
Toward Demand-Aware Networking:
A Theory for Self-Adjusting Networks

Chen Avin

Ben Gurion University, Israel

avin@cse.bgu.ac.il

Stefan Schmid

University of Vienna, Austria

stefan_schmid@univie.ac.at

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.

The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
The physical topology is emerging as the next frontier in an

ongoing effort to render communication networks more flex-

ible. While first empirical results indicate that these flexibili-

ties can be exploited to reconfigure and optimize the network

toward the workload it serves and, e.g., providing the same

bandwidth at lower infrastructure cost, only little is known

today about the fundamental algorithmic problems underly-

ing the design of reconfigurable networks. This paper initi-

ates the study of the theory of demand-aware, self-adjusting

networks. Our main position is that self-adjusting networks

should be seen through the lense of self-adjusting datas-

tructures. Accordingly, we present a taxonomy classifying

the different algorithmic models of demand-oblivious, fixed

demand-aware, and reconfigurable demand-aware networks,

introduce a formal model, and identify objectives and evalua-

tion metrics. We also demonstrate, by examples, the inherent

advantage of demand-aware networks over state-of-the-art

demand-oblivious, fixed networks (such as expanders). We

conclude by observing that the usefulness of self-adjusting

networks depends on the spatial and temporal locality of the

demand; as relevant data is scarce, we call for community

action.

CCS CONCEPTS
• Networks → Network algorithms; Network struc-
ture;

KEYWORDS
Network Design, Online Algorithms, Amortized Analysis,

Self-adjusting Datastructures

1 INTRODUCTION
Data-centric applications, including online services like web

search, social networks, storage, financial services, multi-

media, etc. [1], as well as emerging applications such as

distributed machine learning, generate a significant amount

of network traffic [2–6]. It is hence not surprising that the

Figure 1: Taxonomy of topology optimization

design of efficient datacenter networks has received much

attention over the last years. The topologies underlying mod-

ern datacenter networks range from trees [7, 8] over hyper-

cubes [9, 10] to expander networks [11] and provide high

connectivity at low cost [1].

Until now, these networks also have in common that their

topology is fixed and oblivious to the actual demand (i.e.,

workload or communication pattern) they currently serve.

As such, topologies are designed to provide worst-case guar-

antees, such as high bisection bandwidth, and to support

arbitrary (all-to-all) communication patterns [7].

Emerging technologies like optical circuit switches [12–

15], 60 GHz wireless communication [16, 17] and free-space

optics [18, 19] herald a very different kind of network topolo-

gies: malleable topologies which can be quickly reconfig-

ured [20]. Such reconfigurable networks introduce an addi-

tional degree of freedom to the datacenter network design

problem [12, 14, 16, 18–23].

Reconfigurable networks enable demand-aware net-
works: networks which are optimized toward the workload

they serve, either statically (fixed topology) or dynamically

(reconfigurable topology) over time. We will refer to the lat-

ter also as self-adjusting networks. While first empirical

studies show that a demand-aware network can achieve per-

formance similar to a demand-oblivious network at lower

cost [18, 19], not much is known today about how to exploit

the algorithmic opportunities underlying the design of self-

adjusting networks. Indeed, while reconfigurable networks

introduce an interesting paradigm shift, we currently lack

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018



8

4

62

97531 15

12

10

11

14

13

7

4

62

9

8531

15

12

10

11

14

13

5

1 9

7

86

1513

14

12

11

10

3

42

9

86

1513

14

12

11

10

5

1

3

42

7

BSTt BSTt+1

(a) BST: demand-oblivious (b) BST: demand-aware (c) BST: self-adjusting

Figure 2: Examples of different demand graphs and their corresponding networks

analytical tools to investigate their potential and implica-

tions.

This paper initiates the study of the theory of demand-

aware, self-adjusting networks, and in particular their fun-

damental underlying algorithmic problems. Our position is

that self-adjusting networks should be seen from the perspec-

tive of self-adjusting datastructures: The current paradigm

shift toward “self-optimizing” network topologies resembles

the process that data structures went through over 40 years

ago [24], evolving from static worst-case topology designs

toward demand-aware and then self-adjusting topology de-

signs, see Fig. 1.

As an illustrative and well-studied example, consider the

case of Binary Search Trees (BSTs), see Fig. 2. Traditional

BSTs are (demand-)oblivious and do not rely on any assump-

tions on the demand (e.g., lookup requests) they serve, but

optimized for the worst-case, where any item could be ac-

cessed at any frequency: items are stored at average distance

O(logn) from the root, independently of their frequency, see

Fig. 2 (a).

Clearly, if the demand has a specific pattern, where some

items are requested more frequently, the performance of

the binary search tree designed for the worst case, is no

longer optimal. Demand-aware but fixed BSTs (a.k.a. biased

search trees) such as [25–28] account for the frequency of

the accessed items: frequent items are stored close to the

root, infrequent items are lower in the tree, see Fig. 2 (b).

This results in a lower average cost per requested item.

Self-adjusting BSTs, or dynamic demand-aware BSTs, are

an attractive alternative to fixed BSTs, as they do not rely

on an a priori knowledge about the demand. Rather, self-

adjusting BSTs learn and adjust to the demand, and to its

temporal locality, in an online manner. This, by now classical,

approach was first introduced by Sleator and Tarjan [24]

for splay trees, and today, several other self-adjusting BSTs

exists, such as tango trees [29]. As we will discuss later, de-

spite not knowing the demand ahead of time, self-adjusting

BSTs ideally never perform much worse than any fixed tree,

but can perform significantly better if the demand features

spatial or temporal locality.

In the same spirit, we in this paper present a taxonomy and

a formal model for Self-Adjusting Networks (SANs). We show

that while the performance of demand-oblivious networks

is limited by worst-case metrics such as the network diame-

ter, self-adjusting networks are only limited by the spatial

and temporal locality. The more “structure” the demand has,

the better self-adjusting networks can perform compared to

demand-oblivious networks. We demonstrate by examples

the inherent benefit of demand-aware networks over state-of-

the-art demand-oblivious networks such as expander graphs,

identify objectives, define desirable properties and metrics

of demand-aware networks, and discuss open problems.

2 WHY SELF-ADJUSTING NETWORKS?
The vision of self-adjusting networks can be best understood

by an analogy to datastructures. This section establishes and

motivates this connection, and elaborates on the example of

Binary Search Trees (BSTs) and a case study of routing. We

will first demonstrate the benefits of self-adjusting BSTs and

later extend the example to self-adjusting networks.

2.1 From Self-Adjusting Datastructures...
We can identify three different kinds of binary search tree

datastructures: demand-oblivious BSTs, (static) demand-

aware BSTs, and (dynamic) demand-aware BSTs, henceforth

also called self-adjusting BSTs. We assume that the BST

stores a set of items {1, 2, . . . ,n} where n = 2
k − 1.

Let us start by focusing on the most basic operation sup-

ported by a BST: the search() operation (for simplicity, we

ignore insert() and delete()). The cost of a search for an item

v is proportional to the depth of v from the root of the BST

(e.g., the number of pointer accesses). In graph terms, regard-

ing the BST as a network, this corresponds to the shortest

path length between the root and the searched element, v .
Now consider a demand to be served by the BST, given

as a sequence of m search requests τ = (τ0,τ1, . . . τm−1) for

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018



1

9

5

8

4

3

7

2

6

10

11

12

13

14

15

16

4

9

72

5

6

3

1 8

1310

1416 15

11

12

95

95

Nt Nt+1

(a) Network: demand-oblivious (b) Network: demand-aware (c) Network: self-adjusting

Figure 3: Examples of different demand graphs and their corresponding networks.

items (i.e., keys). τ is the problem input. For demonstration

purposes, in the following, we will assume the specific search

sequence τ = (1, 1, . . . , 1, 3, 3, . . . , 3, 5, 5, . . . , 5, . . . , . . . , 2k−
1, 2k − 1, . . . , 2k − 1) where an item is repeated many times

consecutively. Note that τ is large but only contains k = logn
unique items which correspond to the k smallest leaves in

the complete BST, see Fig. 2 (a).

Different BSTs, depending on whether they are demand-

oblivious, static (fixed) demand-aware, and dynamic (recon-

figurable) demand-aware, will incur different costs under

this demand. In the following, we will examine the three

different cases in turn.

Demand-Oblivious Datastructures. Let us first study a

demand-oblivious BST, namely a tree that is designed to

perform well even for a “worst possible” τ . A balanced and

complete BST over the items 1, . . .n provides an optimal

solution for the demand-oblivious case, see Fig. 2 (a). Such

a tree guarantees a cost of at most logn for every request

in every sequence. Note that logn is also the maximum em-

pirical entropy of an n-items sequence, where all items have

the same (uniform) frequency. For our specific sequence τ ,
which is unknown a priori, the amoritzed cost per request

will be logn: all items are leafs in the complete tree.

Demand-Aware Datastructures. Next, consider a (fixed)
demand-aware BST which is optimized toward τ a priori, like
in Fig. 2 (b). Such a demand-aware, optimized tree, can take

advantage of the spatial locality of the demand, and will

put all the logn requested items near the root (and other ele-

ments further away), resulting in an amoritzed cost of only

about log logn per request. Such optimized demand-aware

trees have been studied, e.g., by Knuth [26] and Hu et al. [27]

who presented polynomial-time algorithms to construct ex-

actly optimal trees for given probability distributions, as well

as by Mehlhorn [25] and Bent et al. [28] who presented faster

algorithms for approximately optimal trees. The amoritzed

cost per request in these trees is proportional to the empirical

entropy of the sequence, Ĥ (τ ) [? ]. The empirical entropy is

always Ĥ (τ ) ≤ logn, and it can be much lower than logn: in
our example, Ĥ (τ ) ≈ logk = log logn.
Self-Adjusting Datastructures. To conclude the example,

let us consider a self-adjusting BST, as shown in Fig. 2 (c).

For this case, the sequence is unknown a priory, but we can

self-adjust the tree between requests. For every time t , we
consider a (possibly) different binary search tree BSTt : we
need a new operation, adjust(), which reconfigures BSTt to
BSTt+1. Such an adjustment obviously comes at a cost, and

is usually implemented using local tree rotations (each of

constant cost) which preserve the search structure of the

BST. More specifically, a tree rotation can only be performed

for an accessed item and only by changing pointers with

immediate neighbors (i.e., parents, children in the tree). Splay

trees [24] for example, use a “move-to-front” rule, where the

last requested item is rotated to the root, using tree rotations

known as splay operations.

For the above considered sequence τ , the amortized cost

per request (including both search() and adjust()) will be con-
stant. Each requested item will move-to-front once, at high

cost, but then this cost will be amoritzed by the subsequent

repetitions of requests for the same item, taking advantage

of temporal locality. Surprising at first, but by now well-

known, is that for any sequence, splay trees are statically

optimal: they perform as well as any demand-aware tree

that is a priori optimized toward the demand, like Mehlhorn

trees.

To summarize the BST example, for the above toy se-

quence τ , the amortized cost per request will be about logn
(for oblivious BSTs), log logn (for demand-aware but static

BSTs), or even constant (for self-adjusting BSTs), depending

on the kind of BST. This clearly demonstrates the possible

cost benefits of demand-aware and self-adjusting datastruc-

tures. For example, self-adjusting BSTs are useful for imple-

menting caches and garbage collection where the principle

of locality [30] holds.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018



2.2 ... to Self-Adjusting Networks
We now repeat the same motivation for networks. We look

at a network as a datastructure that, rather than serving

search requests issued from the root to an item, serves com-

munication requests (e.g., packets) from a source node to a

destination node. This operation is performed abstractly, via

a route() operation, similar in spirit to the BST’s search()
operation (where the source is always the root). The input

to this routing problem is a sequence σ = (σ0,σ1, . . . ,σm−1)
of communication requests, where each request amounts

to forwarding one unit of data from a source node u to a

destination node v . While network optimization in general

obviously has many dimensions, and includes aspects such

as addressing, policies, congestion, etc., in the following, we

will only consider the routing or forwarding cost of each re-

quest: the cost of serving a request σi is given by the length

of the route from source to destination. In particular, in our

example, we will assume shortest path routing.

Demand-Oblivious Networks. We start with the topolo-

gies of traditional demand-oblivious communication net-

works, and in particular datacenter networks, which do not

rely on any assumptions on the demand, σ . Rather, they
are conservatively optimized for arbitrary (i.e., all-to-all) de-

mands, providing worst-case properties such as bounded net-

work diameter, mincut, or (almost) full bisection bandwidth

(even in the presence of traffic engineering flexibilities [8]).

Fig. 3 (a) presents an example for such a state-of-the-art

network, an expander-based network [11, 31].

What will be the amortized cost (i.e., the average route

length) per request on such an expander? To start with a

simple example (and for the sake of simplicity and clarity, we

leave out some of the details), consider a demand σ whose

communication pattern is described by a two-dimensional

square grid, of size

√
n ×

√
n (see Fig. 4 (a)). We call this

representation a demand graph G(σ ) where each weighted

(directed) edge e = (v,u) in the graph represents the fre-

quency at which the two endpoints of e , namely v and u,
communicate in σ . Note that in this request sequence σ , ev-
ery node communicates with at most four partners, hence,

it is a sparse sequence, with spatial locality.

Serving this demand on a static expander in an oblivious

(i.e., arbitrary) way will result in an average route length in

the order of logn, the diameter of a bounded degree expander.

Note again that logn is the maximum empirical entropy of

the demand, Ĥ (σ ).
Demand-Aware Networks. What about demand-aware

networks? Can the average route length be better than logn
if the network is optimized toward the demand σ known a

priori, as in Fig. 3 (b)? It turns out that the answer is affir-

mative for many cases, as was shown recently in [32]. A

fundamental metric for the performance of such demand-

aware networks turned out to be the (empirical) conditional

entropy of σ . In a nutshell, the conditional entropy is a mea-

sure of the spatial locality of σ . In our example in Fig. 4 (a),

since every node communicates with at most four partners

(other nodes), the conditional entropy is a constant. In other

words, there is a large gap of Θ(logn) between the condi-

tional entropy and the entropy of σ . Clearly, a demand-aware

network can be designed to serve our σ at a very low (amor-

tized) cost per request. The results in [32] prove that if G(σ )
is sparse, then the conditional entropy is both a lower and an

upper bound for the average route length; the paper presents

a design that matches the upper bound. Another example in-

troducing a large gap of Θ(logn) between demand-oblivious

and demand-aware networks is a demand graphG(σ ) which
forms a star (with unbounded degree), see Fig. 4 (b): node

pairs communicate at different frequencies (skewed distri-

bution, as indicated by the thickness). For this demand, the

conditional entropy could be much lower than logn which

will be the cost of serving this demand on an oblivious ex-

pander.

More generally, one can see that every sparse communi-

cation pattern which is embedded on a demand-oblivious

expander, will result in average route lengths in the order

of Ω(logn), the diameter, regardless of the entropy or the

conditional entropy of the demand.

Self-Adjusting Networks. We complete the analogy by

moving to self-adjusting networks, see Fig. 3 (c). Similar

to the BST case, we have a new operation, adjust(), to recon-

figure the network at time t , Nt , to a new network at time

t + 1, Nt+1. This reconfiguration will also come at a cost that

needs to be well-defined (and to be compared to the routing

cost).

Like in BSTs, we can ask: is there a design of a self-adjusting

network that achieves the bounds of an optimal fixed net-

work, without knowledge of σ , but using reconfigurations in

an online manner? In other words, are there statically opti-

mal self-adjusting networks? Like splay trees are for binary

search trees.

Moreover, similarly to BSTs, we note that self-adjusting

networks, taking advantage both of spatial and temporal lo-

cality, can in principle perform much better than existing

cost lower bounds (such as [32]) for static demand-aware net-

works. For example one can think of requests that arrive from

a grid like in Fig. 4 (a), but where the grid also changes over

time, to add temporal locality. For this case, self-adjusting

networks will perform better than static networks.

3 TAXONOMY
This section presents a more systematic taxonomy of net-

work designs, revolving around the (demand) awareness, the

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018



5

2

7

1

9

3

6 8

4

10 11 12

13 14 15 16 9

5

8

4

3

7

2

6

10

11

12

13

14

15

16 1

(a) (b)

Figure 4: Expander networks do not achieve opti-
mal average route lengths for sparse demand graphs.
(a) An oblivious embedding of a 2-dimensional grid de-
mand graph on a constant degree expander network
will result in average route lengths of Ω(logn), while
the conditional entropy of the demand graph is less
than two. (b) An oblivious embedding of a weighted
star demand graph on a constant degree expander net-
work will result in an average route length of Ω(logn),
while the conditional entropy of the demand graph
could be much lower.

type of topology (fixed or reconfigurable), the type of in-

put (e.g., unknown, known, revealed online over time), as

well as the required algorithms and properties, see Fig. 5. The

taxonomy in Fig. 5 also provides the guideline behind the

following discussion.

3.1 Demand-Oblivious Networks
State-of-the-art demand-oblivious datacenter networks such

as Xpander [11] rely on a fixed (static) network topology

and are not optimized toward a specific demand: the demand

(i.e., input) is unknown. Typical objectives of such network

designs are to provide (almost) full bisection bandwidth (as-

suming all-to-all communication patterns), short routes (e.g.,

at most 6 hops from server to top-of-the-rack switch, aggre-

gation switch, core, and down again), as well as resiliency

(e.g., k-connectivity). We will refer to algorithms for demand-

oblivious networks by Obl.

3.2 Demand-Aware Networks
Fixed Demand-Aware Networks. The input to the fixed

(static) demand-aware network design problem could either

be a sequence of requests (in our case, communication re-

quests) σ or a generative model G (generator) of such re-

quests. A generator G comes with a set of parameters par(G).
A most simple example for a generative model is a fixed

distribution from which requests are sampled i.i.d.: such a

generator may feature spatial locality, however, it does not

feature any temporal locality as requests are sampled in-

dependently. A more complex generative model which also

features temporal locality could be, for example, aMarkovian

process (or random walk).

Independently of whether the input is a sequence or gen-

erator, our goal is to design an optimal fixed topology N ∗
,

and we will refer to the corresponding algorithms as Stat

and Gen respectively.

Reconfigurable Demand-Aware Networks. Reconfig-

urable demand-aware networks allow to optimize the topol-

ogy at runtime, i.e., the topology is dynamic. If the demand

is known a priori, an offline algorithm Off can be used to

compute an optimized schedule to reconfigure a network

over time, i.e., unlike Stat, Off changes the network over

time and is charged for such reconfigurations. In other words,

Off should only change the network when it pays off later,

by making requests cheaper to serve.

The most interesting are scenarios arise where the input

is not known a priori but revealed over time, in an online

manner. We distinguish between three different evaluation

metrics for an online algorithm On: static optimality, learn-

ing optimality, and dynamic optimality. We have already

discussed static optimality above: it asks for an online algo-

rithmOnwhich is competitive compared to an optimal static

algorithm Stat. In contrast, dynamic optimality asks for an

algorithm On which is competitive even when compared to

an optimal (dynamic) offline algorithm Off, a much stronger

requirement.

An interesting special case regards a scenario in which

the demand is generated from a model which is not known

ahead of time, and the goal of the online network reconfig-

uration algorithm is to learn the demand generator quickly

and cost-efficiently (with little reconfigurations). For exam-

ple, if the demand is given by a generator describing a fixed

distribution fromwhich requests are sampled i.i.d., ideally, an

algorithm would quickly converge to an optimized fixed net-

work which optimally serves this distribution: since requests

are i.i.d., there is no temporal locality and reconfigurations

are no longer beneficial after convergence. If the genera-

tor is a Markov process, the request sequence may feature

both spatial and temporal locality, and an algorithm should

quickly learn the process and may then converge to an opti-

mal reconfiguration schedule over time. We hence introduce

a third type of optimality besides static and dynamic opti-

mality: learning optimality. Learning optimality asks for an

online algorithm On which is competitive compared to an

optimal static algorithm Gen which knows the generator.

Finally, we can classify algorithms for online reconfig-

urable demand-aware networks in two flavors: centralized

algorithms and distributed (i.e., decentralized and concur-

rent) algorithms.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018



Figure 5: Detailed taxonomy of network optimization

3.3 Additional Properties
Besides the properties that are specific to demand-aware net-

works, it is usually desirable that demand-aware networks

additionally still fulfill the traditional properties of demand-

oblivious networks, for example the requirement to provide

redundant connectivity. Furthermore, some static properties

become more useful in the dynamic context, for example,

compact and local routing: As dynamic demand-aware net-

works may change frequently over time, it may be highly

undesirable to recompute routing paths each time for each

topological modification; rather, it would be ideal if the topol-

ogy allows to forward packets greedily, at any time, and

modifications only entail local changes to the forwarding

tables.

4 A FORMAL MODEL
This section presents a general algorithmic model for self-

adjusting networks. We consider a set of n nodes V =

{1, . . . ,n} (e.g., the top-of-rack switches). The communi-

cation demand among these nodes is a sequence σ =

(σ1,σ2, . . .) of communication requests where σt = (u,v) ∈
V ×V , is a source-destination pair. The communication de-

mand can either be finite or infinite.

In order to serve this demand, the nodes V must be inter-

connected by a network N , defined over the same set of

nodes. In case of a demand-aware network, N can be op-

timized towards σ , either statically or dynamically: a self-

adjusting network N can change over time, and we denote

by Nt the network at time t , i.e., the network evolves: N0,
N1, N2, . . .

4.1 Constraints
In addition to the dynamic properties related to optimiza-

tions over time, described shortly, a network Nt may have

to adhere to some physical constraints (e.g., the number of

lasers which can be installed on a top-of-the-rack switch

may be limited) and fulfill invariants at any time. This can be

modeled by requiring that all networks Nt belong to some

network family N : Nt ∈ N . Examples for families N may

include, bounded degree networks (e.g., for a high scalability),

networks of full bisection bandwidth or expanders (e.g., to en-

sure congestion-free shuffle phases), k-connected networks

(for resiliency), etc.

4.2 Reconfiguration
The crux of designing smart self-adjusting networks is to

find an optimal tradeoff between the benefits and the costs

of reconfiguration: while by reconfiguring the network, we

may be able to serve requests more efficiently in the future,

reconfiguration itself can come at a cost.

The inputs to the self-adjusting network design problem is

a set of allowed network topologiesN , the request sequence

σ = (σ0,σ1, . . . ,σm−1), and two types of costs:

• An adjustment cost adj : N ×N → R which defines

the cost of reconfiguring a network N to a network N ′
.

Adjustment costs may include mechanical costs (e.g.,

energy required to move lasers or abrasion) as well as

performance costs (e.g., reconfiguring a network may

entail control plane overheads or packet reorderings,

which can harm throughput). For example, the cost

could be given by the number of links which need to

be changed in order to transform the network.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018



• A service cost srv : σ × N → R which defines, for

each request σi and for each network N ∈ N , what

is the price of serving σi in network N . For example,

the cost could correspond to the route length: shorter

routes require less resources and hence reduce not only

load (e.g., bandwidth consumed along fewer links), but

also energy consumption, delay, and flow completion

times, could be considered for example.

Serving request σi under the current network configura-

tion Ni will hence cost srv(σi ,Ni ), after which the network

reconfiguration algorithm may decide to reconfigure the

network at cost adj(Ni ,Ni+1). The total processing cost of a

schedule σ for an algorithm A is then

Cost(A,N0,σ ) =
m−1∑
i=0

srv(σi ,Ni ) + adj(Ni ,Ni+1)

where Ni ∈ N denotes the network at time i .
When we consider a generative model G resulting in a

randomized sequence σ (G), we will consider an algorithm

A’s expected cost E[Cost(A,N0,σ (G))].
It is sometimes useful to aggregate the requests of se-

quence σ over time and represent it as a directed and

weighted demand graph (resp. guest graph or request graph)

G(σ ) = (V (σ ),E(σ )), whose node set V (σ ) is given by the

set of nodes participating in σ , E(σ ) is the set of directed

edges between communicating nodes V (σ ) in σ , and the

edge weight is the normalized frequency at which two nodes

interact in σ .
We need the concept of amortized costs to reason about

costs over sequences.

Definition 1 (Average and Amortized Cost). Given
an algorithm A, an initial network N0, a reconfiguration cost

function adj, a request serving cost function srv, and a se-

quence σ = (σ0,σ1, . . . ,σm−1) of communication requests over

time, we define the (average) cost incurred by A as:

Cost(A,N0,σ ) =
1

m

m−1∑
i=0

srv(σi ,Ni ) + adj(Ni ,Ni+1)

where Ni ∈ N denotes the network at time i . The

amortized cost of A is defined as the worst possible cost

of A over all initial networks N0 and all sequences σ , i.e.,
maxN0,σ Cost(A,N0,σ ).

4.3 Objectives and Metrics
We can now define static, dynamic, and learning optimal-

ity objectives. In static optimality, we want the network to

(asymptotically) perform well even in hindsight, i.e., given

knowledge of the demand.

Definition 2 (Static Optimality). Let Stat be an optimal

static algorithm with perfect knowledge of the demand σ , and

let On be an online algorithm. We say that On is statically

optimal if, for sufficiently long communication patterns σ , the
following ratio is constant:

ρ = max

σ

Cost(On,N0,σ )
Cost(Stat,N ∗,σ ) + β

for some β independent of the length of the sequence σ .
Here, N0 ∈ N is the initial network, from which On starts,

and N ∗ ∈ N is the statically optimal network. In other

words, On’s cost is at most a constant factor higher than Stat’s

in the worst case.

The holy grail of self-adjusting networks however regards

the design of dynamically optimal reconfigurable networks:

how well can a reconfigurable demand-aware network per-

form, when compared to a network which is dynamically

optimized in an offline manner?

Definition 3 (Dynamic Optimality). An algorithm is

called dynamically optimal if and only if it is asymptotically

optimal even compared to an optimal offline algorithm which

can dynamically reconfigure the network and which has com-

plete knowledge of the request sequence σ ahead of time. More

formally, let Off be an optimal offline algorithm, and let On be

an online algorithm. We say that On is dynamically optimal

if the following ratio is constant:

ρ = max

σ

Cost(On,N0,σ )
Cost(Off,N0,σ )

that is, On’s cost is at most ρ times higher in the worst case.

Again, N0 ∈ N is the initial network.

Finally, we define learning optimality:

Definition 4 (Learning Optimality). An algorithm

(which initially does not know the parameters par(G) of the
generator) is called learning optimal if and only if it is asymp-

totically optimal even when compared to an optimal static algo-

rithm which knows the generator. More formally, let Gen be

an optimal “fixed algorithm”, and let On be an online learning

algorithm. We say that On is learning optimal if the following

ratio of expectations is constant:

ρ = max

par(G)

E[Cost(On,N0,σ (G))]
E[Cost(Gen,N ∗,σ (G))] + β

where β is independent of the length of the sequence and where

the maximum is taken over the parameters of the generator

model G. That is, Gen’s cost is at most ρ times higher in the

worst case.

5 REVIEW OF STATE-OF-THE-ART
The problem of designing demand-aware and self-adjusting

networks is a fundamental one, and finds interesting applica-

tions in many distributed and networked systems, not only in

datacenters. For example, use cases also arise in the context

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018



of wide-area networks [21, 33] and, more traditionally, in the

context of overlays [34, 35]. However, while the problem is

natural, surprisingly little is known today about the design

of demand-aware networks, especially dynamic networks

which can change over time. The approach of reconfigur-

ing network topologies to reduce communication costs, is

orthogonal to approaches changing the traffic matrix itself

(e.g., [36]) or migrating communication endpoints on a fixed

topology [37].

One basic observation to make is that the design of static

demand-aware networks is related to graph embedding prob-

lems (a.k.a. virtual network embedding and graph layout

problems) [38–40]: given a graph (describing the demand),

find an embedding in another graph (the physical topology),

such that certain properties are fulfilled (e.g., the sum or

max of the total load on the physical graph is minimized). It

is known that the embedding problem is NP-hard in many

variants [41], for example already for very simple physical

networks such as the line [38]: the problem of embedding an

arbitrary request graph onto a line is known as the Minimum

Linear Arrangement (MLA) problem. From this relationship

it also follows that the static offline demand-aware network

design problem is NP-hard if the designed network is re-

stricted to the family of degree-2 networks.

However, unlike graph embedding problems, in the de-

sign of demand-aware networks, the physical network is not

given but subject to optimization as well. An intriguing and

open question is whether this additional degree of freedom

makes the problem harder or easier. An encouraging exam-

ple (focusing on routing) is given in [42]: an optimal fixed

demand-aware network (also called DAN in the literature)

restricted to BSTs can be computed in polynomial time. An-

other example of approximately optimal demand-aware net-

works are Dans [32] (which provide a constant approxima-

tion for sparse demand graphs), matching the lower bounds

based on conditional entropies derived in the same paper. A

slightly different model, motivated by optical switches which

can be configured to provide an optimized matching, is stud-

ied in [43]: the authors present several optimal algorithms

for special workloads (e.g., where the demand is given by a

single flow). There is also work on resilient demand-aware

networks, such as rDan [44] (based on a coding approach

but without degree bounds).

Even less is known about self-adjusting networks. The

best upper bound known so far for online reconfigurable

networks isO(Ĥ (Xσ )+ Ĥ (Yσ )), where Ĥ (Xσ ) and Ĥ (Yσ ) are
the empirical entropies of sources and destinations in σ , re-
spectively [45]. It is achieved by a self-adjusting tree network

(the tree network can also be decentralized [46]). While this

is optimal for some frequency distributions (e.g., the empir-

ical distribution of σ ), and in particular product frequency

distributions, in general, it can be far from optimal.

6 CONCLUSION AND CALL FOR ACTION
We hope that our paper can nourish the ongoing discus-

sions on the benefits and limitations of such reconfigurable

network topologies, and we believe that our work opens

many interesting questions for future research. On the algo-

rithmic front, a first important open question concerns the

design of a self-adjusting network that achieves the bounds

of a static network, without knowledge of σ , but using recon-

figurations in an online manner: are there statically optimal

self-adjusting networks, like splay trees are for binary search

trees? Similarly, the design of learning optimal and dynam-

ically optimal demand-aware networks remains an open

problem. The latter is particularly challenging: in the con-

text of datastructures, the problem of designing dynamically

optimal BSTs has been an open problem for many decades

already [29].

On the modeling front, further refinements are required to

account for the specific costs incurred by a self-adjusting net-

work. In particular, today, we lack good models for the cost

of reconfiguration of networks: costs may not only accrue

in terms of, e.g., energy needed for the reconfiguration but

also in terms of performance: as routing over a continuously

changing topology can be challenging, it is desirable that

(multi-hop) routing can be performed locally, i.e., greedily,

without the need for (distributed) forwarding table recom-

putations. This property is called local routing. Furthermore,

models need to be extended to account for other quantitative

aspects such as load.

How useful demand-aware networks are depends on the

nature of the demand, and in particular, its (temporal and

spatial) locality. In particular, if a demand pattern has much

spatial locality, e.g., is sparse, an optimal static algorithm

Stat may perform much better than Obl. However, due to

the lack of dynamic reconfigurability, Stat cannot exploit

any temporal locality. Hence, if a demand pattern features

much temporal locality, an optimal online algorithmOnmay

perform much better than Stat.

Today, the research community only has very limited ac-

cess to real-world traces and benchmarks, which renders it

difficult to design and compare algorithms. We hence call

for action to establish a platform to collect and share net-

work traces, similar to platforms available to other commu-

nities e.g., the Koblenz Network Collection KONECT or the

Stanford Large Network Dataset Collection SNAP for social

networks, or the SATLIB for satisfiability problems. Notable

examples for the networking community are the Survivable

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018



fixed telecommunication Network Design traffic matrix col-

lection SNDlib (which however is limited to small networks)

and Facebook’s datacenter set [47], as well as related initia-

tives such as REPETITA [48] or Topology Zoo [49].

With this paper, we ask for inputs and offer to coordinate

such first efforts.

ACKNOWLEDGMENTS
We thank Monia Ghobadi and Robert Tarjan for inputs and

discussions.

REFERENCES
[1] M. Noormohammadpour and C. S. Raghavendra, “Datacenter traffic con-

trol: Understanding techniques and trade-offs,” IEEE Communications

Surveys & Tutorials, 2017.

[2] J. C. Mogul and L. Popa, “What we talk about when we talk about cloud

network performance,” SIGCOMM Comput. Commun. Rev. (CCR), vol. 42,

pp. 44–48, Sept. 2012.

[3] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and

elastic resource reservations for multi-tenant datacenters,” in Proc. IEEE

INFOCOM, 2016.

[4] Mu Li et al., “Scaling distributed machine learning with the parameter

server.,” in Proc. USENIX OSDI, vol. 14, pp. 583–598, 2014.

[5] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,

S. Boving, G. Desai, B. Felderman, P. Germano, et al., “Jupiter rising: A

decade of clos topologies and centralized control in google’s datacenter

network,” Proc. ACM SIGCOMMComputer Communication Review (CCR),

vol. 45, no. 4, pp. 183–197, 2015.

[6] Cisco, “Cisco global cloud index: Forecast and methodology, 2015-2020,”

White Paper, 2015.

[7] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” in Proc. ACM SIGCOMM Computer Com-

munication Review (CCR), vol. 38, pp. 63–74, 2008.

[8] A. Singla, “Fat-free topologies,” in Proc. ACM Workshop on Hot Topics in

Networks (HotNets), pp. 64–70, 2016.

[9] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,

“Bcube: a high performance, server-centric network architecture for

modular data centers,” Proc. ACM SIGCOMM Computer Communication

Review (CCR), vol. 39, no. 4, pp. 63–74, 2009.

[10] H.Wu, G. Lu, D. Li, C. Guo, and Y. Zhang, “Mdcube: a high performance

network structure for modular data center interconnection,” in Proc.

ACM International Conference on Emerging Networking Experiments and

Technologies (CONEXT), pp. 25–36, 2009.

[11] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla, “Be-

yond fat-trees without antennae, mirrors, and disco-balls,” in Proc. ACM

SIGCOMM, pp. 281–294, 2017.

[12] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subra-

manya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electri-

cal/optical switch architecture for modular data centers,” Proc. ACM SIG-

COMM Computer Communication Review (CCR), vol. 40, no. 4, pp. 339–

350, 2010.

[13] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.

Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical

datacenter network,” in Proc. ACM SIGCOMM, pp. 267–280, 2017.

[14] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker, G. Pa-

pen, A. C. Snoeren, and G. Porter, “Circuit switching under the radar

with reactor.,” in Proc. USENIX Symposium on Networked Systems Design

and Implementation (NSDI), vol. 14, pp. 1–15, 2014.

[15] G. P. R. S. N. Farrington, A. F. P. Chen-Sun, T. R. Y. F. G. Papen, and

A. Vahdat, “Integrating microsecond circuit switching into the data

center,” 2013.

[16] X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and

H. Zheng, “Mirror mirror on the ceiling: Flexible wireless links for data

centers,” Proc. ACM SIGCOMM Computer Communication Review (CCR),

vol. 42, no. 4, pp. 443–454, 2012.

[17] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center

networks,” in Proc. ACM Workshop on Hot Topics in Networks (HotNets),

2009.

[18] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin,

H. Shah, and A. Tanwer, “Firefly: A reconfigurable wireless data cen-

ter fabric using free-space optics,” in Proc. ACM SIGCOMM Computer

Communication Review (CCR), vol. 44, pp. 319–330, 2014.

[19] M. Ghobadi et al., “Projector: Agile reconfigurable data center inter-

connect,” in Proc. ACM SIGCOMM, pp. 216–229, 2016.

[20] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Proteus:

a topology malleable data center network,” in Proc. ACM Workshop on

Hot Topics in Networks (HotNets), 2010.

[21] S. Jia, X. Jin, G. Ghasemiesfeh, J. Ding, and J. Gao, “Competitive analysis

for online scheduling in software-defined optical wan,” in Proc. IEEE

INFOCOM, 2017.

[22] D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall, “Aug-

menting data center networks with multi-gigabit wireless links,” in Proc.

ACM SIGCOMM, 2011.

[23] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X.Wen,

and Y. Chen, “Osa: An optical switching architecture for data center

networks with unprecedented flexibility,” IEEE/ACM Transactions on

Networking (TON), vol. 22, no. 2, pp. 498–511, 2014.

[24] D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and

paging rules,” Commun. ACM, vol. 28, pp. 202–208, Feb. 1985.

[25] K. Mehlhorn, “Nearly optimal binary search trees,” Acta Inf., vol. 5,

pp. 287–295, 1975.

[26] D. E. Knuth, “Optimum binary search trees,” Acta informatica, vol. 1,

no. 1, pp. 14–25, 1971.

[27] T. C. Hu and A. C. Tucker, “Optimal computer search trees and variable-

length alphabetical codes,” SIAM Journal on Applied Mathematics, vol. 21,

no. 4, pp. 514–532, 1971.

[28] S. W. Bent, D. D. Sleator, and R. E. Tarjan, “Biased search trees,” SIAM

Journal on Computing, vol. 14, no. 3, pp. 545–568, 1985.

[29] E. D. Demaine, D. Harmon, J. Iacono, and M. Patrascu, “Dynamic

optimality - almost,” SIAM J. Comput., vol. 37, no. 1, pp. 240–251, 2007.

[30] P. J. Denning, “The locality principle,” Communications of the ACM,

vol. 48, no. 7, pp. 19–24, 2005.

[31] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their

applications,” ulletin of the American Mathematical Society, vol. 43, 2006.

[32] C. Avin, K. Mondal, and S. Schmid, “Demand-aware network designs

of bounded degree,” in Proc. International Symposium on Distributed

Computing (DISC), 2017.

[33] X. Jin, Y. Li, D. Wei, S. Li, J. Gao, L. Xu, G. Li, W. Xu, and J. Rexford,

“Optimizing bulk transfers with software-defined optical wan,” in Proc.

ACM SIGCOMM, pp. 87–100, 2016.

[34] C. Scheideler and S. Schmid, “A distributed and oblivious heap,” Proc.

International Conference on Automata, Languages and Programming

(ICALP), pp. 571–582, 2009.

[35] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Topologically-

aware overlay construction and server selection,” in Proc. IEEE INFO-

COM, vol. 3, pp. 1190–1199, 2002.

[36] N. Sarrar, S. Uhlig, A. Feldmann, R. Sherwood, and X. Huang, “Lever-

aging zipf’s law for traffic offloading,” Proc. ACM SIGCOMM Computer

Communication Review (CCR), vol. 42, no. 1, pp. 16–22, 2012.

[37] C. Avin, A. Loukas, M. Pacut, and S. Schmid, “Online balanced reparti-

tioning,” in Proc. 30th International Symposium on Distributed Computing

(DISC), 2016.

9



[38] J. Díaz, J. Petit, and M. Serna, “A survey of graph layout problems,”

ACM Computing Surveys (CSUR), vol. 34, no. 3, pp. 313–356, 2002.

[39] M. Rost and S. Schmid, “Virtual network embedding approximations:

Leveraging randomized rounding,” in Proc. IFIP Networking, 2018.

[40] N. Bansal, K.-W. Lee, V. Nagarajan, andM. Zafer, “Minimum congestion

mapping in a cloud,” in Proc. 30th Annual ACM Symposium on Principles

of Distributed Computing (PODC), pp. 267–276, 2011.

[41] M. Rost and S. Schmid, “Charting the complexity landscape of virtual

network embeddings,” in Proc. IFIP Networking, 2018.

[42] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler,

and Z. Lotker, “Splaynet: Towards locally self-adjusting networks,”

IEEE/ACM Transactions on Networking (ToN), 2016.

[43] K.-T. Foerster, M. Ghobadi, and S. Schmid, “Characterizing the algo-

rithmic complexity of reconfigurable data center architectures,” in Proc.

ACM/IEEE Symposium on Architectures for Networking and Communica-

tions Systems (ANCS), 2018.

[44] C. Avin, A. Hercules, A. Loukas, and S. Schmid, “rdan: Toward robust

demand-aware network designs,” in Information Processing Letters (IPL),

2018.

[45] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich, B. Haeupler,

and Z. Lotker, “Splaynet: Towards locally self-adjusting networks,”

IEEE/ACM Transactions on Networking (ToN), to appear.

[46] B. Peres, O. Goussevskaia, S. Schmid, and C. Avin, “Concurrent self-

adjusting distributed tree networks,” in Proc. International Symposium

on Distributed Computing (DISC), 2017.

[47] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the

social network’s (datacenter) network,” in ACM SIGCOMM Computer

Communication Review, vol. 45, pp. 123–137, ACM, 2015.

[48] S. Gay, P. Schaus, and S. Vissicchio, “Repetita: Repeatable experiments

for performance evaluation of traffic-engineering algorithms,” arXiv

preprint arXiv:1710.08665, 2017.

[49] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The

internet topology zoo,” IEEE Journal on Selected Areas in Communica-

tions, vol. 29, no. 9, pp. 1765–1775, 2011.

ACM SIGCOMM Computer Communication Review Volume 48 Issue 5, October 2018


	Abstract
	1 Introduction
	2 Why Self-Adjusting Networks?
	2.1 From Self-Adjusting Datastructures...
	2.2 ... to Self-Adjusting Networks

	3 Taxonomy
	3.1 Demand-Oblivious Networks
	3.2 Demand-Aware Networks
	3.3 Additional Properties

	4 A Formal Model
	4.1 Constraints
	4.2 Reconfiguration
	4.3 Objectives and Metrics

	5 Review of State-of-the-Art
	6 Conclusion and Call for Action
	Acknowledgments
	References

