototypical db-net realization for testing correctness1,
and discuss the general applicability of PNs and, in particular,
timed db-nets for the composition of integration patterns (cf.
Q3) in a real-world example. We conclude by discussing related
work in Sect. VI and outlining the main results and future
research directions in Sect. VII.

II. FORMALIZATION REQUIREMENTS ANALYSIS
In this section, we collect the EAI requirements relevant for

the formalization of the EIPs by analyzing the existing pattern
catalogs [11], [21], [23] (cf. Q1). Then we briefly discuss
which of them can be represented by the means of CPNs or
db-nets, and which require further extensions.
A. Pattern Analysis and Categories

The EIP formalization requirements are derived by an
analysis of the pattern descriptions based on the integration

1Further realizations and more on correctness testing (incl. invalid pattern
examples) can be found in the non-mandatory supplementary material [22].

pattern catalogs from 2004 [11] (as original) and recent
extensions [21], [23] (as extended) that consider emerging
EAI scenarios (e. g., cloud, mobile and internet of things).
Together the catalogs describe 166 integration patterns, of
which we consider 139 due to their relevance for this work (e. g.,
excluding abstract concepts like Canonical Data Model [11]
or Messaging System [11]). During the analysis, we manually
collected characteristics from the textual pattern descriptions
(e. g., data, time) and created new categories, if not existent.

The reoccurring characteristics found in this work allow
for a categorization of patterns as summarized in Fig. 2 to
systematically pinpoint relevant EAI requirements into general
categories (with more than one pattern). Most of the patterns
require (combinations of) Data flow, Control (Crtl.) flow, and
(Transacted) Resource ((Tx.) Res.) access. While the control
flow denotes the routing of a message from pattern to pattern
via channels (i. e., ordered execution), the data flow describes
the access of the actual message by patterns (incl. message
content, headers, attachments). Notably, most of the patterns
can be classified as control (Crtl.-only; e. g., Wire Tap [11]) and
data only (Data-only; e. g., Splitter [11]) or as their combination
(Data-Crtl.; e. g., Message Filter [11]), which stresses on the
importance of data-aspects of the routing and transformation
patterns. In addition, resources denote data from an external
service not in the message (e. g., Data Store [21]). The EIP
extensions add new categories like combinations of data and
{time, resources} (Data-Time like Message Expiration [11],
[21], Data-Res. like Encryptor [21]) and control and time
(Crtl.-Time; e. g., Throttler [21]). For instance, the motivating
example in Fig. 1 is classified as Data-Tx.-Res.-Time. The
different categories are disjoint with respect to patterns.

B. From Categories to Requirements
We assume that the control requirement REQ-0 “Control

flow” is inherently covered by any PN approach, and thus in
CPN and db-net. However, there are two particularities in the
routing patterns that we capture in requirement REQ-1 “Msg.
channel priority, order”: (a) the ordered evaluation of Msg.
channel conditions or guards of sibling PN transitions, required



TABLE I: Formalization Requirements (covered
√

, partially (
√

), not -)

ID Requirement CPN db-net
REQ-0 Control flow (pipes and filter)

√ √

REQ-1 (a) Msg. channel priority (
√

) (
√

)
(b) Msg. channel distribution - (

√
)

REQ-2 Data, format incl. message proto-
col with encoding, security

(
√

)
√

REQ-3 (a) Timeout on message, operation - -
(b) Expiry date on message - -
(c) Delay of message, operation - -
(d) Msg./time ratio - -

REQ-4 (a) CRUD operations on (external)
resources

-
√

(b) Transaction semantics on (ex-
ternal) resources (incl. roll-back)

-
√

REQ-5 Exceptions, compensation similar
to roll-back in REQ-4

-
√

for the Content-based Router pattern, (b) the enablement or
firing of a PN transition according to a ratio for the realization
of a Load Balancer [21]. In both cases, neither execution
priorities nor ratios are trivially in CPN or db-net.

Furthermore, there are 77 patterns in the catalogs with
data and 10 with message format aspects, which require an
expressive CPN token representation (e. g., for encodings,
security, complex message protocols), for which we add a
second requirement REQ-2 “data, format” that has to allow
for the formal analysis of the data. Although CPNs and db-
nets have to be severely restricted (e. g., finite color domains,
pre-defined number of elements) for that, db-nets promise a
relational representation that can be formally analyzed [17].

We capture the 11 patterns with time-related requirements as
REQ-3 “time”: (a) Timeout: numerical representation of fixed,
relative time (i. e., no global time); (b) Expiry date: discrete
point in time according to a global time (i. e., based on existing
message content); (c) Delay: numerical, fixed value time to
wait or pause until continued: e. g., often used in a redelivery
policy (d) Message/time ratio: number of messages that are
sent during a period of time. Consequently, a quantified, fixed
time delay or duration semantics is required.

The 49 patterns with resources REQ-4 “(external) re-
sources” require: (a) create, retrieve, update, delete (CRUD)
access to external services or resources, and (b) transaction
semantics on a pattern level. Similarly, exception semantics are
present in 28 patterns as REQ-5 “exceptions”, which require
compensations and other post-error actions. Consequently, a
PN definition that allows for reasoning over these timing and
structured (persistent) data access is required.

C. Requirements Summary
Table I summarizes the formalization requirements for timed

db-nets by setting the coverage of the CPN [9] and db-
net [17] approaches into context. While CPNs provide a solid
foundation for control (cf. REQ-0) and a simple data flow
representation (cf. REQ-2), db-nets extend it towards more
complex data structures — message protocols in our case (cf.
REQ2), and add CRUD operations (cf. REQ-4(a)), transactional
semantics (cf. REQ-4(b)), and exception handling (cf. REQ-5),
suitable for working with external, transactional resources. In
CPNs, message channel distributions cannot be represented
and priorities require explicit modeling, leading to complex
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Fig. 3: Db-net layers (similar to [17])

models. In this work we build upon the CPN approach by
subsequently defining timed db-nets in Sect. III for the time-
related requirements (cf. REQ-3(a)–(d)) and provide (less
complex) realizations for message channel priority execution
(cf. REQ-1(a)) and load balancing (cf. REQ-4(b)) in Sect. IV.

III. INTEGRATION PATTERN FORMALIZATION

We recall db-nets [17] and extend them with time, conse-
quently deriving a new formalism called timed db-nets. We
then consider the formal analysis of timed db-nets (cf. Q2).

A. Db-net: Data, transacted resources and compensation
In the context of extending classical Petri nets with complex

data, there are plenty of works that go beyond CPNs: data
nets [14] and ν-nets [24], Petri nets with nested terms [26],
nested relations [10] and XML documents [4]. While all of the
approaches treat data subsidiary to the control-flow dimension,
the EIPs require data elements attached to tokens being
connected to each other by global data models (cf. Sect. II).
Consequently, they do not allow for reasoning on persistent,
relational data (assuming tree and graph structured formats like
XML can be represented by database relations [19]).
Db-net. The recent work on db-nets [17] strives to achieve this
by combining CPNs with relational databases, separating the
(database) persistence layer P from the PN control layerN as il-
lustrated in Fig. 3. This is realized by an intermediate data logic
layer P that mediates between the two by supporting the control
layer with queries and database operations (e. g., trigger,
update, read, bind). We select db-nets (see Def. 1) as a
foundation of timed db-nets due to their ability to represent
relational data (cf. REQ-2: “data”, “format”), and the built-in
support for transactional CRUD operations (cf. REQ-4) as well
as exception handling that require compensations (cf. REQ-5).
Moreover, since db-nets are based on CPNs, it is possible to
leverage existing simulation techniques of the latter [17].

Definition 1 ([17]): A db-net is a tuple 〈D,P,L,N〉, where:
• D is a type domain — a finite set of data types D =
〈∆D,ΓD〉, with the value domain ∆D and a finite set of
predicate symbols ΓD.
• P is a D-typed persistence layer, i.e., a pair 〈R, E〉, where
R is a D-typed database schema, and E is a finite set of
first-order FO(D) constraints over R.
• L is a D-typed data logic layer over P , i.e., a pair 〈Q,A〉,

where Q is a finite set of FO(D) queries over P , and A is
a finite set of actions over P .
• N is a D-typed control layer L, i.e., a tuple (P, T, Fin,
Fout,color,query,guard,action), where: (i) P =
Pc ] Pv is a finite set of places partitioned into control



places Pc and view places Pv, (ii) T is a finite set of
transitions, (iii) Fin is an input flow from P to T , a normal
output flow Fout and a roll-back flow (iv) Fout and Frb
are respectively an output and roll-back flow from T to Pc
(v) color is a color assignment over P (mapping P to
a Cartesian product of data types), (vi) query is a query
assignment from Pv to Q (mapping the results of Q as
tokens of Pv), (vii) guard is a transition guard assignment
over T (mapping each transition to a formula over its input
inscriptions), and (viii) action is an action assignment
from T to A (mapping some transitions to actions triggering
updates over the persistence layer). �

Input and output/roll-back flows contain inscriptions that match
the components of colored tokens present in the input and
output/roll-back places of a transition. Such inscriptions consist
of tuples of (typed) variables, which can then be mentioned
in the transition guard, and also in the action assignment
(to bind the updates induced by the action to the values
chosen to match the inscriptions). Given a transition t, we
denote by InVars(t) the set of variables mentioned in its
input flows, by OutVars(t) the set of variables mentioned
in its output flows, and by OutVars(t) the set of variables
occurring in the action assignment of t (if any). Fresh variables
FreshVars(t) = OutVars(t) \ InVars(t) denote those output
variables that do not match any corresponding input variables,
and are consequently interpreted as external inputs.

Thereby the control layer can be seen as a CPN extended
with database queries, assigned to special view places, and
special database update operations attached to transitions. The
data logic layer binds and then executes the queries and actions
on the persistence layer. The terms message and (db-net, CPN)
token will be used synonymously hereinafter.
Db-net execution semantics. Briefly, the execution semantics
of a db-net in Def. 1 accounts for the progression of a
database instance compliant with the persistence layer P and
the evolution of a marking over the control layer N , mediated
by the data logic layer L. While the marking over the control
layer determines the transitions to be fired, it triggers updates of
the database instance. In particular, the distributed tokens have
to carry data compatible with the color of the places and the
marking of a view place Pv must correspond to the associated
queries over the underlying database instance. The markings
follow the active domain semantics of database systems (i. e.,
D-active domain, with D ∈ D) [17]. Furthermore, the db-net
persistence and control layers are stateful. During the execution,
in each moment (called snapshot) the persistence layer is
associated to a database instance I , and the control layer is
associated to a marking m aligned with I via query (for
what concerns the content of view places). The corresponding
snapshot is then simply the pair 〈I,m〉.

Similar to CPNs, the firing of a transition t in a snapshot
is defined by a binding that maps the value domains of the
different layers, if several properties are guaranteed, e. g., the
guard attached to t is satisfied. This enables the transition,
which then has the following effects: all matching tokens
in control places Pc are consumed; then the action instance

action — induced by the firing — is applied on the current
database instance in an atomic transaction (and rolled-back, if
not successful); and accordingly, tokens on output places Fout
or roll-back places Frb (i. e., those connected via roll-back
flow) are produced. Details are given in [17].

All in all, the complete execution semantics of a db-net
is captured by an infinite-state transition systems where each
transition represents the firing of a transition in the control
layer of the net with a given binding, and each state is a
snapshot. Notice that, due to the presence of unbounded colors
and of the underlying persistence layer, the transition system
may contain infinitely many different states even if the control
layer is bounded in the classical Petri net sense. However, this
infinity can be tamed using faithful abstraction techniques [17].
Example. The aggregator in Fig. 1 requires a view place
chp (denoted by ) for storing and updating the message
sequences as well as roll-back arc (T2, chin) to manage
compensation tasks (represented as ). The graphical
notation is in line with [17].

Notably, the db-net definition and execution semantics do
not address timing or ordering aspects. Hence, we subsequently
extend db-nets accordingly or find suitable realizations.
B. Extending db-nets with time

While the implicit temporal support in PNs (i. e., adding
places representing the current time) is rather cumbersome [27],
the temporal semantics of adding timestamps to tokens [27],
timed places [25], arcs [13] and transitions [31] are well
studied and naturally capture different treatments of time
in dynamic systems. The temporal requirements in REQ-3
demand a quantified, fixed or discrete time representation by
timed transitions or places, representing the delay induced by
a transition firing. This is currently missing in db-nets. So,
in the spectrum of timed extensions to PNs, we extend the
db-net control layer N with a temporal semantics that has two
advantages: it captures the aforementioned requirements, and
at the same time it is well-behaved in terms of formal analysis.

We start by explaining the intuition behind the approach,
and then provide the corresponding formalization. We assume
that there is a global, continuous notion of time. The firing
of a transition is instantaneous, but can only occur in certain
moments of time, while it is inhibited in others, even in presence
of the required input tokens. Every control token, that is, token
assigned to a control place, carries a (local) age, indicating how
much time the token is spending in that control place. This
means that when a token enters into a place, it is assigned an age
of 0. The age then increments as the time flows and the token
stays put in the same place. View places continuously access the
underlying persistence layer, and consequently their (virtual)
tokens do not age. Each transition is assigned to a pair of
non-negative (possibly identical) rational numbers, respectively
describing the minimum and maximum age that input tokens
should have when they are used to fire the transition. Thus,
such numbers identify a relative time window that delays the
possibility of firing.

Definition 2: A timed db-net is a tuple 〈D,P,L,N , τ〉
where 〈D,P,L,N〉 is a db-net whose control layer N contains



a set T of transitions and τ : T → Q≥0 × (Q≥0 ∪ {∞}) is a
timed transition function that maps each transition t ∈ T to a
pair of values τ(t) = 〈v1, v2〉, such that: (i) v1 is a non-negative
rational number; (ii) v2 is either a non-negative rational number,
or the special constant ∞; (iii) either v2 =∞, or v1 ≤ v2. �
The default choice for τ is to map transitions to the pair 〈0,∞〉,
which correspond to a standard db-net transition.

Given a transition t, we adopt the following graphical
conventions: (i) if τ(t) = 〈0,∞〉, then no temporal label is
shown for t; (ii) if τ(t) is of the form 〈v, v〉, we attach label
“[v]” to t; (iii) if τ(t) is of the form 〈v1, v2〉 with v1 6= v2, we
attach label “[v1, v2]” to t.
Example. The aggregator in Fig. 1 defines a timed transition
T3, that can be fired precisely after 30 time units (here
seconds) from the moment when a new sequence seq has been
created. Upon firing, T3 enables the Aggregate transition,
by updating the sequence’s status on the database to expired
using the TimeoutSeq action.
Timed db-net execution semantics. The execution semantics
of timed db-nets builds upon the one for standard db-nets.
The management of bindings, guards, and database updates
via actions, is kept unaltered, while additional conditions on
the flow of time and the temporal enablement of transitions
considering delays have to be properly tackled. On the one
hand, as customary in temporal extensions of Petri nets, we
account for the flow of time by indicating that a given amount
of time is passing while the net is not firing any transition. This
results in incrementing the delay of tokens accordingly. On the
other hand, the enablement of transitions has to be revised by
checking whether the ages of tokens that the transition intends
to consume match the delay window attached to the transition.

Technically, we proceed as follows. We introduce a special
domain A in D capturing the age of tokens. We assume that
every control place p is typed with a color that contains, as a
last component, A. Consequently, a marking now has also to
assign an age to each token. In addition, we also assume that
all arc inscriptions carry the age of matching tokens.

With this intuition at hand, we reconstruct the formal
definition of enablement and firing given in [17], as follows
(see in particular the last two conditions).

Definition 3 (Transition Enablement): Let B be a timed
db-net 〈D,P,L,N , τ〉, and t a transition in N with τ(t) =
〈v1, v2〉. Furthermore, let σ be a binding for t, i.e., a sub-
stitution σ : Vars(t) → ∆D, where Vars(t) = InVars(t) ∪
OutVars(t). A transition t ∈ T is enabled in a B-snapshot
〈I,m〉 with binding σ, if:
• For every place p ∈ P , m(p) provides enough tokens

matching those required by inscription w = Fin(〈p, t〉),
once w is grounded by σ, i. e., σ⊕(w) ⊆ m(p);

• The instantiated guard guard(t)σ evaluates to true.
• σ is injective over FreshVars(t), thus guaranteeing that

fresh variables are assigned to pairwise distinct values of
σ, and for every fresh variable v ∈ FreshVars(t), σ(v) 6∈
(Adomtype(v)(I) ∪ Adomtype(v)(m)).2

2AdomD(X) is the set of values of type D explicitly contained in X .

• For each age variable y ∈ OutVars(t), we have that σ(y) =
0 (i.e., newly produced tokens get an age of 0). �
Thanks to the fact that ages of tokens are properly checked

and updated by the transition binding when defining enable-
ment, we have that the definition of firing for timed db-nets is
identical to that of standard db-nets.

Definition 4 (Transition Firing [17]): Let B be a timed
db-net 〈D,P,L,N τ〉, and s1 = 〈I1,m1〉, s2 = 〈I2,m2〉 be
two B-snapshots. Fix a transition t of N and a binding σ
such that t is enabled in s1 with σ (cf. Def. 3). Let I3 =
apply(actionσ(t), I1) be the database instance resulting from
the application of the action attached to t on database instance
I1 with binding σ for the action parameters. For a control place
p, let win(p, t) = Fin(〈p, t〉), and wout(p, t) = Fout(〈p, t〉) if
I3 is compliant with P , or wout(p, t) = Frb(〈p, t〉) otherwise.
We say that t fires in s1 with binding σ producing s2, written
s1[t, σ〉s2, if:
• if I3 is compliant with P , then I2=I3, otherwise I2=I1;
• for each control place p, m2 corresponds to m1 with the

following changes: σ⊕(win(p, t)) tokens are removed from
p, and σ⊕(wout(p, t)) are added to p. In formulae: m2(pc) =
(m1(pc)− σ⊕(win(p, t))) + σ⊕(wout(p, t)) �
The execution semantics of a timed db-net then follows

the standard construction, modulo two refined aspects. First,
the original (non-timed) definition of enablement in [17] is
substituted with its refined version in Def. 3. Second, when
constructing the transition system, we also add the (infinitely
many) transitions dealing with the flow of time. This is done
by simply imposing that every B-snapshot 〈I,m〉 is connected
to every B-snapshot of the form 〈I ′,m′〉 where I ′ = I (i.e.,
the database instances are identical) and m′ is identical to m
but for the ages of tokens, which all get increased by the same,
fixed amount x ∈ Q of time.

In the following, given two B-snapshots s and s′, we write
s → s′ if there exists a direct transition from s to s′ in the
transition system that captures the execution semantics of B
starting from a given initial snapshot s0. We also write s ∗−→ s′

if there is a sequence of transitions leading from s to s′.
Example. To finish the aggregator definition, when the per-
sisted sequence in the aggregator is complete or the sequence
times out, then the enabled Aggregate transition fires
by reading the sequence number seq and snapshot of the
sequences’ messages, and moving an aggregate msg′ to chout
Notably, the Aggregate transition is invariant to which of
the two causes led to the completion of the sequence.

C. Checking Reachability over Timed Db-nets
Checking fundamental correctness properties such as safe-

ty/reachability is of particular importance for timed db-nets, in
the light of the subsequent discussion in Sect. V-B on reachable
goal states. We consider here, in particular, the following
relevant REACH-TEMPLATE problem:
Input: (i) a timed db-net B with set Pc of control places,

(ii) an initial B-snapshot s0, (iii) a set Pempty ⊆ Pc of
empty control places, (iv) a set Pfilled ⊆ Pc of nonempty
control places such that Pempty ∩ Pfilled = ∅.



Output: yes if and only if there exists a finite sequence of
B-snapshots of the form s0 → . . .→ sn = 〈In,mn〉 such
that for every place pe ∈ Pempty , we have |mn(pe)| = 0,
and for every place pf ∈ Pfilled, we have |mn(pf )| > 0.

The possibility of checking some places to be empty in the
target snapshot is especially relevant in the presence of timed
transitions, in particular to require that they do not contain
“old” tokens that were not consumed during the corresponding
delay window. For example, by considering transition T3 in
Fig. 1, asking for the chtimer place to be empty guarantees
that T3 indeed triggered whenever enabled.

Since timed db-nets build upon db-nets, reachability is highly
undecidable, even for nets that do not employ timed transitions,
have empty data logic and persistence layers, and only employ
simple string colors. As pointed out in [17], this setting is in
fact already expressive enough to capture ν-nets [14], [24],
for which reachability is undecidable. Similar undecidability
results can be obtained by restricting even more the control
layer, but allowing for the insertion and deletion of arbitrarily
many tuples in the underlying persistence layer.

However, when controlling the size of information main-
tained by the control and persistence layers in each single
snapshot, reachability and also more sophisticated forms of
temporal model checking become decidable for db-nets using
string and real data types. In particular, decidability is obtained
for db-nets that enjoy the three different types of boundedness.
A db-net B with initial snapshot s0 is:
• width-bounded if there is b ∈ N s.t., for every B-snapshot
〈I,m〉, if s0

∗−→ 〈I,m〉, then the number of values assigned
by m to the places of B is bounded by b;

• depth-bounded if there is b ∈ N s.t., for every B-snapshot
〈I,m〉, if s0

∗−→ 〈I,m〉, then the number of tokens assigned
by m to the places of B is bounded by b;

• state-bounded if there is b ∈ N s.t., for every B-snapshot
〈I,m〉, if s0

∗−→ 〈I,m〉, we have | ∪D∈D AdomD(I)| ≤ b.
We say that a (timed) db-net is bounded if it is at once width-,
depth-, and state-bounded.

Note that the decidability of reachability for bounded db-nets
does not imply decidability of reachability for bounded timed
db-nets. In fact, ages in timed db-nets are subject to arithmetic
operations that are not tackled in db-nets. However, we can
prove decidability by resorting to a separation argument: the
two dimensions of infinity respectively related to the infinity of
the data domains and of the flow of time can in fact be tamed
orthogonally to each other. In particular, we get the following.

Theorem 1: The REACH-TEMPLATE problem is decidable
for bounded timed db-nets with initial snapshot.

Proof 1 (Proof sketch): Consider a bounded timed db-net B
with initial snapshot s0, empty control places Pempty , and filled
control places Pfilled . Using the faithful data abstraction tech-
niques presented in [17, Thm 2], one obtains a corresponding
timed db-net B′ enjoying two key properties. First, B′ is bisimi-
lar to B, with a data-aware notion of bisimulation that takes into
account both the temporal dynamics induced by the net, as well
as the correspondence between data elements. Such a notion
of bisimulation captures reachability as defined above, and

consequently REACH-TEMPLATE(B,s0,Pempty ,Pfilled ) returns
yes if and only if REACH-TEMPLATE(B′,s0,Pempty ,Pfilled ) does
so. Second, the only source of infinity, when characterizing the
execution semantics of B′, comes from the temporal aspects,
and in particular the unboundedness of token ages. This means
that B′ can be considered as a “standard” temporal variant of a
CPN with bounded colors that, in turn, boils down to a temporal
variant of (uncolored) PN. In particular, one can easily see
that B′ corresponds to a special class of bounded ATPN [13],
where whenever B′ contains a transition t with τ(t) = 〈v1, v2〉,
its corresponding ATPN labels each arc entering t with interval
[v1, v2]. Consequently, the infinity of B′ can be tamed using
standard techniques known for bounded ATPNs, which indeed
enjoy decidability of reachability [6], [1]. �

IV. PATTERN REALIZATIONS

A pattern realization denotes a representation of a pattern
in timed db-net (e. g., the aggregator in Fig. 1). In this section,
we discuss pattern realizations for requirements REQ-1 (a)+(b)
from Sect. II followed by realizations of those patterns required
in the case study in Sect. V-C.

A. Patterns with Msg. Channel Ordering
The realization of a Content-based Router [11] with condi-

tions condA, condB that have to be evaluated strictly in-order
(cf. REQ-1(a)) is shown in Fig. 4(a). Although the router could
be realized more elegantly by using priority functions similar
to [30], we explicitly realized them with pair-wise negated
timed db-net transition guards: first condA is evaluated and the
message moved to ch2, if it matches, else its negation is chosen.
In case the latter matches, the second condition is checked,
and then its negation, and so on. When non of the pairs alone
matches, a non-guarded default transition fires (not shown).
This explicit realization covers the router’s semantics, however,
requires (k × 2) + 1 transitions (i. e., condition, negation, and
only one default), with the number of conditions k.

Similarly, the load balancer [21] could be realized by using
stochastic PNs [30], [5] or at least an extension of the transition
db-net guard definition that sample probability values from a
probability distribution (e. g., [12]). While this would extend
the db-net persistence layer, for the resulting net the current
decidability results would no longer hold, thus making the
formal verification undecidable. Hence, we decided to leverage
the db-net persistence layer to represent a Balancing
Ratio, as shown in Fig. 5, to persistently manage the ratios
by a simple balancing scheme that uses the db-net transition
guards. A message msg in channel ch1 leads to a lookup of
the current ratio by the two enabled transitions Inc t1 and
Inc t2 and an evaluation of their transition formulas, e. g.,
for Inc t1(toch2

) :=
toch2

toch3
≥ 0.7. If the formula holds, the

transition fires by moving the message to its output place
as well as updating the table by a sequence of Inc t.del =
{NumberChi(x)}, Inc t.add = {NumberChi(x+1)}, and
thus re-evaluating the next message on the updated state of
the persistence layer. Since the existing proofs do not cover
arithmetic formulas such as the increment x+ 1 [17], it has
to be realized as incremented DB sequence.
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B. Selected Patterns and Processing Semantics

An (iterative) Splitter [11], required for the case study,
is a complex routing pattern that is able to construct new
messages for each element in iterable of an incoming message
<pre><iterable><post> of the form [<pre>] <iterable:
elemi> [<post>] with optional pre and post parts. The splitter
can be realized completely in CPN as shown in Fig. 4(b). The
entering message payloads in ch0 are separated into its parts:
pre, post and it. While the first two are remembered during
the processing, the iterable it is iteratively split into its parts
it.next according to a criterion x and a message is created on
ch3 using the pre and post information.

The Content Enricher [11] in Fig. 4(c) either enriches the
tokens from ch0 locally or through request-reply transitions
t1, t2 to an external service or resource. While the stateless
enriching part is in CPN, the query on a stateful resource ch3
requires db-net semantics (cf. REQ-4(a,b)). In addition to the
specific pattern requirements, the message processing semantics
of the EIPs describes one message (or token) at a time. Since
PN and db-net transitions are able to process several tokens
in the inbound control place Pc (i. e., from the inbound flow
Fin Def. 1), the transition capacity has to be restricted to one.

C. Discussion

The db-net foundation implicitly covers REQs-2,4 in form of
a relational formalization with database transactions. Together
with the realizations of the Router, the Load Balancer (cf.
REQ-1(a), (b)) and the Aggregator Fig. 1 (cf. REQs-3(a),
REQ-4 and REQ-5) we showed realizations for all of the
requirements from Sect. II. The expiry of tokens, depending on
time information within the message, is in CPNs and db-net,
when modeled as part of the token’s color set and transition
guards (similar to [27]). As the ratio function of the balancer,
the transition timeouts (cf. REQ-3(a)) and delays (cf. REQ-3(c))
are in timed db-net. Similarly, the msg / time ratio (cf. REQ-
3(d)) can be represented (cf. supplementary material [22]).

V. EVALUATION

In this section, we quantitatively evaluate the comprehen-
siveness of the timed db-net realizations against the real-
world integration scenarios (including pattern composition
cases), show how to test the correctness of the derived EIP
formalism for the requirements from Sect. II-B, and discuss
their application to one of the scenarios (cf. Q3).

A. Comprehensiveness of timed db-net
The comprehensiveness of timed db-nets is evaluated with

respect to coverage of the patterns in the catalogs depicted
in Fig. 6(a). Here we compare the applicability of the ex-
isting CPN-based formalization [9] (Current-CPN), CPNs
in general (CPN (general)) and timed db-nets (timed
db-net). While the formalization proposed in [9] covers only
some of the EIP from [11], many more EIPs as well as the
recently extended patterns can be represented by CPNs. Now,
with the timed db-net formalism proposed in this work one
can nearly formalize all of the EIPs. However, there are two
patterns that have requirements that cannot be represented,
using Petri net classes discussed in this work, without further
investigation (i. e., Dynamic Router, Durable Subscriber) due
to their state or transition generating requirements.

While the first analysis targeted the pattern coverage of the
formalisms, we now consider their relevance by the coverage
of real-world integration scenarios. For this we implemented
a Content Monitor pattern [21], which allows for the analysis
of the actually deployed integration scenarios, e. g., running
on SAP Cloud Platform Integration (SAP CPI)3. Figure 6(b)
shows the coverage of the formalisms grouped by the following
integration scenario domains, taken from [21]: On-Premise to
Cloud (OP2C: known as hybrid integration), Cloud to Cloud
or Business Network (C2C, B2B: native cloud applications),
and Device to Cloud (D2C: incl. Mobile, IoT and Personal
Computing) integration. Briefly, the results show that the
current approach [9] is only partially sufficient to cover
the OP2C, C2C and B2B scenarios. With a more general
CPN approach, more than 70% of more conventional OP2C
communication patterns can be covered. The more recent
and complex cloud, business network and device integration
requires timed db-net to a larger extend, which covers all
analyzed scenarios.
Conclusions. (1) timed db-net is sufficient to represent most of
the EIPs; (2) place or transition generating EIPs are not covered
by considered PN classes; (3) hybrid integration requires less

3SAP CPI, visisted 05/2018: https://api.sap.com/shell/integration.
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Fig. 6: Timed db-net comprehensiveness

complex semantics and thus largely in CPN; (4) timed db-nets
cover all of the current integration scenarios in SAP CPI.

B. Simulation: Pattern Correctness Testing
With the preliminary model checking results, we prototypi-

cally implemented the db-net formalism so as to experimen-
tally test the correctness of the pattern realizations through
simulation. For this, we leverage results from Sect. III, which
allow to trace the markings on the control and execution trace
on the persistence layer to decide on the correctness of the
realized pattern. This is due to the timed db-net execution
semantics (cf. Def. 4) producing several B-snapshots s1, .., sn
during the execution of the pattern from an input B-snapshot
s1 = 〈I1,m1〉 with database instance sn = 〈In,mn〉 to a final
snapshot sn, denoted by s1[t, σ〉s2,..,si[t, σ〉sn, with transition
t ∈ T and binding σ. In case of a database instance Ij is
not compliant with P , then the execution stops and leaves the
timed db-net in an intermediate state Ij = Ii−1, otherwise
In is a valid final state. When considering the pattern’s inner
workings as unknown, with the data exchanged through input
ch1, .., chi, output chn−m, .., chn, and intermediate places chj
in N , together with the corresponding database instances
I1, .., Ii, In−m, .., In, and Ij , the control and data flows can
be validated, by checking whether the pattern model produces
a correct sequence of firing leading to B-snapshot with the
correct final database instance and marking.
Prototype. To perform simulation, we developed prototypical
modeling and simulation extensions for CPN Tools v4.0. As
compared to other PN tools like Renew v2.5 (cf. Renew, visited
07/2018: http://www.renew.de/), CPN tools supports third-party
extensions that can address the persistence and data logic
layers of db-nets. Moreover, CPN Tools handles sophisticated
simulation tasks over models that use the deployed extensions.
To support db-nets, our extension supports view places, SQL
queries and actions, and realizes the full execution semantics
of db-nets on top of a PostgreSQL database.
Simulation. Due to space constraints, we illustrate the correct-
ness testing of the aggregator pattern realization in Fig. 1
through simulation in our CPN Tool extension, shown
in Fig. 7 (available for download: https://bit.ly/2tZxZ1x).
Note that the timed completion condition is neglected due
to differing temporal semantics in the tool. For the simu-

Fig. 7: Aggregator simulation (as CPN Tool extension)

lation, we added a table Test_Messages with four test
messages, i. e., {(1,1,’text-1’), (2,2,’text-2’),
(3,1,’text-3’), (4,2,’text-4’)}, with ids from 1–
4, two sequences {1, 2} and a textual payload. The completion
condition is configured to aggregate after two messages of the
same sequence and the aggregation function concatenates the
message payloads separated by ’|’. The expected result in the
output place CH_out for the first sequence is one message
with both payloads aggregated (1,’text-3|text-1’).

Now, when establishing a connection to the database and to
the CPN tools extension server, the data from the connected
database tables are queried and the net is initialized with the
data from the database in form of tokens. Thereby, enabled
transitions are highlighted by a green frame, indicating that
they are ready to fire. When the transition is fired, the token is
moved and the database state is read or updated accordingly,
which potentially enables further transitions. With that, we
simulated the aggregator realization in Fig. 7 for the two test
sequences, until one sequence was complete, resulting to the
expected outcome in CH_out and the database.
Conclusions. (5) The CPN Tools extension allows for EIP
simulation and correctness testing; (6) model checking imple-



mentations beyond correctness testing are desirable.

C. Applicability: Predictive Maintenance and Service (PDMS)

In the context of digital transformation, an automated main-
tenance of industrial machinery is imperative and requires the
communication between the machines, the machine controller
and ERP systems that orchestrate maintenance and service tasks.
Integrated maintenance is realized by one of the analyzed D2C
scenarios in Sect. V-A, which helps to avoid production outages
and to track the maintenance progress. Thereby, notifications
are usually issued in a PDMS solution as shown in Fig. 8 from
SAP CPI, represented in BPMN according to [23].

Due to the lack of space, we simplified the scenario,
e. g., only one machine Machine A sends alerts to PDMS,
indicating that a follow-on action is required. The PDMS
system creates alerts for the different machines (note the
query Qalert that returns the device id and the critical value
act val) and forwards them to a mediator, connecting the
PDMS to the ERP system. Before the ERP notification can
be created, additional data from the machines are queried
based on the split and single alerts, and then enriched with
information provided by query Qget that adds the feature type
feat type. The information of the single alerts is used to
predict the impact and then aggregated to be sent to ERP. In
case the notification has been created successfully in ERP,
the PDMS gets notified including the service task ID and
thus stops sending the alert (not shown). For this study, we
manually encoded the BPMN scenario into a timed db-net
as shown in Fig. 9. While the splitter is close to the current
CPN solution in [9], the content enricher (incl. the query
on the machine’s state) and aggregators require timed db-net.
Nevertheless, timed db-nets allow to represent patterns not
covered before (e. g., the stateful aggregator with a timeout
or the content enricher with external resources) and check
their soundness and correctness. Note that for more complex
scenarios the timed db-net representation might become very
complex, e. g., compared to a BPMN representation, and thus
might be more suitable as formalism and not as modeling
language for the average user (e. g., integration developer).
Conclusions. (7) timed db-net representations allow for an
explicit modeling of all data aspects in complex data-aware
scenarios (e. g., roll-back, queries); (8) the formalism’s technical
complexity might prevent a usage as a modeling language.

D. Discussion
With the timed db-net formalization, it is possible to model

and reason about EAI requirements like data, transacted
resources and time (cf. conclusions (1), (5)), going beyond the
simple hybrid integration scenarios (cf. conclusion (3)). Thereby
the pattern realizations are self-contained, can be composed
into complex integration scenarios (e. g., Fig. 9) and analyzed
(cf. conclusions (4)), while leaving the extension of our tool
prototype to model checking as future work (cf. conclusion
(6)). The composition is facilitated through “sharing” control
places, preventing unwanted side-effects between patterns.

However, there are some limitations that we briefly discuss
next. PN classes considered in this work fall short when it

comes to generation of places or arcs (cf. conclusion (2)).
For example, Dynamic Router requires a proper representation
of dynamically added or removed channels, while Durable
Subscriber is based on a changing infrastructure: if one receiver
is off due to maintenance, it can still receive messages, which
PNs cannot model. Further, the deep insights into data-aware
patterns and scenarios lead to the trade-off between sufficient
information and model complexity (cf. conclusion (7)). The
complexity of PN models compared to their BPMN counterparts
in Fig. 8 might not allow for modeling by non-technical users
(cf. conclusion (8)). Hence, we propose modeling in a less
technical modeling notation, which can be then encoded into PN
models, e. g., for verification. Further, while the PN formalism
closes the conceptual vs. implementation gap by simulation,
we leave a translation of existing EIP implementations to timed
db-nets for verification as future work.

VI. RELATED WORK

We found [21] that the only existing formalization of EIPs
is provided in [9] using CPNs. In particular, Fahland et al. [9]
define messages as colored tokens and uses PN transition guards
as conditions. However, it does not cover all requirements
we singled out, and hence we employ db-nets [17] as an
extension of CPNs that covers all but two of the EIPs as
discussed before. In the business process domain PNs were
successfully used to model and reason about workflow nets [28]
and some resource- [16] and data-aware [7]) extensions, without
however tackling EIP requirements. Although our predictive
maintenance scenario has been captured in BPMN [23], we do
not consider BPMN as a suitable formalism for our objectives
(i)–(iii), however, build on a formalization by PNs, which were
employed to define the BPMN control-flow semantics [8].

Using PNs, [29] defines an alternative approach for represent-
ing and reasoning on database transactions using special token
vectors with identifiers and inhibitor nets. While this could
also be used similar to db-nets, we build our formalism on
db-nets due to their more comprehensive focus on (relational)
data, operations, and persistent storage. Furthermore, there is
work on ITCPN [27] and stochastic PNs [30] that are either
too restricted by time intervals with a single global time in
case of ITCPN or hard to practically reason as in case of
the stochastic nets. However, both works helped during the
specification of timed db-net. Stochastic PNs [30] define a
priority function, whose execution semantics however does not
suffice in representing the required ordering in REQ-1(a).

The approaches to formalize object-oriented, architectural
patterns, or component-based systems (e. g., [2], [3]) focus on
pattern descriptions up to runtime instantiation, however, do
not cover, e. g., time, transaction and execution semantics.

VII. CONCLUSION

To formalize the EIPs as the foundations of current EAI
systems, this work collects relevant EAI requirements (cf. RQ-
1), selects and combines existing PN approaches as timed db-
nets (cf. RQ-2), then realizes selected EIPs using the formalism,
and briefly sketches how to assess their correctness (cf. RQ-3).
The evaluation results into several interesting conclusions, e. g.,
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the suitability of our approach for EIPs and their compositions
(cf. conclusions (1), (3)–(5), (7)), a model complexity trade-off
(cf. conclusion (8)), and desirable extensions. Future work
will target the extension of our concept and development of
a prototype for model checking (cf. conclusion (6)) as well
as further investigations of the implementation gap and model
complexity trade-off through an automatic translation between
user-friendly modeling environments and PNs.
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