
A Constant Approximation for
Maximum Throughput Multicommodity Routing

And Its Application to Delay-Tolerant Network Scheduling

Mengxue Liu∗, Andréa W. Richa∗, Matthias Rost‡ and Stefan Schmid§
∗Computer Science and Engineering, CIDSE, Arizona State University, USA

Email: Mengxue.Liu@asu.edu, Andrea.Richa@asu.edu
‡Department of Telecommunication Systems, TU Berlin, Germany

Email: mrost@inet.tu-berlin.de
§Faculty of Computer Science, University of Vienna, Austria

Email: stefan schmid@univie.ac.at

Abstract—This paper considers the following fundamental max-
imum throughput routing problem: given a set of k (splittable)
multicommodity flows with equal demands in an n-node network,
select and route a subset of flows such that the total number
of commodities routed that satisfy their demands (i.e., the all-
or-nothing throughput) is maximized. Our main contribution is
the first constant (i.e., independent of k and n) throughput-
approximation algorithm for this NP-hard problem, with sublin-
ear, namely Õ(

√
k), edge capacity violation ratio. Our algorithm

is based on a clever application of randomized rounding. We also
present an interesting application of our result in the context of
delay-tolerant network scheduling. We complement our theoretical
contribution with extensive simulation in two different scenarios,
and find that our algorithm performs significantly better than
predicted in theory, achieving an edge capacity violation ratio of
at most 3.

I. INTRODUCTION

The admission and allocation of multiple commodities in a
graph is among the most fundamental and intensively studied
algorithmic problems in networking. It is well-known that while
for a single source-destination pair (s, t), the maximum possible
flow from s to t is equal to the value of a minimum s−t cut, this
no longer holds for three or more commodities. While over the
last decades, much progress has been made, some basic ques-
tions related to the maximization of the throughput achieved
by multiple commodities in a network remain unresolved.

A. ANF: A Fundamental Network Optimization Problem

This paper attends to the following maximum throughput
routing problem, henceforth referred to as the All-or-Nothing
(Splittable) Multicommodity Flow (ANF) problem: given a
set of (splittable) multicommodity flows with equal demands,
select and route a subset of flows such that the total number of
commodities routed that satisfy their demands (i.e., the all-or-
nothing throughput) is maximized.

We model a flow network as a capacitated directed graph
G(V,E), where V is the set of nodes and E is the set of edges,

Supported in part by an ASU-BGU Collaboration Seed Grant, and NSF
grants CCF-1422603, CCF-1637393, and CCF-1733680.

and where each edge e has a given capacity c(e) > 0. We are
also given a set of k commodities F = {F1, ..., Fk}, each with
equal demand d. Each commodity Fi ∈ F is denoted by a pair
(si, ti) where si, ti denote the source and destination for that
commodity. Commodity Fi is satisfied if d units of flow for
this commodity can be successfully routed in the network.

In the ANF problem, one would like to maximize the total
throughput in the network: the throughput is measured in
terms of the total number of commodities that are concurrently
satisfied in a valid multicommodity flow. Note that we do not
insist that the flow for a commodity Fi be non-splittable or even
that the flow on each edge be integral. The only assumption
we make is that, for any i, the network has enough capacity
to route d units of flow from si to ti, if we were to consider
commodity Fi alone in the network. The load of an edge e is
equal to

∑
i fi,e, where fi,e is the flow for commodity i on

edge e.
In this paper, we seek to find a polynomial time (α, β) −

approximation algorithm for the ANF problem, for constants
α < 1 and β ≥ 1, for suitable values of α and β: Namely,
we seek to find a solution for the ANF problem such that the
throughput is at least an α fraction of the maximum throughput,
and the load on any edge is at most β times the edge capacity,
with high probability (i.e. with probability at least 1 − 1/nc,
where c > 0 is a constant). The parameter β hence provides
an upper bound on the edge capacity violation ratio incurred
by the algorithm.

B. Applications to Time-Scheduled Networks

Besides maximizing the throughput in a network, a fun-
damental problem in itself, we show another interesting ap-
plication of our result in this paper: scheduling in Delay-
Tolerant Networks (DTNs), and in particular, in time-scheduled
networks. Time-scheduled networks are networks in which
mobile nodes move between stationary nodes according to a
fixed plan and route.

For example, it is expected that the number of “smart things”
equipped with wireless communication capabilities will grow

quickly over the next years, with these mobile nodes (i.e.,
smart things) moving between stationary nodes (the hotspots)
at regular, pre-determined time schedules as “data mules”,
where data can be uploaded (resp. downloaded) to (resp. from)
the Internet. Besides the Internet-of-Things (IoT) [1, 2], time-
scheduled networks can come in the form of (mobile) social
networks: here, the moving nodes may be, e.g., students or
tourists, commuting back and forth at pre-determined times,
and the stationary nodes classrooms, restaurants, shopping
malls, etc. [11, 16, 18]. Another example are cost-efficient
transmissions in Internet Service Provider (ISP) networks: ISPs
can reduce transmission costs by an intelligent scheduling of
communications, taking advantage of already-paid-for, off-peak
bandwidth resulting from diurnal traffic patterns and percentile
pricing [14].

C. Our Contributions

This paper makes three main contributions. Our main theo-
retical contribution is the first algorithm for the ANF problem
that achieves a constant approximation on the max throughput
with a sublinear (in k) edge capacity violation ratio; our
algorithm is based on a non-trivial application of relaxation and
randomized rounding techniques, which may be of independent
interest. Our second contribution is a reduction of our result to
scheduling transmissions in delay-tolerant networks. Third, we
validate our proposed algorithm through extensive simulations
in two case studies: throughput maximization in a synthetic
benchmark network (German50) and scheduling in a DTN.
The simulation results show that, in practice our algorithms
perform significantly better than our theoretical worst-case
bounds suggest, and violate the considered edge capacities by
less than a factor of 2 on average and less than a factor of 3
in the worst-case.

D. Technical Novelty

Let us briefly elaborate on the technical novelty of our result;
a more detailed and comprehensive discussion of prior work
will follow later in this paper. The polynomial-time algorithm
presented in this paper provides an (α, β)-approximation of the
ANF problem, where the approximation ratio α on the network
throughput is constant, and the edge capacity violation ratio
β is bounded by O(

√
(log(|V |) · k)). Unlike the results by

Chekuri et al. [7] (the closest paper to ours), who present an
approximation algorithm for the ANF problem with constant
β and α in Ω(1/(log3 |V | log log |V |)), our approach keeps α
constant and allows β not to be constant. This is a fundamental
and non-trivial difference, as the approach in [7] does not imply
the (α, β)-approximation tradeoff that we obtain in this paper: It
does not seem possible to modify the approach in [7] to ensure
a constant approximation on the throughput (without incurring
a linear violation of the edge capacities).

E. Organization

The remainder of the paper is organized as follows. Section II
presents our randomized rounding algorithm together with an
analysis of its achieved approximation ratio. In Section III we

IP 1 All-or-Nothing (Splittable) Flow Formulation (ANF)

Maximize
k∑
i=1

fi subject to∑
(si,v)∈E

fi,(si,v) = fi ∀Fi ∈ F (1)∑
(u,v)∈E

fi,(u,v) =
∑

(v,u)∈E

fi,(v,u)∀Fi ∈ F , v ∈ V \ {si, ti} (2)

k∑
i=1

fi,(u,v) ≤ c(u,v) ∀(u, v) ∈ E (3)

fi,(u,v) ≤ fi · c(u,v) ∀Fi ∈ F , (u, v) ∈ E (4)

fi,(u,v) ≥ 0 ∀Fi ∈ F , (u, v) ∈ E (5)
fi ∈ {0, 1} ∀Fi ∈ F (6)

descibe an application to time-scheduled networks. We evaluate
our algorithm in different case studies, using simulations, in
Section IV and V. After reviewing related work in Section VI,
we conclude our contribution in Section VII.

II. ALGORITHM AND ANALYSIS

This section presents and analyzes our approximation algo-
rithm as described in Algorithm 2 for maximizing the total
number of commodities that can be successfully delivered.
The algorithm is based on randomized rounding, and uses a
relaxation of the integer (linear) program, IP, that solves the
ANF problem on a given network G(V,E). We use a variable
fi to represent whether or not commodity Fi is successfully
delivered; the variables fi,e denote the flow for commodity
Fi on edge e. For the sake of simplicity, and without loss
of generality, we rescale each commodity demand and edge
capacity in the network by d, so that this problem becomes a
unit-flow, multicommodity problem.

IP 1 describes our (mixed) integer programming formulation
of the ANF problem. To be more specific, we aim to maximize
the sum of integral flows fi, while subject to six constraints:
Constraints (2) and (4) are the standard flow conservation and
edge capacity constraints. Constraints (4) are redundant in this
integer programming formulation since they are implied by
Constraints (3): Constraints (4) will be needed and relevant
for strengthening the quality of the linear relaxation of IP
1 as we will see later. Constraints (6) indicate whether or
not commodity Fi is successfully delivered (“all or nothing”).
The ANF problem is NP-hard and hence one should seek
approximate solutions for IP 1. Therefore, we propose to first
relax IP 1 and then apply a randomized rounding approach. We
depict the details of the algorithm in Algorithm 2.

Note that after we select a commodity i for routing using
randomized rounding, namely by setting the respective fi value
of commodity i to 1 in Line 3 of Algorithm 2, we need to
rescale the flow on all the edges for commodity i by a factor
of 1/f̃i so that the total flow for that commodity in the final
solution output by Algorithm 2 is indeed equal to 1 (and hence
the commodity is satisfied). Showing that this rescaling only
violates the edge capacities by a sublinear, namely an Õ(

√
k)

factor, with high probability is one of the main challenges in
the splittable multicommodity flow setting. The strengthening
of the relaxed solution of IP 1 given by Constraints (4) will be
crucial in order to get the sublinear violation ratio of the edge
capacities, as we show when proving Theorem II.5.

Algorithm 2 Randomized Rounding Algorithm
Input:

Directed Graph G(V,E)
Commodities F = {F1, ..., Fk}
Source-Sink Pair (si, ti) for each Fi ∈ F
Capacity c(u, v) ∀(u, v) ∈ E

Output: The final values of fi and fi,e and OPTALG =
∑
fi

1: Change the last constraint to be 0 ≤ fi ≤ 1
2: Relax and solve LP, obtain optimal solution f̃i
3: With probability f̃i, set fi = 1, otherwise set it to 0
4: Scale up the fractional flow f̃i,e from the LP solution on edge e

for commodity i by 1

f̃i
, i.e., fi,e = f̃i,e × 1

f̃i
, for i s.t. fi = 1

5: If the solution is greater than an α fraction of the optimal solution,
return this solution; otherwise, repeat step 3 and 4, at most
θ(log |V |) times

Let OPTIP be the value (i.e., throughput) of the optimal
solution and let OPTLP be the total amount of (fractional)
commodities delivered by solving the linear relaxation LP of
IP 1, where the 0-1 variables fi are relaxed to assume any
value in [0, 1] — i.e., OPTLP =

∑
f̃i, where f̃i is the optimal

solution of LP. Let ALG be the solution obtained by Algorithm
2, whose throughput we denote by OPTALG.

We use Chernoff’s Theorem over continuous random vari-
ables to bound the probability of achieving a fraction of the
optimal solution, which we state bellow:

Fact II.1 (Chernoff Bound). [17] Let X =
∑n
i=1Xi be a sum

of n independent random variables Xi ∈ [0, 1], 1 ≤ i ≤ n.
Then Pr[X < (1− ε) · E[X]] ≤ exp(−ε2 · E[X]/2) holds for
0 < ε < 1.

Since we have already scaled down the flow by d, variables
f̃i are all between 0 and 1, and we can apply the above Chernoff
bound to prove the claim below.

Claim II.2. Pr[OPTALG < (1−ε)·OPTLP] ≤ e−ε2·OPTLP /2

Proof. For each commodity i, the expectation of fi according
to Algorithm 2 is E[fi] = 1 · f̃i + 0 · (1− f̃i) = f̃i. Recall that
OPTLP =

∑
f̃i and OPTALG =

∑
fi, where the fi’s are

the solution output by Algorithm 2, and let OPTALG =
∑
fi.

From Fact II.1, we have

Pr[OPTALG < (1− ε) ·OPTLP] (7)

= Pr[
∑

fi < (1− ε) ·OPTLP]

≤ e−ε
2·OPTLP /2

We also assume that all commodities can be fully delivered
alone, and so we have:

OPTLP ≥ 1 (8)

Since the optimal fractional solution is an upper bound on
the optimal solution for the integer program, by using ε = 2/3
in the Chernoff bound, we get:

Theorem II.3. The probability of achieving less than 1/3 of
the profit of an optimal solution is upper bounded by e−2/9 ≈
0.8007.

Proof. By taking ε = 2/3 in Equation 7, we get:

Pr[OPTALG <
1

3
·OPTLP] ≤ e−(2

3)2·OPTLP /2 (9)

= e−2·OPTLP /9 (10)

By Equation 8, we know that the minimum value of OPTLP
is 1. Therefore

Pr[OPTALG <
1

3
·OPTLP] ≤ e−2/9 (11)

We have that OPTIP ≤ OPTLP and thus we get,

Pr[OPTALG <
1

3
·OPTIP] ≤ e−2/9

We will use the following result by Hoeffding, in order to
bound the edge capacity violation:

Fact II.4 (Hoeffding’s Inequality). [9] Let {Xi} be indepen-
dent random variables, s.t. Xi ∈ [ai, bi], then Pr[

∑
iXi −

E[
∑
iXi] ≥ t] ≤ exp(−2t2/

∑
i(bi − ai)2) holds.

We now analyze the probability that our algorithm violates
capacity constraints by a certain factor, with the aid of Hoeffd-
ing’s Inequality.

Theorem II.5. Given a single edge e with capacity ce. Let ∆F,e

be the commodities going through edge e, thus |∆F,e| ≤ k.
For all commodities i ∈ ∆F,e, choose constant ε′ ≤ 1 such
that max

f̃i,e
f̃i
≤ ε′ · ce. The probability that ALG exceeds

the edge capacity constraints by a factor of γ = (1 + ε′ ·√
2 log |V ||∆F,e|) is bounded by |V |−4.

Proof. Fix an edge e ∈ E and a commodity i. With probability
1 − f̃i, the flow on edge e for commodity i is set to 0, i.e.,
fi,e = 0. With probability f̃i, the flow on edge e for commodity
i is set to f̃i,e · 1

f̃i
.

Then the expectation of fi,e is

E[fi,e] = f̃i,e ·
1

f̃i
· f̃i + 0 · (1− f̃i) = f̃i,e (12)

Let fe denote the total flow on edge e induced by ALG.
Then fe =

∑
i,fi,e 6=0 fi,e and the expectation of fe is

E[fe] =
∑

i,fi,e 6=0

f̃i,e ·
1

f̃i
· f̃i =

∑
i,fi,e 6=0

f̃i,e (13)

Since in the relaxed version of IP 1, a feasible solution must
obey edge capacity constraints, the cumulative load on edge e is

equal to or less than the capacity of e, i.e.,
∑
i,fi,e 6=0 f̃i,e ≤ ce,

and therefore we get
E[fe] ≤ ce (14)

Let t = ε′ ·
√

2 log |V ||∆F,e| · ce. Note that f̃i,e
f̃i
≤ ce,∀i, e,

(since Constraints (4) of LP guarantee that f̃i,e ≤ f̃i · ce) and
hence we can always find ε′ ≤ 1 such that max

f̃i,e
f̃i
≤ ε′ · ce.

Applying Hoeffding’s Inequality, we get

Pr[fe − E(fe) ≥ t] ≤ exp(
−2t2∑
i(
f̃i,e
f̃i

)2
) (15)

≤ exp(
−2 · ε′2 · 2 log |V | · |∆F,e| · c2e

ε′2 · c2e · |∆F,e|
)

= |V |−4

Given Equation 14, let γ = (1 + ε′ ·
√

2 log |V ||∆F,e|).

Pr[fe − ce ≥ ε′ ·
√

2 log |V ||∆F,e|]

= Pr[fe ≥ (1 + ε′ ·
√

2 log |V ||∆F,e|) · ce]
= Pr[fe ≥ γ · ce]
≤ |V |−4

Since there are at most |V |2 edges, and we know that |∆F,e| ≤
k, applying the union bound over all edges using Theorem II.5,
we obtain the following corollary:

Corollary II.6. The probability that ALG exceeds any of the
edge capacity constraints by a factor of 1 + ε′ ·

√
2 log |V | · k

is upper bounded by |V |−2.

Based on Theorem II.3 and Corollary II.6, if |V | ≥ 3 holds,
the probability of not finding a suitable solution with a 1/3-
approximation on the throughput and an edge capacity violation
ratio of (1 + ε′ ·

√
2 log |V | · k) within a single round of Algo-

rithm 1 is therefore upper bounded by e−2/9 + 1/9 ≤ 11/12.
The probability of finding a suitable solution within c log |V |
many rounds (see line 10 of Algorithm 2), where c is a constant,
is then lower bounded by 1 − (11/12)c log |V | = 1 − 1

|V |b ,
where b is a constant, for |V | ≥ 3. Hence the randomized
rounding scheme yields a solution with a 1/3-approximation
on the throughput and an edge capacity violation ratio of
(1+ε′ ·

√
2 log |V | · k) with high probability, proving our main

theorem below:

Theorem II.7. The randomized rounding algorithm finds an
(α, β) − approximation solution within c log |V | many runs
with high probability, where c is a constant, α = 1/3, β =
1 + ε′ ·

√
2 log |V | · k, ε′ ≤ 1, |V | ≥ 3.

III. APPLICATION IN DELAY TOLERANT NETWORKS

Our algorithm has interesting applications in Delay Tolerant
Networks (DTNs) and in particular, time-scheduled networks:
wireless communication networks in which mobile nodes (e.g.,

IoT devices storing data) move between stationary nodes (e.g.,
access points or hotspots), according to pre-determined routes
and schedule. The goal is to deliver as much information as
possible across the DTN. In the following, we first introduce
the time-scheduled network model and then show how our
algorithm can be applied.

LetM = {M1,M2,M3, ...,Mm} denote the set of m mobile
nodes (MNs), and let S = {S1, S2, S3, ..., Sn} denote the set of
n stationary nodes (SNs) in the original network. In addition,
we assign buffers of infinite size to both MNs and SNs.1 Let
Pi be the time schedule associated with each MN Mi, which
describes the paths and times to arrive at and depart from
the SNs (we assume that each MN has full knowledge of its
own time schedule). A connection is established between two
MNs Mi and Mj at time t if and only if their geographical
distance is within a certain constant range ri,j,t at time t. Note
that the ranges ri,j,t may be all different depending on the
particular MN and the time (which also determine location)
of the connection. However, without loss of generality and
for ease of explanation, we will assume that ri,j,t = r, for
all i, j, t. Given also the sparsity of our network scenario,
we will ignore considerations of interference of the wireless
signal in this work, but we do assume that all communications
are half-duplex (i.e., a node can either transmit or receive at
a time). Hence a connection exists between Mi and Mj at
time t if and only if:

√
(xi − xj)2 + (yi − yj)2 ≤ r, where

(xz, yz) are the coordinates of the respective Mz and (xj , yj)
at time t. We also assume that we have a set of k commodities
F={F1, F2, ..., Fk}, each with source and destination si, ti
respectively and demand d, which can be transferred through
wireless senders and receivers equipped on the NMs and SNs
when a connection is established. Based on this observation, we
transform our original network into a connection graph, which
we will describe next.

We present our connection graph model whose nodes cor-
respond to the moving and stationary nodes’ connections in
the original dynamic network. Based on the original MN time
schedules, we can determine all MN and SN connections
C={C1, C2, C3, ..., Cq} where q ≤ cm(m + n) and where c
is a constant. We can represent each connection Ci as a 4-
tuple < Ai, Bi, Upi, Downi >, where Ai and Mi are the two
objects (either a MN or SN) that establish this connection, Upi
is the starting time of the connection, and Downi is the ending
time of the connection.

We construct a directed connection graph using the above
connections and commodities as nodes plus a set of virtual
sink nodes sinki, one for each commodity Fi. Therefore the
node set is V = C ∪ F ∪ {sinki : Fi ∈ F} and |V | = q + 2k.
A directed edge exists from connection node Cx to connection
node Cy if and only if the two connections share a common
object and Upx ≤ Downy . For example, there is an edge from

1While an infinite buffer size may seem unrealistic, in practice, this would
not be a concern, since the amount of data a node can hold will be limited
by the amount the data that can be transfered onto that node, which in turn is
limited by the connection durations and transfer rates (see Equation (16) and
(17))

a connection node < 1, 2, 300, 400 > to a connection node
< 2, 5, 500, 600 > since they share the common object 2 and
300 ≤ 600. The capacity of an edge (Cx, Cy) is defined as

Cap(Cx,Cy) = v ·min{L(Cx), L(Cy)} (16)

where v is the data transfer speed (we assume it to be
a constant in the absence of bad weather conditions), and
L(Cz) = Downz − Upz is the lifetime of connection Cz .

When two connections with at least one object in common
overlap in time, we will take a conservative approach and
assume that overlapping transmissions from two respective
connections collide (generate interference) and hence that dur-
ing the overlap time no successful transmissions occur for
these connections. Hence, whenever two connections that share
an object overlap, we will not count the overlap time when
computing the capacity of the edge between them.

Now we consider the edges in the graph between a commod-
ity node and a connection node. We represent each commodity
Fz as a node Fz = < sz, Generatez >, where sz is the
SN where commodity Fz is generated at time Generatez ..
There will be an edge from Fz to connection node Cx =
< Ax, Bx, Upx, Downx > if and only if sz = Ax or sz = Bx,
and Generatez ≤ Downx. The capacity of a commodity-
connection edge (Fz, Cx) is calculated as:

Cap(Fz,Cx) = min{d, (Downx −Generatez) · v} (17)

We also add an edge of infinite capacity between a con-
nection node Cx and a virtual sink node sinkz if and only if
either Ax or Bx is equal to destination tz of commodity z. We
claim that any valid multicommodity flow on the connection
graph (composed possibly of flows that meet only a fraction of
the demand for each commodity, i.e., that is not necessarily a
maximum ANF) always corresponds to a valid routing schedule
on the original time-scheduled DTN network of the same
total value, where the value of a (multicommodity) flow is
measured by the sum of the flows for all commodities and
the value (which corresponds to the total value of all delivered
commodities in the DTN).

Theorem III.1. A multicommodity flow that delivers fi units
of flow from commodity node Fi to virtual sink node sinki, for
each i, in the connection graph directly corresponds to a valid
routing schedule for the respective commodities in the original
time-scheduled DTN network that delivers the same value fi
for each of the commodities, assuming that all MNs adhere to
their regular schedules and that there is no transmission loss.

Proof. Assume that each commodity is partitioned into in-
finitesimal packets. First note that the amount of flow that
can leave any of the commodity nodes is at most equal to
the respective commodity demand, given the capacity of the
edges out of the commodity node. Second, all the edges in
the connection graph respect time, in the sense that they only
link connection and commodity nodes respecting the order in
which they occur in time; the edges also only exist when the

two corresponding endpoints share a common object, so that
a feasible sequence of commodity transfers is possible. Thus
if we focus on any of the infinitesimal packets that compose
the flows, we see that the packet follows a feasible sequence
of transfers in the original DTN network, that leads from the
respective commodity node to virtual sink node. Hence any
valid multicommodity flow in the connection graph corresponds
to a feasible routing schedule in the DTN network. Conversely,
any routing scheme for the data packets can be converted into
a valid multicommodity flow in the connection graph.

Hence we now have a tool for finding (or approximating) the
maximum number of commodities that can be fully delivered in
the time-schedule DTN network: We can solve (or approximate)
the ANF problem on the respective connection graph. Note
that this connection graph can also be used to upper bound
the maximum transmission capacity on the DTN network,
independent of the ANF setting we consider here.

Figure 1 shows an example of a connection graph and the re-
spective valid multicommodity flow, where just one commodity
is fully satisfied, namely commodity F1. We use a solid line to
indicate the flow and a dashed line to indicate that the respective
edge carries no flow. We omitted edges between connections
representing the same pair of objects at different points in time
since they are redundant. On each edge, there is a pair of
numbers a(b), where a represents the capacity of the edge and
b is the actual flow on the edge. There are two commodities F1

and F2 and each commodity has demand 400MB, so they all
have edges from the commodity node with capacity 400MB.
Commodity F1 is generated from stationary node 1 at time
2:00 so it has edges to connection node C2, which contains
stationary node 1. The edge capacity is limited to 400MB by the
connection life (40 min) and transmission speed (10MB/min).
Commodity F2 is generated from stationary node 3 at time 1:00
so it has edges to connection nodes C3 and C6, which contains
stationary node 3.

When two connection nodes overlap, for example, node
C2 =< 1, 2, 3:00, 3:40 > and node C5 =< 2, 5, 3:20, 4:00 >,
we need to subtract the overlap time, in this case, 20min
so the lifetime of connection C2 is L(C2) = 20 min and
lifetime of connection C5 is L(C5) = 20 min. Hence, the
capacity of the edge between C2 and C5 is 20 min multiplied
by the transmission speed (10MB/min) which is equal to
200MB. The resulting multicommodity flow on this example
has f1 = 400MB and f2 = 250MB and only one commodity,
F1, is fully satisfied.

The connection graph can be trivially constructed in polyno-
mial time in the size of the original time-scheduled network.

IV. CASE STUDY 1: RIVERINE AMAZON REGION

In our first case study, we consider a time-scheduled network
arising in the context of an interesting communication network
in the Brazilian Amazon Delta region.

A. Scenario
Providing healthcare to the remote and isolated riverine com-

munities in the Brazilian Amazon, which can only be reached

Fig. 1. Example of connection graph and respective max flow.

through the Amazon basin rivers, poses a significant challenge.
In those places, healthcare examinations are mainly run by spo-
radic visits from medical teams from the main city in the region,
Belém. Due to the lack of modern communication infrastructure
in these communities and of fast river transportation, it is
important to fully utilize the regularly scheduled boats as data
mules, to ensure fast and timely delivery of the examination
records which could potentially include examination videos
(e.g., ultrasound videos) from those communities to physicians
in the city for remote analysis. Since the video files would
have to be compressed and split into multiple packets due to
the storage limitation of the boats, each file would need to
be fully received at destination so that it can be recovered.
Furthermore, there would be multiple videos files from different
communities each day to different hospitals. We can use our
connection graph as described above to transform this scenario
into a static network, considering boats as MNs, and remote
communities (also referred to as peer base stations) as SNs,
and then apply our approximation algorithm. Hence we can
view this scenario as an instance of the ANF problem.

In the simulation setup, we use real data schedules for the
regular passenger boats serving the Amazon Delta Region in
the state of Pará in Brazil [15]. We randomly generate 50 files
(each file will be a commodity in F), with a time interval
of 60 seconds in between files, hence each file comes with a
generation timestamp. In the connection graph, the commodity
nodes represent the files in F , and connection nodes are the
nodes in C. For each commodity, we create a super sink, and
connect it to all the connection nodes, that could potentially
deliver the commodity to its destination. The connection graph
has 449 connection nodes, and 50 commodity nodes with 50
super sink nodes. Total number of edges is around 16,000 and
the edge capacity varies from 200 to 400k due to different time
schedules.

B. Experimental Results

We first solve the relaxed ILP formulation and then use
randomized rounding to select the commodities to deliver and
then check the edge constraints to see if any edge constraint is
violated. We repeat the randomized rounding process 100 times,
and report the (α, β)-distribution and the (α, β)-distance as
we explain later. Note that according to the theoretical bounds
given by Corollary II.6, the violation ratio can be proportional
to

√
2 · log |V | · k, which is roughly 25.1 in our case.

35

37

39

41

43

45

47

49

1000 3000 5000 7000 9000

#
of

 co
m

m
od

iti
es

File Size (MB)

RR

LP

Fig. 2. RR and LP comparison in terms of average commodity delivery in
Amazon scenario.

0.50

1.00

1.50

2.00

2.50

3.00

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Ca
pa

ci
ty

 V
io

la
tio

n
Ra

tio
 -β

Throughput Ratio -𝛼

Fig. 3. (α, β)-distribution for commodity size 7000 MB in Amazon scenario
with orange triangle point α = 1, β = 1.

The default setting for commodity size we consider is
7,000 MB. We also test with different commodity sizes to
find out how the proposed algorithm performs under various
settings. Each setting is executed for 10 times and the average
commodity delivery is reported. Figure 2 shows the compari-
son between the number of commodities delivered using our
proposed randomized rounding algorithm (RR) and the upper
bound provided by the relaxed linear programming solution
(which we call LP). As we can see, even though different
commodity sizes result in different numbers of commodities
received, the ratio stays around 1 which means that the RR
solution is basically as competitive as the LP solution.

Figure 3 shows the (α, β)-distribution of the 100 runs for the
Amazon scenario. As we can see, most runs have a competitive
throughput ratio α at least 0.8. In terms of edge capacity
violation ratio β, most runs have a ratio between 1 and 2. 2

Given the (α, β)-distribution shown in Figure 3, we calculate
the Euclidean distances among each (α, β) point with respect
to the optimal point, which is given by α = 1, β = 1 (the
orange triangle in Figure 3), and plot the distribution of these

2Note that the graph in Figure 3 may give the wrong impression that there are
points with α > 1 and β = 1, which would imply that we obtain the solution
with better throughput than optimal solution without violating edge capacity
constraints. However, this is due to the low resolution of the rendering of the
graph, and all points with α > 1 have β > 1 in reality.

Distance Intervals
[0.03, 0.29] (0.29, 0.56] (0.56, 0.82] (0.82, 1.08] (1.08, 1.34] (1.34, 1.60]

N
um

ne
ro

f R
un

s

0

5

10

15

20

25

30

35

40

45

50

Fig. 4. (α, β)−distances for commodity size 7000 MB in Amazon scenario.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10

Ca
pa

ci
ty

 V
io

la
tio

n
Ra

tio
 -β

Throughput Ratio -𝛼

Fig. 5. (α, β)-distribution for commodity size 7000 MB in Amazon scenario
after scaling down edge capacities (by a factor of 2.5) with orange triangle
point α = 1, β = 1.

distances in Figure 4. As we can see, most runs are within a
small distance (0.82) to the optimal solution.

While in some applications, a capacity violation for an edge
e may entail a penalty or additional charges for using a higher
bandwidth than what was agreed with a network provider for a
(virtual) edge e, in other applications of the ANF problem, the
capacity of an edge may pose a strict requirement and cannot
be violated. Hence we run some additional simulations where
we scale down the capacity of each edge in the network by a
factor of 2.5, since the original experiments (Figure 3) show
that 95% of the runs have edge capacity violation ratios lower
than 2.5. We compare this new scaled down solution with the
solution to the original linear relaxation of IP 1 (i.e. OPTLP).
Figure 5 shows the (α, β)-distribution of the 100 runs for the
Amazon scenario after scaling down each edge capacity by
2.5. The best run achieves throughput ratio α = 0.95 and edge
violation ratio β = 0.72, which means the proposed randomized
rounding algorithm finds a feasible solution that is competitive
with an optimal solution found by the LP without incurring any
edge capacity violations.

V. CASE STUDY 2: GERMAN50 NETWORK

In a second case study, we evaluated the achieved through-
put and edge capacity violation ratio in a synthetic scenario
obtained from [20].

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

Ca
pa

ci
ty

 V
io

la
tio

n
Ra

tio
 -β

Throughput Ratio -𝛼

Fig. 6. (α, β)-distribution for the German50 scenario with orange triangle
point α = 1, β = 1.

A. Scenario

We use the testbed Germany50 network from SNDlib [20]:
In this network, there are 50 nodes and 88 edges, and number of
commodities is 662. The average node degree is 3.52. The edge
capacity of each edge is 40, and in order to test the proposed
method, we set the commodity size to be 50.

B. Experimental Results

Again, we repeat the randomized rounding process 100
times, and report the following statistics: the (α, β)-distribution
and the (α, β)−distance. Note that according to the theoretical
bounds given by Corollary II.6, the edge capacity violation ratio
can be proportional to

√
2 · log |V | · k, which is roughly 71.9.

Figure 6 shows the (α, β)-distribution of the 100 runs for the
German50 scenario before scaling down the edge capacities.
As we can see all runs have a competitive throughput ratio
α greater than or equal to 0.9, and most runs have an edge
capacity violation ratio between 1.5 and 2.5 (and no run has
an edge capacity violation greater than 3).

Figure 7 shows the (α, β)−distances given the (α, β)-
distribution shown in Figure 6. As we can see, most runs are
within a small distance of 1.5 to the optimal solution.

As we did in Section IV-B, we also run experiments with
scaled down edge capacities (by a factor of 2.5, since also
here 90% of the original runs in Figure 6 have edge capacity
violation ratios lower than 2.5) for the German50 network in
order to obtain solutions with no edge capacity violations.

Figure 8 shows the (α, β)-distribution of the 100 runs for
the German50 scenario after scaling down edge capacities. As
we can see, the best run achieves throughput ratio α = 0.37
and edge violation ratio β = 0.89. This is also aligned with
our analysis where the randomized rounding algorithm is able
to find a feasible solution with at least 1/3 of the throughput of
the optimal LP solution. However, we now achieve this without
any edge capacity violations, improving significantly on our
theoretical predictions.

Distance Intervals
[0.50, 0.75] (0.75, 1.00] (1.00, 1.25] (1.25, 1.50] (1.50, 1.75] (1.75, 2.00]

N
um

ne
ro

f R
un

s

0

5

10

15

20

25

30

35

40

45

Fig. 7. (α, β)−distances for the German50 scenario

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10

Ca
pa

ci
ty

 V
io

la
tio

n
Ra

tio
 -

β

Throughput Ratio -𝛼

Fig. 8. (α, β)-distribution for the German50 scenario after scaling down edge
capacities (by a factor of 2.5) with orange triangle point α = 1, β = 1.

VI. RELATED WORK

The study of routing and multicommodity flow problems is
motivated by many real-world applications as well as the im-
portant role that flows and cuts play in combinatorial optimiza-
tion [3]. There are two flavors of optimization problems related
to our work: the Maximum Edge-Disjoint Paths (MEDP) [10]
problem and the All-or-Nothing Flow (ANF) [7] problem. ANF
is a “relaxed version” of MEDP for non-integral flows: In
ANF, the goal is to select a largest subset of commodities
that can be simultaneously fractionally routed from source
to destination with regard to capacity constraints, whereas in
MEDP the flow needs to be integral since the goal is to find the
maximum number of edge disjoint paths. In other words, the
MEDP problem considers a set of pairs to be routable if they
can be connected using edge-disjoint paths; the ANF problem
considers a set of pairs to be routable if there is a feasible
multicommodity flow that fractionally routes one unit of flow
from source to destination for each routed pair. Both problems,
MEDP and ANF, are NP-hard. More specifically, ANF is APX-
hard even in the case when the underlying graph is a tree,
and there exists a 2-approximation algorithm for the tree and
4-approximation algorithm when commodities are associated
with weights: Kawarabayashi et al. [13] proposee a constant-
approximation algorithm in planar graphs, and also proved that
the integrality gap is O(1). Charbonneau et al. [24] studied the

MEDP problem in planar graphs, and showed that a constant
approximation is possible also with congestion 2, which im-
proves on [6] where the congestion is 4. Chekuri et al. [4] study
the multicommodity flow and cut problem in polymatroidal
networks, where there are submodular capacity constraints on
the edges incident to a node, by analyzing the dual of the flow
relaxations via continuous Lovász extension; the underlying
graph could be either directed or undirected. Chuzhoy [8]
presented an approximation ratio of Ω(1/polylogk) with con-
stant congestion of at most 14, using an efficient randomized
algorithm in undirected graphs.

There exist several additional results on ANF, which are
closely related to our work. The study of the Symmetric All
or Nothing Flow (SymANF) problem in directed graphs with
symmetric demand pairs was initiated by Chekuri et al. in [3].
In SymANF, the input pairs are unordered and a pair (si, ti)
is routed only if both the ordered pairs (si, ti) and (ti, si)
are routed, and the goal is to find a maximum subset of the
given demand pairs that can be routed. The authors provide
a poly-logarithmic approximation with constant congestion for
SymANF, by extending the well-linked decomposition frame-
work of [5] to the directed graph setting with symmetric
demand pairs.

Our work differs from Chekuri et al. [3] in that their results
depend on a more restricted assumption of unit edge capacity
and symmetric unit demand. Our work considers a more general
setting and our result of constant approximation with poly-
logarithmic congestion is not directly comparable to theirs.
Based on their observation, from previous work on the hardness
of the ANF problem, the throughput for the SymANF with
constant congestion c is hard to approximate to within a factor
of (log |V |)Ω(1/c).

The most closely related work to ours is the work in [7],
where the authors present an approximation algorithm for the
general ANF problem with constant congestion and approxima-
tion ratio of Ω(1/(log3 |V | log log |V |)) based on hierarchical
graph decomposition. While Chekuri et al. [7] present an
approximation algorithm for the ANF problem which achieves
constant β and α in Ω(1/(log3 |V | log log |V |)), our approach
keeps α constant and allows β not to be constant. It does not
seem possible to obtain a constant throughput by modifying
the proposed algorithm in [7], without incurring in linear
congestion.

Several other applications also involve the ANF, such as [12],
which solved the ANF to help for designing route networks for
container ships, in particular, the authors studied the ANF with
transit time constraints and proved that including time con-
straints does not necessarily increase the computational time.
Finally, our work leverages randomized rounding techniques
presented by Rost et al. [22, 23] in the different context of
virtual network embedding problems (i.e., there flow endpoints
are subject to optimization).

There is a large body of related work for Delay-Tolerant
Networks (DTNs), e.g. in the context of Daknet [21]. Here,
we focus on the related work on DTNs more closely re-

lated to our case study described in Section IV. The work
in [15] provides some preliminary simulation results (only,
no theoretical bounds or framework) on routing several files
(commodities) to a single destination node in the Amazon Delta
Region scenario considered in Section IV using a fountain code
approach for increasing the robustness of the routing. Other
work involves addressing the communication and information
access needs of remote rural villages that lack of modern
communication technologies, such as MotoPost proposed in
[19]. In [1], the authors described a routing algorithm that
aims at computing shortest routes based on a stochastic model
of real-life bus traces in an urban network. They use buses
as data carriers to deliver timely data to its final destination,
tackling quasi-deterministic mobility scenarios. Their proposed
routing algorithm outperforms other approaches that aim at
minimizing the expected traversal time or at maximizing the
delivery probability in the bus network. They did not consider
direct data transmission between data carriers (buses).

VII. CONCLUSION

We presented the first constant-approximation algorithm with
sublinear edge capacity violations for the fundamental problem
of maximizing throughput for all-or-nothing splittable com-
modities. We also showed, using simulations, that our algorithm
behaves better than our theoretical worst case predictions in
different case studies and when applied to scheduling and delay-
tolerant networks where nodes have limited buffer size and
short contact times. In particular, edge capacity violations are
kept below 3 and can be removed entirely when applying rescal-
ing, without sacrificing the throughput by much. We believe
that our work provides interesting avenues for future research.
In particular, it would be interesting to consider nonuniform
commodity demands (since the algorithm proposed in this
paper cannot be directly applied to a nonuniform demands
scenario and thus new ideas need to be developed). It would be
also interesting to consider deterministic (e.g., derandomized)
algorithms, and to further improve the tradeoff between ap-
proximation quality and augmentation, also investigating lower
bounds.

REFERENCES

[1] U. G. Acer, P. Giaccone, D. Hay, G. Neglia, and S. Tarapiah,
“Timely data delivery in a realistic bus network,” IEEE Trans.
Vehicular Technology, vol. 61, no. 3, pp. 1251–1265, 2012.

[2] J. Burgess, B. Gallagher, D. D. Jensen, and B. N. Levine, “Max-
prop: Routing for vehicle-based disruption-tolerant networks,” in
INFOCOM, 2006, pp. 1–11.

[3] C. Chekuri and A. Ene, “The all-or-nothing flow problem in
directed graphs with symmetric demand pairs,” Math. Program.,
vol. 154, no. 1-2, pp. 249–272, 2015.

[4] C. Chekuri, S. Kannan, A. Raja, and P. Viswanath, “Multi-
commodity flows and cuts in polymatroidal networks,” SIAM J.
Comput., vol. 44, no. 4, pp. 912–943, 2015.

[5] C. Chekuri, S. Khanna, and F. B. Shepherd, “Multicommodity
flow, well-linked terminals, and routing problems,” in Proceed-
ings of the 37th Annual ACM Symposium on Theory of Comput-
ing, 2005, pp. 183–192.

[6] ——, “Edge-disjoint paths in planar graphs with constant conges-
tion,” SIAM Journal on Computing, vol. 39, no. 1, pp. 281–301,
2009.

[7] ——, “The all-or-nothing multicommodity flow problem,” SIAM
J. Comput., vol. 42, no. 4, pp. 1467–1493, 2013.

[8] J. Chuzhoy, “Routing in undirected graphs with constant conges-
tion,” SIAM J. Comput., vol. 45, no. 4, pp. 1490–1532, 2016.

[9] D. P. Dubhashi and A. Panconesi, Concentration of Measure for
the Analysis of Randomized Algorithms. Cambridge University
Press, 2009.

[10] T. Erlebach and K. Jansen, “The maximum edge-disjoint paths
problem in bidirected trees,” SIAM Journal on Discrete Mathe-
matics, vol. 14, no. 3, pp. 326–355, 2001.

[11] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based
forwarding in delay-tolerant networks,” IEEE TMC’11, vol. 10,
no. 11, pp. 1576–1589.

[12] C. V. Karsten, D. Pisinger, and S. R. B. D. Brouer, “The
time constrained multi-commodity network flow problem and
its application to liner shipping network design,” Transportation
Research Part E, vol. 76, pp. 122–138, 2015.

[13] K.-i. Kawarabayashi and Y. Kobayashi, “All-or-nothing multi-
commodity flow problem with bounded fractionality in planar
graphs,” SIAM Journal on Computing, vol. 47, no. 4, pp. 1483–
1504, 2018.

[14] N. Laoutaris, G. Smaragdakis, P. Rodriguez, and R. Sundaram,
“Delay tolerant bulk data transfers on the internet,” in ACM
SIGMETRICS Performance Evaluation Review, vol. 37, no. 1.
ACM, 2009, pp. 229–238.

[15] M. Liu, T. Johnson, R. Agarwal, A. Efrat, A. Richa, and M. M.
Coutinho, “Robust data mule networks with remote healthcare
applications in the amazon region: A fountain code approach,”
in 17th International Conference on E-health Networking, Ap-
plication & Services, HealthCom, 2015, pp. 546–551.

[16] A. Mei, G. Morabito, P. Santi, and J. Stefa, “Social-aware
stateless forwarding in pocket switched networks,” in IEEE
INFOCOM, 2011, pp. 251–255.

[17] M. Mitzenmacher and E. Upfal, Probability and computing -
randomized algorithms and probabilistic analysis. Cambridge
University Press, 2005.

[18] A. Moghadam and H. Schulzrinne, “Interest-aware content distri-
bution protocol for mobile disruption-tolerant networks,” in IEEE
WoWMoM, 2009, pp. 1–7.

[19] S. Naidu, S. Chintada, M. Sen, and S. Raghavan, “Challenges
in deploying a delay tolerant network,” in Proceedings of the
third ACM workshop on Challenged networks. ACM, 2008, pp.
65–72.

[20] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly,
“SNDlib 1.0–Survivable Network Design Library,” in Proceed-
ings of the 3rd International Network Optimization Conference
INOC, April 2007, http://sndlib.zib.de, extended version accepted
in Networks, 2009.

[21] A. Pentland, R. Fletcher, and A. Hasson, “Daknet: Rethinking
connectivity in developing nations,” IEEE Computer, vol. 37,
no. 1, pp. 78–83, 2004.

[22] M. Rost, E. Döhne, and S. Schmid, “Parametrized complexity
of virtual network embeddings: Dynamic & linear programming
approximations,” in ACM SIGCOMM Computer Communication
Review (CCR), vol. 49, no. 1, 2019.

[23] M. Rost and S. Schmid, “Virtual network embedding approxi-
mations: Leveraging randomized rounding,” in Proc. IFIP Net-
working, 2018.

[24] L. Seguin-Charbonneau and F. B. Shepherd, “Maximum edge-
disjoint paths in planar graphs with congestion 2,” in IEEE 52nd
Annual Symposium on Foundations of Computer Science, FOCS,
2011, pp. 200–209.

