
1-4244-0674-9/06/$20.00 ©2006 IEEE.

WETCAT – Web-Enabled Translation Using
Corpus-Based Acquisition of Transfer Rules

Werner Winiwarter
Department of Scientific Computing, University of Vienna

werner.winiwarter@univie.ac.at

Abstract

In this paper we present a Web interface to a

Japanese-English rule-based machine translation
system. One main feature of our translation system is
that the transfer rules have not been designed by hand
but are learnt automatically from a parallel corpus.
The user can customize the rule base by simply
correcting translation results. In addition, it is possible
to display token lists, parse trees, and transfer rules,
which makes our system also a very useful tool for
language students. The system has been implemented
in Amzi! Prolog, using the Amzi! Logic Server CGI
Interface to develop the Web application.

1. Introduction

Studying online documents in a foreign language,
readily available through the Web, is an excellent way
to improve language skills because new words, phrases,
or grammatical constructions are encountered in their
natural context. However, for Japanese this approach to
language acquisition is hindered by:
1) the complex writing system comprising three
different scripts with several thousand characters,
2) the lack of spaces or other visual indicators for
word boundaries,
3) the high degree of ambiguity in Japanese grammar,
e.g. no articles to indicate gender or definiteness, no
declension to indicate number or case, etc.,
4) the tendency to omit any information that can be
inferred implicitly, e.g. speaker and addressee in
dialogs.

Fortunately, there are many useful tools available to
help the user with the difficult task of interpreting a
Japanese text. There exist several free Web-based
bilingual dictionaries, e.g. the Japanese-English
dictionary server WWWJDIC (jp.msmobiles.com) or

the Japanese-German dictionary Wadoku Jiten
(wadoku.de). Some text editors also provide Japanese-
English dictionaries, e.g. MS Office Proofing Tools.
Finally, there are Web sites that offer pop-up hints with
lexical data (e.g. www.popjisyo.com). Open problems
with most of these tools are the correct segmentation
into words and the lookup of conjugated words.

Another more direct approach would be to use Web-
based machine translation services. Unfortunately, the
quality of those free online systems is still quite bad for
Japanese.

This situation was our motivation to develop a Web-
based high quality machine translation system. In our
approach, called WETCAT (Web-Enabled Translation
using Corpus-based Acquisition of Transfer rules), we
learn all transfer rules automatically by using structural
matching between the parse trees of translation
examples. The work is based on a previous project on
Japanese-German translation [1]. As training material
we use the JENAAD corpus [2] comprising 150,000
Japanese-English sentence pairs taken from news
articles.

The system was implemented in Amzi! Prolog,
which offers an expressive declarative programming
language within the Eclipse Platform, powerful
unification operations for the efficient application of
the transfer rules, and full Unicode support for
Japanese characters. Finally, Amzi! Prolog includes
several APIs, in particular the Amzi! Logic Server CGI
Interface, which we used to develop our Web
application. Through the Web interface, the user cannot
only translate Japanese sentences but also inspect
lexical, syntactic, and transfer information. An
important feature is the customization of the rule base
by simply post-editing and resubmitting translation
results.

The rest of the paper is organized as follows. In
Sect. 2 we first provide a brief discussion of related
work on machine translation before we give an
overview of the system architecture in Sect. 3. The

remaining sections of the paper describe the
implementation of the individual tasks in more detail.

2. Related work

The state of the art in machine translation is that
there are quite good solutions for narrow application
domains whereas fully automatic general-purpose high
quality translation is still impossible [3]. It is quite
disappointing that despite the large effort invested in
the development of translation systems, the translation
quality has not improved much in the last few years [4].

One main problem of traditional rule-based
machine translation systems is their static nature, i.e.
the limited coverage of the handcrafted rule base
cannot be adjusted towards a user’s preferences. The
most common approach to solve this situation is to
learn the translation knowledge based on large parallel
corpora.

Statistical machine translation approaches try to
learn a translation model and a language model for the
target language from a parallel corpus to calculate the
most probable translation. Early systems learnt the
translation model only at the word level [5] and were
therefore only successful for similar language pairs.
Recently, several systems have been developed that
incorporate extensions towards phrase-based
translation [6] and syntax-based translation [7].

Example-based machine translation lies between
the two extremes of pure rule-based translation and
statistical translation [8]. It also uses a large bilingual
corpus to create a database of translation examples. By
using a hybrid configuration of different techniques it
matches fragments from the user input against source
language fragments or pre-compiled representations in
the database to retrieve and combine equivalent target
language fragments to build the translation [9]. The
most common drawback of large-scale example-based
machine translation systems is that again some manual
effort is required to construct or at least verify the
representations of translation examples in the database
[10].

3. System architecture

The WETCAT system architecture is depicted in
Fig. 1. The user’s Web browser sends CGI calls to the
Web server, which calls the CGI application to return
dynamically generated HTML documents. The CGI
application consists of a C program responsible for
starting the Amzi! Logic Server and loading the Prolog
CGI script. All user input and CGI variables are
asserted as facts to the Prolog logicbase before calling

the Prolog part of the CGI Amzi! interface. This Prolog
wrapper performs the necessary CGI bookkeeping
functions and calls predicates defined in the Prolog
script implementing the machine translation subsystem.

Figure 1. System architecture

The three main tasks for the machine translation
subsystem are the translation of Japanese input, the
acquisition of new transfer rules, and the consolidation
of the rule base. Additional required subtasks are the
tagging and parsing of Japanese and English input, the
transfer from Japanese to English, and the generation
of the English output. All intermediate results can be
inspected by the user via the Web interface. The
following sections offer a more detailed description of
the individual system components.

4. Source language analysis

The first task to be performed is the linguistic
analysis of the Japanese input. The user can input a
Japanese sentence into the Web interface (see Fig. 2) or
use a Visual Basic macro to access WETCAT directly

Web browser Web server
CGI calls

Dynamically generated
HTML documents

CGI interface

C program with
extended predicates

for prolog

Prolog program with
library of CGI support

predicates

Tagging Japanese
lexicon

Tagging English
lexicon

Japanese
token list

Japanese
input

English
input

Machine translation subsystem

Parsing Parsing

English
token list

Japanese
parse tree

Transfer Acquisition

English
parse tree

Japanese
grammar

Generation

Generation
tree

Rule
base

Applied
rules

New rules

English
grammar

Consolidated
 rules

Consolidation

Translation

from MS Word. In the latter case, the user just clicks
anywhere in a Japanese document and invokes the
macro, which extracts the surrounding sentence and
calls the Web server via the GET method by adding the
sentence as query string. The Web server responds by
returning the Web form with the Japanese input.

Figure 2. Screenshot of Web interface

By clicking on the “Japanese Token List” button the

user can retrieve the correct segmentation into word
tokens annotated with lexical information. The
Japanese sentence is sent to the Web server via the
POST method, which returns a list of morphemes with
pronunciation, base form, part-of-speech, conjugation
type, and conjugation form. For the latter three we use
three letter acronyms. Figure 3 shows part of the token
list for the sentence in Fig. 2. The output is produced
by the tagging module, which accesses the Japanese
lexicon. The lexicon was compiled automatically by
applying ChaSen [11] to the JENAAD corpus.

The user can also view the parse tree for a Japanese
sentence by clicking on the “Japanese Parse Tree”
button. The parsing module computes the parse tree
with the assistance of the Definite Clause Grammar
preprocessor of Amzi! Prolog by applying the Japanese
grammar to the token list. A sentence is modeled as a
list of constituents.

Figure 3. Screenshot of Japanese token list

A constituent is defined as a compound term of arity

1 with the constituent category as principal functor.
For a simple constituent, the argument can be a
syntactic feature (atom) or a word with its part-of-
speech (atom/atom); for a complex constituent it is a
phrase (list of subconstituents). A part of the parse tree
for the sentence in Fig. 2 can be seen in Fig. 4.

5. Translation

A Japanese sentence is translated by clicking on the

“Translation” button. This task is divided in two
subtasks: the application of the transfer rules to the
Japanese parse tree to produce the generation tree and
the generation of the surface string. The transfer rules
are stored as Prolog facts in the rule base. We model all
translation problems with three generic types of
transfer rules. A word transfer rule translates the
argument of a simple constituent whereas a constituent
transfer rule changes both the category and the
argument of a complex constituent.

Finally, a phrase transfer rule allows to define
elaborate conditions and substitutions on complex
constituents. In the following, we provide three
illustrative examples of transfer rules, for a more
detailed treatment of our transfer rule formalism we
refer to the “ATR presentation” slides at
www.amzi.com/customers/winiwarter_xlate.htm:

Figure 4. Screenshot of Japanese parse tree

1) wtr(日本/prc, 'Japan'/nnp).
2) ctr(mnp, maj, 官僚/nge,

[apo(の/xat), hea(官僚/nge)],
[hea(bureaucratic/jj)]).

3) ptr(cl, 乗り出す/vin,
[aob([apo(に/xpg), hea(過程/nge) | X])],
[aob([apo(on/in), hea(process/nn), det(ind) |
X])]).

Rule 1 is the default translation of 日本 (NIHON) as
'Japan', Rule 2 changes the modifying noun phrase
官僚の (KANRYOU NO) into the modifying adjective
phrase bureaucratic, and Rule 3 states that for a clause
with head verb 乗り出す (NORIDASU), the adpositional
object X過程に (X KATEI NI) has to be replaced by the
adpositional object on a X process.

The third argument of a constituent transfer rule and
the second argument of a phrase transfer rule serve as
index for the fast retrieval of matching facts to speed
up the unifiability test for the condition part of the
transfer rules during translation. Both constituent and
phrase transfer rules may contain shared variables for
unification, as shown in Rule 3. This makes it possible
to translate only certain parts of the input and leave the
rest unchanged.

One important requirement for the efficient and
robust implementation of the transfer module is that the

condition in the third argument of a phrase transfer rule
has to be understood as subset condition. For example,
in Rule 3 it is necessary that the clause contains an
adpositional object at an arbitrary position with the
adposition に and the head noun 過程, both again at
arbitrary positions. All other elements of the clause and
of the adpositional object are appended to the
translated required elements.

The transfer module traverses the Japanese parse
tree top-down and searches for transfer rules that can
be applied. At the top level we first try to find suitable
phrase transfer rules. To apply a phrase transfer rule,
we collect all rule candidates that satisfy the condition
part and then rate each rule and choose the one with the
highest score. If there are no more rule candidates left,
we examine each constituent in the sentence
individually. We first search for constituent transfer
rules before we perform a transfer of the argument. The
latter involves the application of word transfer rules for
simple constituents, whereas the top-level procedure is
repeated recursively for complex constituents.

The resulting generation tree can be inspected
through the “Generation Tree” button. In addition, the
user can click on “Applied Rules” to receive a list of
the rules used by the transfer module in the correct
order of their application.

As last step of a translation, the generation module
produces the surface form of the English sentence as
character string. We traverse the generation tree top-
down and transform the argument of each complex
constituent into a list of surface strings. The list is
computed recursively from the subconstituents as a
nested list and flattened afterwards.

6. Target language analysis

The tagging and parsing of English sentences is a
necessary preprocessing step for the acquisition of new
transfer rules from sentence pairs. The English lexicon
used by the tagging module was built automatically
through the application of the MontyTagger [12] to the
JENAAD corpus.

The English parsing module works on the basis of
the English grammar whose rules are again written in
Definite Clause Grammar syntax. To facilitate the
structural matching during acquisition we tried to align
the use of constituent categories in the English
grammar as best as possible with corresponding
Japanese categories.

The user can view the output of the English tagging
and parsing module by clicking on “English Token
List” and “English Parse Tree”.

7. Acquisition

The WETCAT rule base is built by applying the
acquisition module to the JENAAD corpus. It traverses
Japanese and English parse trees and derives new
transfer rules. The search for new rules starts at the
sentence level by recursively mapping the individual
subconstituents of the Japanese sentence. For each
Japanese constituent category there is a specific rule to
map a subconstituent of this type (possibly together
with other subconstituents) to derive a transfer rule. If a
rule could be found, then all subconstituents that are
covered by the rule are removed from the Japanese and
English input. Each rule is added to the rule base if it is
not included yet. The default mapping of a complex
subconstituent is to find a corresponding subconstituent
in the English input and to continue the matching
procedure recursively for their two arguments.

The rules produced by the acquisition module are
very specific since they consider context-dependent
translation dependencies in full detail to avoid any
conflict with other rules in the rule base. This
guarantees correct translations but leads to a huge
number of complex rules, which badly affects the
coverage for new data. Therefore, the consolidation
module generalizes rules by relaxing their condition
part as long as this does not affect any existing rule.
The most commonly performed transformations are: to
simplify a phrase transfer rule or to replace it with a
word transfer rule, to use generalized categories as first
argument of phrase transfer rules, and to split a phrase
transfer rule in two simpler rules.

For a better understanding of the acquisition task,
the user can click on the “New Rules” button, which
sends the Japanese and English sentence to the Web
server. WETCAT pretends to have an empty rule base
and returns a list of rules that would be learnt from this
sentence pair in the correct order of derivation. In
addition, the user can make use of the “Consolidated
Rules” button to look at the generalizing
transformations that would be performed for this
sentence pair, the result is displayed to the user as a list
of “old rule ⇒ new rule(s)” pairs.

Finally, one prominent feature of WETCAT is the
ability to customize translation results by post-editing
the target sentence und updating the rule base via the
“Update Rule Base” button. Before this, users can use
the “New Rules” and “Consolidated Rules” buttons to
verify the effects of their corrections on the acquisition
process. As soon as a user commits a change with the
“Update Rule Base” button, the sentence will be always
translated that way in the future. We keep copies of the
default rule base derived from JENAAD for the

individual users so that each user can have his own
customized WETCAT version.

8. Conclusion

In this paper we have presented a Web-enabled
Japanese-English machine translation system based on
the automatic acquisition of transfer rules from a
parallel corpus. We have finished the implementation
of the system for a subset of the JENAAD corpus
including a first local prototype configuration of the
Web server to demonstrate the feasibility of our
approach. Future work will focus on extending the
coverage of the system to the complete corpus and on
performing a quantitative evaluation. We also plan to
make a demo version of WETCAT publicly available
in the near future.

References

[1] W. Winiwarter, “Incremental learning of transfer rules for
customized machine translation,” Applications of Declarative
Programming and Knowledge Management, U. Seipel et al.,
eds., Lecture Notes in Artificial Intelligence, vol. 3392,
Berlin: Springer-Verlag, pp. 47-64, 2005.
[2] M. Utiyama, and H. Isahara, “Reliable measures for
aligning Japanese-English news articles and sentences,”
Proc. 41st Annual Meeting of the ACL, pp. 72-79, 2003.
[3] J. Hutchins, “Machine translation and computer-based
translation tools: What’s available and how it’s used,”
A New Spectrum of Translation Studies, J. M. Bravo, ed.
Valladolid: University of Valladolid, pp. 13-48, 2003.
[4] H. Somers, ed., Computers and Translation: A
Translator’s Guide, Amsterdam: John Benjamins, 2003.
[5] P. Brown, “A statistical approach to machine translation,”
Computational Linguistics, vol. 16, no. 2, pp. 79-85, 1990.
[6] P. Koehn, F. J. Och, and D. Marcu, “Statistical phrase-
based translation,” Proc. 2003 Conf. of the North American
Chapter of the Association for Computational Linguistics on
Human Language Technology, pp. 48-54, 2003.
[7] K. Yamada, A Syntax-Based Statistical Translation
Model, PhD thesis, University of Southern California, 2002.
[8] S. Sato, Example-Based Machine Translation, PhD
thesis, Kyoto University, 1991.
[9] J. Hutchins, “Towards a definition of example-based
machine translation,” Proc. Second Workshop on Example-
based Machine Translation at MT Summit X, pp. 63-70,
2005.
[10] S. Richardson et al., “Overcoming the customization
bottleneck using example-based MT,” Proc. ACL Workshop
on Data-driven Machine Translation, pp. 9-16, 2001.
[11] Y. Matsumoto et al., Japanese Morphological Analysis
System ChaSen Version 2.0 Manual, NAIST Technical
Report, NAIST-IS-TR99009, 1999.
[12] H. Liu, MontyLingua: An End-to-End Natural
Language Processor with Common Sense, MIT Media Lab,
2004.

