
Local Fast Segment Rerouting on Hypercubes
Klaus-Tycho Foerster
University of Vienna, Vienna, Austria
klaus-tycho.foerster@univie.ac.at

https://orcid.org/0000-0003-4635-4480

Mahmoud Parham1

University of Vienna, Vienna, Austria
mahmoud.parham@univie.ac.at

https://orcid.org/0000-0002-6211-077X

Stefan Schmid
University of Vienna, Vienna, Austria
stefan_schmid@univie.ac.at

https://orcid.org/0000-0002-7798-1711

Tao Wen
University of Electronic Science and Technology of China, Chengdu, China
winterwentao@gmail.com

https://orcid.org/0000-0002-0772-5296

Abstract
Fast rerouting is an essential mechanism in any dependable communication network, allowing to
quickly, i.e., locally, recover from network failures, without invoking the control plane. However,
while locality ensures a fast reaction, the absence of global information also renders the design
of highly resilient fast rerouting algorithms more challenging. In this paper, we study algorithms
for fast rerouting in emerging Segment Routing (SR) networks, where intermediate destinations
can be added to packets by nodes along the path. Our main contribution is a maximally resilient
polynomial-time fast rerouting algorithm for SR networks based on a hypercube topology. Our
algorithm is attractive as it preserves the original paths (and hence waypoints traversed along
the way), and does not require packets to carry failure information. We complement our results
with an integer linear program formulation for general graphs and exploratory simulation results.

2012 ACM Subject Classification Networks→ Routing protocols, Network reliability; Theory
of computation → Design and analysis of algorithms

Keywords and phrases segment routing, local fast failover, link failures

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2018.0

1 Introduction

1.1 Motivation and Challenges
The need for a more reliable network performance and quickly growing traffic volumes led,
starting from the late 1990s [19], to the development of more advanced approaches to control
the routes along which traffic is delivered. Multipath-Label Switching (MPLS) was one of
the first and most widely deployed alternatives to traditional weight and destination based
routing (such as OSPF), enabling a per-flow traffic engineering. Recently, Segment Routing

1 Contact and main author.

© Klaus-Tycho Foerster, Mahmoud Parham, Stefan Schmid, and Tao Wen;
licensed under Creative Commons License CC-BY

22st International Conference on Principles of Distributed Systems (OPODIS 2018).
Editors: Jiannong Cao, Faith Ellen, Luis Rodrigues, and Bernardo Ferreira; Article No. 0; pp. 0:1–0:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:klaus-tycho.foerster@univie.ac.at
 https://orcid.org/0000-0003-4635-4480
mailto:mahmoud.parham@univie.ac.at
https://orcid.org/0000-0002-6211-077X
mailto:stefan_schmid@univie.ac.at
https://orcid.org/0000-0002-7798-1711
mailto:winterwentao@gmail.com
https://orcid.org/0000-0002-0772-5296
https://doi.org/10.4230/LIPIcs.OPODIS.2018.0
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

0:2 Local Fast Segment Rerouting on Hypercubes

(SR) [20, 38] has emerged as a scalable alternative to MPLS networks: SR networks do
not require any resource reservations nor states on all the routers part of the route (the
virtual circuit). SR networks are also attractive for their simple deployment; in contrast to,
e.g., Software-Defined Network (SDN) and OpenFlow-based solutions, they rely on existing
protocols such as IPv6 [62].

We in this paper investigate how to enhance SR networks with (local) fast rerouting algo-
rithms, to react to failures without the need to invoke the control plane. The re-computation
(and distribution) of routes after failures via the control plane is notoriously slow [26] and
known to harm performance [44]. Also link-reversal algorithms [27] tolerating multiple fail-
ures have a quadratic convergence time [7], besides requiring dynamic routing tables. This
is problematic as certain applications, e.g., in datacenters, are known to require a latency
of less than 100 ms [67]; voice traffic [33] and interactive services [35] already degrade af-
ter 60 ms of delay. Not surprisingly, reliability is also one of the foremost challenges for
network carriers nowadays [66], and in the context of power systems (e.g., smart grids), an
almost entirely lossless network is expected [58]. Accordingly, most modern communica-
tion networks (including IP, MPLS, OpenFlow networks) feature fast rerouting primitives
to support networks to recover quickly from failures.

Designing a fast rerouting algorithm however is non-trivial, as reactions need to be
(statically) pre-defined and can only depend on the local failures, but not on “future” fail-
ures, downstream. As link failures, also multiple ones, are common in networks [46], e.g.,
due to shared link risk groups or virtualization, it is crucial to pre-define the conditional
local failover rules such that connectivity is preserved (i.e., forwarding loops and black-
holes avoided) under any possible additional failures. In fact, in many networks, including
SR networks, algorithms cannot even depend on already encountered failures upstream, as
it requires mechanisms to carry and process such information in the packet header; such
“failure-carrying packets” [22,37] require additional and complex forwarding rules. Further
challenges are introduced by policy-related constraints on the paths along which packets are
rerouted in case of failures. In particular, failover paths may not be allowed to “skip” nodes,
but rather should reroute around failed links individually: communication networks include
an increasing number of middleboxes and network functions, so-called waypoints [2], which
must be traversed for security and performance reasons. Without precautions, in case of a
link failure, the backup path could omit these waypoints.

Ideally, a local fast rerouting algorithm preserves connectivity “whenever this is still
possible”, i.e., as long as the underlying network is still physically connected. In other
words, in a k-(link-)connected network, we would like the rerouting algorithm to tolerate
k − 1 link failures. We will refer to this strong notion of robustness as maximal robustness
in the following.

1.2 Example
Figure 1 illustrates an example for the problem considered in this paper: how to efficiently
circumvent multiple link failures using SR local fast failover mechanisms, such that the orig-
inal route will be preserved as part of the packets’ new route, hence also ensuring waypoint
traversal. In this example, while the backup path in dotted green reaches the destination,
the middlebox w is not visited. Ideally, we want to circumvent the failed link and then
continue on the original route (as depicted in the red dashed walk).

In case of only a single link e = (v, w) failing, one can exploit that both nodes v, w have
a globally correct view of the network link states. For example, if a packet hits the failed
link e at v, the node v can provide an alternative path to w, after which the packet resumes

K.-T. Foerster, M. Parham, S. Schmid, and T. Wen 0:3

×e

s

v w

t

Figure 1 Illustration of two different fast failover mechanisms, upon hitting a link failure. The
default path is depicted in dash-dotted blue. In the green dotted path, the destination t is reached,
but the waypoint w is not traversed. The red dashed walk circumvents the link failure, traverses
w, and then reaches t.

its original path, as shown in dashed red in Figure 1. To this end, each node only needs to
be provisioned with one alternative path for each of its incident links.

In Segment Routing, similar to MPLS, each packet contains a label stack, consisting of
nodes or links. However, these labels just represent the next waypoint to be reached, the
route (“segment”) which depends on the underlying routing functions (e.g., shortest path).
Once the top item is reached, the corresponding label is popped and the next item on the
stack is parsed. As such, the next label does not need to be in the vicinity of the current
node, it can be anywhere in the network. For the case of a single link e = (v, w) failure, it
has been shown that pushing two items on the label stack always suffices [25], if the network
is still connected and a shortest alternative path is chosen.

While SR enables waypoint traversal even after a single link failure [25], dealing with
multiple link failures in SR is still not well understood. As observed in [22], the option of
choosing the shortest alternative path already fails under two link failures, see Figure 2;
when e1 fails (and the dash-dotted blue path as well), the packet will be sent along e.g.
e2, but upon the failure of e2, the packet is sent along e1—a forwarding loop (shown in
dotted red). In this example, we can easily fix the reachability issues: a failure of e2 causes
rerouting along e3 (in dashed green, not along e1), and failure of e3 causes rerouting along
e1. In other words, e1 depends on e2, which depends on e3, which in turn depends on e1.
As this circular dependency chain has a length of three, two failures of {e1, e2, e3} cannot
induce a forwarding loop when routing to w. We will later formalize and extend these ideas,
generating dependency chains of length ≥ k for k-dimensional hypercubes.

1.3 Contributions
We initiate the study of fast reroute algorithms for emerging Segment Routing networks
which are 1) resilient to a maximum number of failures (i.e., aremaximally robust), 2) respect
the path traversal of the original route, and 3) are compatible to current technologies in
that they do not require packets to carry failure information: routing tables are static and
forwarding just depends on the packet’s top-of-the-stack destination label and the incident
link failures.

Our main result is an efficient algorithm which provably provides all these properties
on hypercube networks, as they are commonly used in datacenters (see e.g., [48]). Fur-
thermore, we formulate the underlying optimization problem as an integer linear program

OPODIS 2018

0:4 Local Fast Segment Rerouting on Hypercubes

e2
e1e3

v3 v1 v2

w

Figure 2 Example illustrating how local fast failover methods for a single link failure can loop
under two link failures, as shown in [22]. When the dash-dotted blue default route between v1 and
w fails, v2 can be pushed as a segment, to in turn reroute along e2. However, when v2 uses e1 via v1

as a failover for e2, then failing both e1 and e2 leads to a permanent forwarding loop, as depicted in
dotted red. In order to route successfully under both e1, e2 failing, v2 has to push segments v1, v3

to route along e3, as depicted in dashed green.

for general graphs, and provide first exploratory insights on the practical performance of
segment routing under multiple link failures.

1.4 Organization
The remainder of this paper is organized as follows. We first introduce necessary model
preliminaries in Section 2, followed by our main result in Section 3, where we provide a
maximally robust SR failover scheme for k-dimensional hypercubes. We cover related work
in Section 4 and conclude our study in Section 5, where we also provide further insights
which we believe to be useful for future work, in the form of an integer linear program
formulation for general graphs and a brief investigation regarding testbed experiments.

2 Model

In this section, we start by providing model and notation preliminaries. We will consider
undirected graphs G = (V,E), where the links may be indexed according to some (possibly
arbitrary) ordering, with `i ∈ E denoting the ith link. All routing rules have to be pre-
computed and may not be changed during the runtime (e.g., after failures). We will only
allow routing rules that match on 1) the packet’s next destination (i.e., the top of the label
stack)2, and the 2) incident link failures.3 When a packet hits a failed link ` = (u, v) at some
node u, the current node u may push a set of pre-computed labels on top of the current
label stack, in order to create a so-called backup path to v (which can also be traversed in
reverse from v to u).

I Definition 1. A backup path for a link ` is a simple path (not containing `) that connects
the endpoint of the link `. Let P be the set of all backup paths in a graph. An injective
function BP : E → P that maps one backup path to each link is a backup path scheme.

When the packet reaches the current top label, the respective label is popped and the under-
lying label is set as top label. As such, via backup paths, the incoming packets that normally
travel through ` are rerouted around the link to the respective endpoint, circumventing the

2 In practice, one could also imagine matching on other header fields, such as the packet’s source, and
also the incoming port. However, our algorithms do not require these additional inputs.

3 In other words, only the endpoints u, v of the failed link (u, v) = ` ∈ E are aware of the failure.

K.-T. Foerster, M. Parham, S. Schmid, and T. Wen 0:5

failure. Hence, our model preserves the intermediate visits (i.e., all possible waypoints) and
their order in a subset of the traversed route, possibly introducing repeated visits [1]. In
the following, we will investigate backup path schemes that guarantee packet delivery even
under multiple failures. To this end, we need to ensure that the backup paths do not contain
infinite forwarding loops, for their specified maximum number of failures. More formally:

I Definition 2. A backup path scheme BP (.) is called f -resilient if and only if there does
not exist a subset of links L ⊆ E, |L| ≤ f such that for some ordering σ : {0, . . . , |L| − 1} →
{0, . . . , |E| − 1}, ∀j < |L| : `σ(j+1 (mod |L|)) ∈ BP (`σ(j)). We refer to the inclusion relation
(∈) as dependency from `σ(j) to `σ(j+1 (mod |L|)). Equivalently, BP (.) is f -resilient if and
only if any cycle of dependencies is longer than f .

In the next section, we will show how to efficiently generate a (k − 1)-resilient backup path
scheme for k-dimensional hypercubes. As k-dimensional hypercubes are k-link-connected,
our scheme has ideal robustness.

3 Efficient Resilient Segment Routing on k-Dimensional Hypercubes

This section presents a fast and maximally robust rerouting algorithm on hypercubes, one
of the most important and well-studied network topologies [53, 64]. The regular structure
of hypercubes makes them an ideal fit for e.g., parallel interconnection architectures [52] or
datacenter [30].

Our study on k-dimensional hypercubes is structured as follows: We first provide an
intuition and overview of the (k− 1)-resilient scheme in Section 3.1, providing a formal defi-
nition of all backup paths in Term 1. Next, in Section 3.2, we introduce some useful technical
preliminaries for the correctness proof of our scheme, which is presented in Section 3.3.

3.1 Overview of the Fast Local Failover Scheme
We label the nodes in a k-dimensional hypercube (k-cube) with tuples (bk, bk−1, . . . , b1),
∀i ∈ [k] : bi ∈ {0, 1}, such that the origin node has the label {0}k. A hypercube link is
denoted by an ordered pair of binary node labels (a, b) s.t. a, b ∈ {0, 1}k, a < b, where the
two labels differ in one bit. Additionally, a link is said to be in dimension d, d ∈ [k], if and
only if a and b differ only at their dth bit. We refer to them as d-dim links. For convenience,
we treat a hypercube as a set of links grouped by their dimension, within each dimension
sorted according to the following bitwise comparison. For x ∈ {0, 1}k, let x>>s := x >> s,
where >> is right circular shift. Let `di denote the ith link in dimension d, see Figure 3a.
For `dp = (a, b) and `dq = (c, d), we have p < q if and only if a>>d < c>>d. Lastly, we denote
a k-cube by Ck := ∪d,i`di , d ∈ [k], 0 ≤ i < 2k−1.

The idea is to allocate backup paths in k iterations, one for each subset of links in the
same dimension, such that the induced dependencies over same-dimension links form cycles
of length at least k. However, since there are additional dependency cycles induced by
links in different dimensions, we devise a scheme that does not induce any dependency cycle
shorter than k (hence (k − 1)-resiliency follows).

Due to gray coding, starting from any link `di = (a, b), by traversing the (unique) pair
of incident d′-dim links, we reach the link Nd′(`di) = (a′, b′) such that a′ = (2d′−1)2 ⊕ a

and b′ = (2d′−1)2 ⊕ b. Let
(
Ld
′

0 [`di], Ld
′

1 [`di]
)

denote the (unique) pair of incident d′-dim
links, i.e. Ld′0 [`di] = (a, a′) and Ld

′

1 [`di] = (b, b′). The subscripts 0 and 1 indicate the value
at the dth bit position of the links in the pair. Due to symmetry, Nd′(Nd′(`di)) = `di and
Ld
′

b [`di] = Ld
′

b [Nd′(`di)], b ∈ {0, 1}.

OPODIS 2018

0:6 Local Fast Segment Rerouting on Hypercubes

000 001

010 011

`1
0

`2
1

`1
1

`2
0

(a) 1-resilient scheme for the 2-cube,
backup paths shown with dashed lines.

000 001

011010

100 101

111110

1st-dim

`1
0

`2
2

`1
1

`2
0

`3
1

`2
3

2n
d

-d
im

`3
33rd

-d
im

`1
3

`3
2

`3
0

`1
2

`2
1

(b) Link and node labels for the 3-cube and sample
backup paths shown with dashed lines.

BP (`1
0) = {`2

0, `2
1, `1

1}
BP (`1

1) = {`2
0, `2

1, `3
0, `3

1, `1
3}

BP (`1
2) = {`2

2, `2
3, `1

3}
BP (`1

3) = {`2
2, `2

3, `3
0, `3

1, `1
0}

BP (`2
0) = {`3

0, `3
1, `2

1}
BP (`2

1) = {`3
0, `3

1, `1
0, `1

1, `2
2}

BP (`2
2) = {`3

2, `3
3, `2

3}
BP (`2

3) = {`3
2, `3

3, `1
0, `1

1, `2
0}

BP (`3
0) = {`1

0, `1
1, `3

1}
BP (`3

1) = {`1
0, `1

1, `2
0, `2

1, `3
2}

BP (`3
2) = {`1

2, `1
3, `3

3}
BP (`3

3) = {`1
2, `1

3, `2
0, `2

1, `3
0}

(c) List of all backup paths for the 2-resilient scheme on the 3-cube

Figure 3 Illustration of BP (.) on 2 and 3 dimensional cubes.

We formulate the backup path of a d-dim link as a set consisting of one d-dim link and
pairs of links. These pairs constitute a joint path, i.e., two paths over the endpoints of
detoured d-dim links. We refer to this joint path as a backup path and we always traverse
it towards the included d-dim link. However in reality, a packet traverses the two paths in
opposite directions, towards and away from the respective d-dim link.

For instance, the backup path of the first 1-dim link (i.e. `1
0) includes the 1-dim link

reached via the incident pair of 2-dim links, and the pair itself (see Figure 3b): BP (`1
0) =

{L2
0[`1

0], L2
1[`1

0], N2(`1
0)} = {`2

0, `
2
1, `

1
1} (see Figure 3c). For the second 1-dim link we use the

same pair, but we have to detour `1
0 in order to avoid conflict:

BP (`1
1) = {L2

1[`1
1], L2

1[`1
1], L3

0[`1
0], L3

1[`1
0], N3(`1

0)} = {`2
0, `

2
1, `

3
0, `

3
1, `

1
3}.

In general, the backup path of `di begins with the pair
(
Ld+1

0 [`di], Ld+1
1 [`di]

)
. If the first d-dim

link, i.e. Nd+1(`di), is conflicting, then one continues by detouring this link via the pair of
(d + 2)-dim links and detours further d-dim links, until one reaches a d-dim link that is
not conflicting, then traverses this link. Moreover, the jth detour is performed via the pair
of (d + j)-dim links. Hence the pairs are traversed in the ascending order of consecutive
dimensions. We denote the closure form of Nd(.) w.r.t. this ordering as

N (j)(`di) := Nd+j(Nd+j−1(. . . Nd+1(`di) . . .), 1 ≤ j < k.

We can now describe our backup path scheme formally, we refer to Figure 3c for an exam-
ple listing all generated backup paths on the 3-dimensional hypercube. For each dimension

K.-T. Foerster, M. Parham, S. Schmid, and T. Wen 0:7

d ∈ [k] and every 0 ≤ i < 2k−1, the backup path of `di is

BP (`di) =
{
Ld+1

0 [`di], Ld+1
1 [`di],

Ld+2
0 [Nd+1(`di)], Ld+2

1 [Nd+1(`di)],
. . . ,

Ld+r
0 [N (r−1)(`di)], Ld+r

1 [N (r−1)(`di)],

N (r)(`di)) = `di′
}
. (1)

The path detours r − 1 links, where r is the number of link pairs necessary to have, in
order to reach the non-conflicting link `di′ with smallest index. Therefore the path length is
2r + 1. We will later argue that r ≤ R := dlog ke.

Alternatively to the explicit formulation in (1), `di′ can be obtained directly using bitwise
operations. Assume `di = (a, b) and `di′ = (a′, b′). By comparing a′ to a (b′ to b), we can see
that only the r bits to the left of dth bit are affected, i.e., the bits d+ 1 to d+R (mod k).
For x ∈ {0, 1}k and s := R− (k − d), we define the increment function that determines the
successor link as incs,d(x) := (x>>s + (2d)>>s2)>>−s. Here the + ignores the carry flag out
of the leftmost position. Therefore, a′ = incs,d(a) and b′ = incs,d(b). It is clear that the
overall computation takes polynomial time.

In the next section, we will state some necessary observations regarding our hypercube
construction, which we will employ for the correctness proof of our scheme in Section 3.3.

3.2 Proof Preliminaries
According to our backup path formulation (1), the backup path of a d-dim link passes
through a d-dim link reached via links in higher dimensions, which are presented in pairs in
(1). The backup path possibly detours some other d-dim links along its way. The pairs and
the involved d-dim links together resemble a chain-like structure which facilitates describing
some properties in this section. We now describe these structures formally.

I Definition 3. Given a sequence of dimensions Sd := (di)i=0, di ∈ [k] \ {d}, a chain
of d-dim links, starting from `di0 , denoted by C(`di0), consists of a subset of d-dim links
and pairs of di-dim links, di ∈ Sd. The pairs form two walks over the endpoints of the
contained d-dim links. The two parallel walks jointly traverse the chain. We denote the chain
by CSd

(`di0) := {. . . , `dij , (L
dj

0 [`dij], Ldj

1 [`dij]), `dij+1
, . . .}, j ≥ 0, `dij+1

= Ndj (`dij). Moreover, if
∃`ij′ ∈ C(`di0) : `dij′+1

= `i0 , then it is a closed chain denoted by CSd
.

We can directly obtain the following property.

I Property 1. Starting from any link `di , by traversing a chain CSd
(`di), assume we arrive

back at the same link. Then it must be the case that Sd contains every dimension an even
number of times.

I Definition 4. A link (a, b), a < b is traversed in uphill direction when it is from a. The
opposite is a downhill direction.

Based off this definition, we can categorize the traversal directions.

I Property 2. Consider a closed chain containing the pair (Ld′0 [`di], Ld
′

1 [`di]) traversed between
the links `di and `dj = Nd′(`di). If j > i then the direction from `di to `dj is uphill, otherwise
downhill.

OPODIS 2018

0:8 Local Fast Segment Rerouting on Hypercubes

I Property 3. By Properties 1 and 2, in a closed chain, the number of traversals in every
dimension is even, half of which is in downhill (uphill) direction.

Intuitively, uphill and downhill traversals cancel each other which consequently turns the
joint walks into joint closed walks over the endpoints.

We next study the interaction between chains. Let Sd, Sd′ , d′ 6= d be two sequences of
dimensions. We say the chain CS′

d
crosses the chain CSd

if ∃P := (L0
d, L

1
d) ∈ CSd′ : P∩CSd

6=
∅. That is, CS′

d
traverses a pair of d-dim links, at least one of which belongs to CSd

.

I Definition 5. A mixed chain is the concatenation of multiple chains (over several di-
mensions) that cross each other consecutively. In other words, a mixed chain consists of
chains of links in at least two dimensions. Formally, for given dimensions d, d′, d′′ ∈ [k] and
sequences Sd and Sd′ , assume the chain CSd′ = {. . . , `d′x , (L0

d[`d
′

x] = `dy, L
1
d[`d

′

x]), . . . } crosses
CSd

= {. . . , `dy, (L0
d′′ [`dy], L1

d′′ [`dy]), . . . }. We concatenate these chains into a mixed chain as
{. . . , `d′x , `dy, (L0

d′′ [`dy], L1
d′′ [`dy]), . . . }.

The observations in the Properties (1), (2), and (3) hold for mixed chains as well. This
is because the mentioned properties do not depend on the dimension of the links be-
ing chained, but only on dimensions that are actually traversed. However, traversing a
chain of d-dim links does not always imply that dimension d is traversed. Consider three
chains of d, d′, and d′′-dim links that cross each other consecutively. E.g., the chain
CSd

= {. . . , `djL
, . . . , `djR

, (L0
d′′ = `d

′′

jR+1, L
1
d′′), . . .} that is crossed by the chain CSd′ =

{. . . , `d′jL−1, (L0
d = `djL

, L1
d), . . .} at the link `dijL

. Also, CSd
crosses the chain CSd′′ =

{. . . , `d′′ijR+1
, . . .} at the link `d′′ijR+1

. We examine whether dimension d is traversed by com-
paring the dth bit of the last link before the first cross to CSd

, i.e. `d′ijL−1
= (a0, b0), to the

dth bit of the first link after the second cross (by CSd
), i.e. `d′′ijR+1

= (a1, b1). Dimension d is
traversed if and only if the two bits hold different values. That is, (a0 ∧ a1) ∧ (2d−1)2 = 0.

A backup path BP (`di) = {(L0
d+1, L

1
d+1), . . . , N∗(`di)} can be represented as a chain

C(`di) := {`di , {L0
d+1, L

1
d+1}, N (1)(`di), . . . , N (∗)(`di)}. By Definition 2, there is a dependency

from `di to every other link `d
′

i′ ∈ BP (`di). Let MC(`di , `d
′

i′) ⊆ C(`di) ∪ {`d
′

i′ } denote the
mixed chain up to and including `d

′

i′ . Consider the set of backup paths of some subset
of links {`d0

i0
, `d1
i1
, . . . , `

dx−1
ix−1
} that induce a cycle of dependencies. Each dependency corre-

sponds to a mixed chain, concatenating them sequentially, yields the closed mixed chain
MC := MC(`d0

i0
, `d1
i1

) ∪ MC(`d1
i1
, `d2
i2

) ∪ · · · ∪ MC(`dx−1
ix−1

, `d0
i0

). Recall that in BP (.), pairs
connecting consecutive same-dimension links are traversed in the ascending order of dimen-
sions. Therefore, the sequence of dimensions traversed byMC is specified by (d̃i)i=0, where
d̃0 = 0, and either d̃j+1 = d̃j or d̃j+1 = d̃j + 1 (mod k). From now on, we assume only the
closed chains restricted to the sequence of dimensions d̃i.

3.3 Correctness
In the following, we address the correctness of our backup path scheme, i.e., resilience to
up to k − 1 link failures in k-dimensional hypercubes. To this end, we need one additional
result:

I Claim 1. In any backup path p := BP (`di) at most one pair of links is traversed in uphill
direction.

Proof. If p does not detour any link then the only pair of links, i.e. (L0
d+1(`di)), L1

d+1(`di))), is
traversed either in uphill or downhill direction, which trivially satisfies the claim. If p detours

K.-T. Foerster, M. Parham, S. Schmid, and T. Wen 0:9

some link `dj , then j < i (by construction). By Property 2, the pair of links preceding `dj is
traversed in downhill direction. Since p does not detour the last d-dim link, only the last
pair (preceding the last link) is possibly traversed in uphill direction. J

We can now prove our main result:

I Theorem 6. The scheme BP (.) listed in Term (1) is (k − 1)-resilient.

Proof. In order to show that the scheme is (k − 1)-resilient, we argue that any cycle of
dependencies consists of at least k links. We first show that for every d ∈ [k], any cycle of
dependencies over d-dim links is of length at least k. The backup path of every link `di uses
only one d-dim link `di′ , i′ = i + 1 (mod R). Hence, the set of d-dim links are dependent
sequentially. Therefore, having R = dlog ke is sufficient to ensure any cycle of dependencies
induced by d-dim links is of length 2R ≥ k.

It remains to analyze the dependency cycles that consist of links in multiple dimensions.
By Definition 5 and the construction of theMC, such cycles correspond to mixed chains in
the k-cube, each having the following properties:
1. Due to the non-descending sequence d̃i and by Property 1, MC traverses the sequence

of dimensions 1, . . . k an even number of times, therefore there are at least 2k traversals.
2. By Property 3, at least k of the traversals are in uphill direction.
3. By Property 1, a backup path takes at most one uphill. Meaning, each dependency

contributes at most one uphill traversal to the mixed chain.

Combining (1), (2), and (3), implies that there must be at least k dependencies in the
assumed cycle of dependencies, which concludes our claim. J

4 Related Work

Most modern communication networks support some form of resilient routing, and the topic
has already received much interest in the literature. There exists much literature on sin-
gle [16,47,65,68], double [12,49], and more [15] failure scenarios, the latter being motivated
by, e.g., shared risk link groups [57], attacks [61], or simply node failures which affect all
incident links [3, 15, 28, 56]. The spectrum of solutions is broad as well, with some solu-
tions providing only heuristic guarantees [12, 49], some schemes exploiting packet-header
rewriting [8, 15] (which however is not always supported in existing networks) or packet-
duplication [32] (which however comes with overheads). Furthermore, there is also work
that aims at quickly optimizing network behavior after link failures have propagated, e.g., by
pre-computing how to rescale traffic at ingress routers once these nodes are fault-aware [43].
However, such mechanisms do not provide protection for packets during convergence.

An interesting line of research studies mechanisms which do not require any additional
information in the packet header, such as the works by Feigenbaum et al. [17], by Chiesa
et al. [10, 11] (establishing an interesting connection to arc-disjoint graph covers), by El-
hourani et al. [15], by Stephens et al. [59, 60], by Borokhovich et al. [6], by Pignolet et
al. [51] (establishing an interesting connection to distributed computing problems without
communication [45]), and by Foerster et al. [23]. However, these solutions do not require
failover paths to traverse the nodes of the original path and do not account for the specific
properties of the networks considered in this paper. The former is particularly motivated by
the advent of (virtualized [18]) middleboxes [9], and is also known as local protection scheme
in MPLS terminology [55].

OPODIS 2018

0:10 Local Fast Segment Rerouting on Hypercubes

Our work is situated in the context of MPLS and Segment Routing (SR) networks where
routing is based on stacks and more specifically, the top of the stack label [50]. While the
design of resilient routing algorithms has received much attention already in the context of
MPLS, see e.g., [31] and [36, 55] and references therein, existing research on SR networks
mainly revolves around flow control, traffic engineering and network utilization [5,13,42,63],
or network monitoring [4], see the works by Filsfils et al. [21] and Lebrun et al. [14, 38, 40,
41] for a good overview. Optimization problems typically include the minimization of the
number of segments required to compute segmented paths [29]. Salsano et al. [54] propose
methods to leverage SR in a network without requiring extensions to routing protocols, and
Hartert et al. [34] propose a framework to express and implement network requirements in
SR. Only little is known today about fast rerouting in SR networks. In [22], it has been shown
that existing solutions for SR fast failover, based on TI-LFA [25], do not work in the presence
of two or more failures. However, [22] relies on failure-carrying packets, which is undesirable
as discussed above and we overcome in the current paper. Finaly, we in this paper considered
hypercubes, which have recently been studied for local fast failover algorithms in [11,24] as
well. While for a single link failure, the general approach of François et al. [25] can be used,
we are not aware of any approaches that (conceptually) employ Segment Routing for local
fast failover in hypercubes for multiple failures.

5 Conclusion and Future Work

This paper studied the design of algorithms for local fast failover in Segment Routing net-
works, subject to multiple link failures. Our main result is a maximally robust, (k − 1)-
resilient algorithm for k-dimensional hypercubes, which can be computed efficiently.

We see our work as a first step and believe that it opens several promising directions
for future research. On the algorithmic side, it would be interesting to extend the study to
algorithms for other graph classes, also providing a minimal number of segments or requiring
a minimal number of forwarding rules. On the practical side, given that segment routing is
ready to be deployed in IPv6 environments, it would be interesting to study experimental
evaluations, which can in turn also refine our model. In the following, we provide some first
directions.

5.1 Future Work I: Resilient Segment Routing on General Graphs
It will be interesting to study the complexity of fast rerouting on general graphs, and de-
velop (approximation) algorithms accordingly. We conjecture that computing backup path
schemes with maximal resiliency is NP-hard on general graphs. In non-polynomial time,
a Mixed Integer Program (MIP) formulation can provide an optimal solution for general
graphs. The following MIP considers the problem of generating a small number of required
segments for the backup paths, and if the desired resiliency cannot be met, at least maximizes
the number of protected links. We hope that our MIP formulation can aid the community
in developing further backup path schemes, e.g., by using it as a baseline comparison to
evaluate the quality of polynomial runtime algorithms for different graph classes beyond the
hypercube.

More specifically, the MIP presented next will compute an f -resilient backup path al-
location that is optimal in the number of protected links. For completeness purposes, we
consider directed graphs G = (V,E). As our MIP is also concerned with the number of
labels for each backup path, we provide some additional preliminaries relevant to practical
implementations. A backup path in general can be subdivided into path segments, each

K.-T. Foerster, M. Parham, S. Schmid, and T. Wen 0:11

being a shortest path between its endpoints: such a path segment will only need one label
on the stack, when the nodes employ shortest path routing. However, when the network
utilizes link weights, some backup paths cannot be represented by node labels [25]: e.g., if a
link on the backup path has infinite weight, while all other links have unit weight. For these
corner cases, we need to allow single links as items on the label stack, which we denote as
tunnel links: In the worst case, the whole backup path contains only tunnel links. Should a
tunnel link physically fail, the corresponding label will be popped to prevent stuck packets
(a failed link cannot be traversed), and the respective backup path will be traversed.

Maximize
∑
`∈E

I` (2)

SPz` =
{

1 ` ∈ SP (u, z)
0 else

∀` = (u, v) ∈ E, z ∈ V (3)

D``′ ,X v``′ , T``′ ,Wv
` , I`,∈ {0, 1} ∀`, `′ ∈ E,∀v ∈ V (4)

D`` = 0 ∀` ∈ E (5)

∑
`2=(v,∗)

D`1`2 −
∑

`2=(∗,v)

D`1`2 =

I`1 v = s

−I`1 v = t

0 else
∀`1 = (s, t) ∈ E, v ∈ V (6)

X v`1`2
≤ SPv`2

,
∑

`∈E,`3v

D`1` ∀`1, `2 ∈ E, v ∈ V (7)

D`1`2 ≤ SP
t
`2

+ T`1`2 +
∑
v∈V
X v`1`2

∀`1 = (s, t), `2 ∈ E (8)

d`1`2 ≥ 0, d`1`1 = 0 ∀`1, `2 ∈ E (9)
d`1`3 ≤ d`1`2 + 1 + (1−D`2`3)×∞ ∀`1, `2, `3 ∈ E (10)
d`1`2 + d`2`1 ≥ f + 1 ∀`1, `2 ∈ E (11)
Wv
`1
≥ X v`1`2

∀`1`2 ∈ E, v ∈ V (12)∑
v∈V
Wv
` +

∑
`′∈E

T``′ ≤ LABELS ∀` ∈ E (13)

Armed with the above preliminaries, we can now provide a general overview of the MIP. Let
SP (u, z) be the shortest path between u and z.4 For every link ` = (s, t), we pre-compute
constants SPz` , each indicating whether the shortest path from s to z includes ` or not.
With respect to the logical flow of the formulation, the MIP first computes a backup path
P` = {`′ ∈ E | D``′ = 1} for every link ` ∈ E. Then, for every link `′ ∈ P` whose shortest
path to t does not take the link itself (i.e. SPt`′ = 0), the MIP either finds an intermediate
node v such that SPv`′ = 1, or flags the link as a tunnel link (with T`1`2). As a result, every
link of P` either is a tunnel link or is on the shortest path to a next intermediate node, if not
t (i.e. on a segment). This is imposed by the set of constraints (7) and (8). With constraints
(9) to (11), we ensure an f -resilient backup path selection. Constraint (11) forbids any
cyclic dependency of length ≤ f . At the end, the MIP restricts the number of segments to
the constant LABELS.

Next, we explain each set of constraints and variables more technically.

4 Should there be multiple options for shortest paths, we pick them in such a way that each subpath of
a shortest path is again a shortest path.

OPODIS 2018

0:12 Local Fast Segment Rerouting on Hypercubes

(2): maximizing the number of protected links. The failure of any subset of up to f
protected links can be tolerated.
(3): are the pre-computed shortest path trees for all nodes.
(4): each variable D``′ is set to 1 if `′ is designated to the backup path of ` (P`), otherwise
remains 0. Each variable X v``′ indicates whether 1) the node v is a waypoint on P` and
2) `′ is on the shortest path from the tail of `′ to v, hence on the backup path. Similarly,
T``′ indicates whether `′ is a tunnel link on P`. VariablesWv

` is set to 1 when some node
v is used as a waypoint for P`. Each variable I` indicated whether ` is protected.
(6): these constraints enforce the links specified by D`1∗ to form a simple path connecting
the endpoints of `1, not using `1 (due to (5)).
(7), (8): a link `2 = (x, y) is allowed to be on the the backup path P`1 , `1 = (s, t) only if
1. the link `2 is on the shortest path SP (x, t) i.e. SP t`2

= 1;
2. else, a node v ∈ P`1 exists s.t. SP (x, v) begins with `2 (when X v`1`2

= 1 in (7)),
3. else, the variable T`1`2 is set to 1, which enforces the link `2 on P`1 as a tunnel link.
Therefore at least one of the cases must apply to the pair `1, `2 in order to have D`1`2 = 1
feasible. Cases 2 and 3 correspond to adding new segments. Note that the case 3 can
trivially hold for any link which would result in unrestricted number of segments. But
latter constraints avoid this in favour of having fewer segments.
(9),(10),(11): here we formulate the all-pairs shortest path sub-problem on the depen-
dency graph induced by D∗∗. Given a feasible assignment, the value of each dxy is at
most the length of the shortest path from x to y. The length of the shortest cycle of
dependencies through each dependency arc (`1, `2) is constrained by (11).
(12),(13): the flag Wv

` is set to 1 whenever the node v ∈ P` is used as a waypoint for
some `′ on P`. We restrict the total number of labels (thus, the number of segments)
using the constant LABELS.

5.2 Future Work II: Testbeds for Fast Failover in Segment Routing
The most popular testing environment for Segment Routing is Nanonet [39], which provides
an IPv6 data plane and is conceptually based off Mininet5. Nanonet allows to easily bench-
mark Segment Routing in different topologies, all contained in a virtualized enviroment.

To conduct a first feasibility study and evaluate the performance of Segment Routing
under different failure scenarios, we deploy the example from Figure 2 as a topology, with
an additional source node s connected to v1, using w as the destination node. Each link has
1 ms delay and bidirectional 10 Mbit/s bandwidth. Without failures, the standard route is
s—v1–(e1)–w.

If e1 is unavailable, then v1 will push v2 as a segment label (and w will switch to e2
for the return path), i.e., the packet path is s—v1—v2–(e2)–w. When additionally e2 is
unavailable, then v1 will push v1, v3 as segment labels (with w switching to e3 for the return
path), with the total packet path being s—v1—v2—v1—v3–(e3)–w.

We use iperf3 to generate IPv6 traffic to evaluate the TCP throughput between source
and destination nodes, stopping the experiment after 20 seconds, providing ample time for
TCP to stabilize. As Nanonet does not support failing links during runtime, we run the ex-
periment three times, first without link failures, then deactivating e1, and lastly deactivating
e1 and e2. The results of all three experiments are plotted in Figure 4.

5 http://mininet.org/

http://mininet.org/

K.-T. Foerster, M. Parham, S. Schmid, and T. Wen 0:13

2 4 6 8 10 12 14 16 18 20
8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

Time Slot (s)

B
an

dw
id

th
(M

bi
t/s

)

No Failure

1 Link Failure

2 Link Failure

Figure 4 TCP throughput of iperf3 under 0, 1, and 2 link failures in Nanonet, using an adapted
version of the topology and Segment Routing rules from Figure 2.

As can be seen, the throughput slightly deteriorates after one link failure, with an addi-
tional very small performance hit after the second link failure. We believe that the extent of
the slowdown may be related to simulation constraints, as implementing Segment Routing
takes additional computational overhead in the virtualized environment, but it would be
interesting to investigate the performance impact in a real hardware testbed. Additionally,
we believe it would be worthwhile to implement link failures during the simulation runtime
in Nanonet, to efficiently estimate the possible performance changes that occur directly after
the links went down. We plan to extend our current simulations in these directions.

Acknowledgements
We would like to thank David Lebrun for helpful discussions in the early stage of this paper.

References
1 Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko Jacob, Mahmoud Parham, and Ste-

fan Schmid. Waypoint routing in special networks. In Proc. IFIP Networking, 2018.
2 Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko Jacob, and Stefan Schmid. Charting

the algorithmic complexity of waypoint routing. CCR, 48(1):42–48, 2018.
3 Alia K Atlas and Alex Zinin. Basic specification for ip fast-reroute: loop-free alternates.

IETF RFC 5286, 2008.
4 François Aubry, David Lebrun, Stefano Vissicchio, Minh Thanh Khong, Yves Deville, and

Olivier Bonaventure. Scmon: Leveraging segment routing to improve network monitoring.
In Proc. IEEE INFOCOM, 2016.

5 Randeep Bhatia, Fang Hao, Murali Kodialam, and TV Lakshman. Optimized network
traffic engineering using segment routing. In IEEE INFOCOM, 2015.

6 Michael Borokhovich and Stefan Schmid. How (not) to shoot in your foot with sdn local
fast failover: A load-connectivity tradeoff. In OPODIS, 2013.

7 Costas Busch, Srikanth Surapaneni, and Srikanta Tirthapura. Analysis of link reversal
routing algorithms for mobile ad hoc networks. In Proc. ACM SPAA. ACM, 2003.

8 Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. A Distributed and Robust
SDN Control Plane for Transactional Network Updates. In Proc. IEEE INFOCOM, 2015.

9 B. Carpenter and S. Brim. Middleboxes: Taxonomy and issues. RFC 3234, RFC Editor,
February 2002. http://www.rfc-editor.org/rfc/rfc3234.txt.

10 Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrovic, Andrei V. Gurtov, Aleksander Madry,
Michael Schapira, and Scott Shenker. On the resiliency of static forwarding tables.
IEEE/ACM Trans. Netw., 25(2):1133–1146, 2017.

OPODIS 2018

http://www.rfc-editor.org/rfc/rfc3234.txt

0:14 Local Fast Segment Rerouting on Hypercubes

11 Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrovic, Aurojit Panda, Andrei V. Gurtov,
Aleksander Madry, Michael Schapira, and Scott Shenker. The quest for resilient (static)
forwarding tables. In Proc. IEEE INFOCOM, 2016.

12 Hongsik Choi, Suresh Subramaniam, and Hyeong-Ah Choi. On double-link failure recovery
in WDM optical networks. In Proc. IEEE INFOCOM, 2002.

13 Luca Davoli, Luca Veltri, Pier Luigi Ventre, Giuseppe Siracusano, and Stefano Salsano.
Traffic engineering with segment routing: Sdn-based architectural design and open source
implementation. In Proc. EWSDN, 2015.

14 Fabien Duchêne, David Lebrun, and Olivier Bonaventure. Srv6pipes: enabling in-network
bytestream functions. In Proc. IFIP Networking, 2018.

15 Theodore Elhourani, Abishek Gopalan, and Srinivasan Ramasubramanian. Ip fast rerouting
for multi-link failures. IEEE/ACM Trans. Netw, 24(5):3014–3025, 2016.

16 Gábor Enyedi, Gábor Rétvári, and Tibor Cinkler. A novel loop-free ip fast reroute algo-
rithm. In Meeting of the European Network of Universities and Companies in Information
and Communication Engineering, pages 111–119. Springer, 2007.

17 Joan Feigenbaum et al. Ba: On the resilience of routing tables. In Proc. ACM PODC,
2012.

18 ETSI. Network functions virtualisation. In White Paper, 2013.
19 Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: an intellectual history

of programmable networks. ACM SIGCOMM CCR, 44(2):87–98, 2014.
20 Clarence Filsfils, Pierre François, Stefano Previdi, Bruno Decraene, Stephane Litkowski,

Martin Horneffer, Igor Milojevic, Rob Shakir, Saku Ytti, Wim Henderickx, Jeff Tantsura,
Sriganesh Kini, and Edward Crabbe. Segment routing architecture. In Segment Routing
Use Cases, IETF Internet-Draft, 2014.

21 Clarence Filsfils, Nagendra Kumar Nainar, Carlos Pignataro, Juan Camilo Cardona, and
Pierre Francois. The segment routing architecture. In IEEE GLOBECOM, 2015.

22 Klaus-Tycho Foerster, Mahmoud Parham, Marco Chiesa, and Stefan Schmid. TI-MFA:
keep calm and reroute segments fast. In Global Internet Symposium (GI), 2018.

23 Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan. Local
fast failover routing with low stretch. ACM SIGCOMM CCR, 1:35–41, January 2018.

24 Klaus-Tycho Foerster, Yvonne Anne Pignolet, Stefan Schmid, and Gilles Trédan. Local
fast failover routing with low stretch. CCR, 48(1):35–41, 2018.

25 Pierre François, Clarence Filsfils, Ahmed Bashandy, and Bruno Decraene. Topology In-
dependent Fast Reroute using Segment Routing. Internet-Draft draft-francois-segment-
routing-ti-lfa-00, Internet Engineering Task Force, November 2013. URL: https://
datatracker.ietf.org/doc/html/draft-francois-segment-routing-ti-lfa-00.

26 Pierre François, Clarence Filsfils, John Evans, and Olivier Bonaventure. Achieving sub-
second IGP convergence in large IP networks. CCR, 35(3):35–44, 2005.

27 Eli M. Gafni and Dimitri P. Bertsekas. Distributed algorithms for generating loop-free
routes in networks with frequently changing topology. IEEE Transactions on Communica-
tions, 29(1):11–18, January 1981.

28 Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network failures
in data centers: measurement, analysis, and implications. In ACM SIGCOMM CCR,
volume 41, pages 350–361, 2011.

29 Alessio Giorgetti, Piero Castoldi, Filippo Cugini, Jeroen Nijhof, Francesco Lazzeri, and
Gianmarco Bruno. Path encoding in segment routing. In Proc. IEEE GLOBECOM, 2015.

30 Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi, Chen Tian,
Yongguang Zhang, and Songwu Lu. Bcube: a high performance, server-centric network
architecture for modular data centers. In Proc. ACM SIGCOMM, 2009.

https://datatracker.ietf.org/doc/html/draft-francois-segment-routing-ti-lfa-00
https://datatracker.ietf.org/doc/html/draft-francois-segment-routing-ti-lfa-00

K.-T. Foerster, M. Parham, S. Schmid, and T. Wen 0:15

31 Anupam Gupta, Amit Kumar, and Rajeev Rastogi. Traveling with a pez dispenser (or,
routing issues in mpls). SIAM Journal on Computing, 34(2):453–474, 2005.

32 Prashanth Hande, Mung Chiang, Robert Calderbank, and Sundeep Rangan. Network
pricing and rate allocation with content-provider participation. In Proc. IEEE INFOCOM,
2010.

33 Ed Harrison, Adrian Farrel, and Ben Miller. Protection and restoration in MPLS networks.
Data Connection White Paper, 2001.

34 Renaud Hartert, Stefano Vissicchio, Pierre Schaus, Olivier Bonaventure, Clarence Filsfils,
Thomas Telkamp, and Pierre Francois. A declarative and expressive approach to control
forwarding paths in carrier-grade networks. In ACM SIGCOMM CCR, volume 45, pages
15–28, 2015.

35 Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan Nan-
duri, and Roger Wattenhofer. Achieving high utilization with software-driven WAN. In
Proc. ACM SIGCOMM, 2013.

36 Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba,
and Marc Tom Thorgersen. P-rex: Fast verification of mpls networks with multiple link
failures. In Proc. ACM CoNEXT, 2018.

37 Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson, Scott
Shenker, and Ion Stoica. Achieving convergence-free routing using failure-carrying packets.
In Proceedings of the ACM SIGCOMM 2007 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Kyoto, Japan, August 27-31,
2007, pages 241–252. ACM, 2007.

38 David Lebrun. Reaping the Benefits of IPv6 Segment Routing. PhD thesis, UCLouvain /
ICTEAM / EPL, October 2017.

39 David Lebrun. Virtual networks testing framework (nanonet). https://github.com/
segment-routing/nanonet, February 2017.

40 David Lebrun and Olivier Bonaventure. Implementing ipv6 segment routing in the linux
kernel. In Proc. ACM ANRW.

41 David Lebrun, Mathieu Jadin, François Clad, Clarence Filsfils, and Olivier Bonaventure.
Software resolved networks: Rethinking enterprise networks with ipv6 segment routing. In
Proc. ACM SOSR.

42 Ming-Chieh Lee and Jang-Ping Sheu. An efficient routing algorithm based on segment
routing in software-defined networking. Comput. Netw., 103(C):44–55, July 2016.

43 Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David Gelern-
ter. Traffic engineering with forward fault correction. In Proc. ACM SIGCOMM, 2014.

44 Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira, and Scott
Shenker. Ensuring connectivity via data plane mechanisms. In Proc. USENIX NSDI, 2013.

45 Grzegorz Malewicz, Alexander Russell, and Alexander A. Shvartsman. Distributed schedul-
ing for disconnected cooperation. Distributed Computing, 18(6):409–420, 2005.

46 Athina Markopoulou, Gianluca Iannaccone, Supratik Bhattacharyya, Chen-Nee Chuah,
Yashar Ganjali, and Christophe Diot. Characterization of failures in an operational IP
backbone network. IEEE/ACM Trans. Netw., 16(4):749–762, 2008.

47 Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Zhi-Li Zhang, and Chen-Nee Chuah. Fast
local rerouting for handling transient link failures. IEEE/ACM Trans. Netw, 15(2):359–372,
2007.

48 Mohammad Noormohammadpour and Cauligi S Raghavendra. Datacenter traffic con-
trol: Understanding techniques and tradeoffs. IEEE Communications Surveys & Tutorials,
20(2):1492–1525, 2017.

OPODIS 2018

https://github.com/segment-routing/nanonet
https://github.com/segment-routing/nanonet

0:16 Local Fast Segment Rerouting on Hypercubes

49 Eunseuk Oh, Hongsik Choi, and Jong-Seok Kim. Double-link failure recovery in WDM
optical torus networks. In Information Networking, Networking Technologies for Broadband
and Mobile Networks, International Conference ICOIN, 2004.

50 P. Pan, G. Swallow, and A. Atlas. Fast reroute extensions to rsvp-te for lsp tunnels. RFC
4090, RFC Editor, May 2005.

51 Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan. Load-optimal local fast rerouting
for dependable networks. In Proc. IEEE/IFIP DSN, 2017.

52 Y. Saad and M. H. Schultz. Topological properties of hypercubes. IEEE Transactions on
Computers, 37(7):867–872, July 1988.

53 Yousef Saad and Martin H. Schultz. Data communication in hypercubes. J. Parallel Distrib.
Comput., 6(1):115–135, 1989.

54 Stefano Salsano, Luca Veltri, Luca Davoli, Pier Luigi Ventre, and Giuseppe Siracusano.
Pmsr—poor man’s segment routing, a minimalistic approach to segment routing and a
traffic engineering use case. In Proc. IEEE/IFIP NOMS, 2016.

55 Stefan Schmid and Jiri Srba. Polynomial-time what-if analysis for prefix-manipulating mpls
networks. In Proc. IEEE INFOCOM, 2018.

56 Aman Shaikh, Chris Isett, Albert Greenberg, Matthew Roughan, and Joel Gottlieb. A case
study of ospf behavior in a large enterprise network. In Proc. ACM SIGCOMM Workshop
on Internet Measurment, 2002.

57 Lu Shen, Xi Yang, and Byrav Ramamurthy. Shared risk link group (srlg)-diverse path
provisioning under hybrid service level agreements in wavelength-routed optical mesh net-
works. IEEE/ACM Transactions on Networking (ToN), 13(4):918–931, 2005.

58 Abhinav Kumar Singh, Ravindra Singh, and Bikash C. Pal. Stability analysis of networked
control in smart grids. IEEE Trans. Smart Grid, 6(1):381–390, 2015.

59 Brent Stephens, Alan L. Cox, and Scott Rixner. Plinko: Building provably resilient for-
warding tables. In Proc. 12th ACM HotNets, 2013.

60 Brent Stephens, Alan L Cox, and Scott Rixner. Scalable multi-failure fast failover via
forwarding table compression. SOSR. ACM, 2016.

61 János Tapolcai, Balázs Vass, Zalán Heszberger, József Bıró, David Hay, Fernando A
Kuipers, and Lajos Rónyai. A tractable stochastic model of correlated link failures caused
by disasters. In Proc. IEEE INFOCOM, 2018.

62 Frederic Trate. Bringing segment routing and ipv6 together, August 2016. URL: https:
//blogs.cisco.com/sp/bringing-segment-routing-and-ipv6-together.

63 George Trimponias, Yan Xiao, Hong Xu, Xiaorui Wu, and Yanhui Geng. On traffic engi-
neering with segment routing in sdn based wans. arXiv preprint arXiv:1703.05907, 2017.

64 Emmanouel A. Varvarigos and Dimitri P. Bertsekas. Performance of hypercube routing
schemes with or without buffering. IEEE/ACM Trans. Netw., 2(3):299–311, 1994.

65 Junling Wang and Srihari Nelakuditi. Ip fast reroute with failure inferencing. In Proc.
SIGCOMM Workshop on Internet Network Management, pages 268–273, 2007.

66 Ye Wang, Hao Wang, Ajay Mahimkar, Richard Alimi, Yin Zhang, Lili Qiu, and
Yang Richard Yang. R3: resilient routing reconfiguration. In Proc. ACM SIGCOMM,
2010.

67 Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Antony I. T. Rowstron. Better
never than late: meeting deadlines in datacenter networks. In Proc. ACM SIGCOMM,
2011.

68 Baobao Zhang, Jianping Wu, and Jun Bi. Rpfp: Ip fast reroute with providing complete
protection and without using tunnels. In Proc. IWQoS, 2013.

https://blogs.cisco.com/sp/bringing-segment-routing-and-ipv6-together
https://blogs.cisco.com/sp/bringing-segment-routing-and-ipv6-together

	Introduction
	Motivation and Challenges
	Example
	Contributions
	Organization

	Model
	Efficient Resilient Segment Routing on k-Dimensional Hypercubes
	Overview of the Fast Local Failover Scheme
	Proof Preliminaries
	Correctness

	Related Work
	Conclusion and Future Work
	Future Work I: Resilient Segment Routing on General Graphs
	Future Work II: Testbeds for Fast Failover in Segment Routing

