Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes
Ammonia-oxidising archaea (AOA) are ubiquitous and abundant in nature and play a major role in nitrogen cycling. AOA have been studied intensively based on the amoA gene (encoding ammonia monooxygenase subunit A), making it the most sequenced functional marker gene. Here, based on extensive phylogenetic and meta-data analyses of 33,378 curated archaeal amoA sequences, we define a highly resolved taxonomy and uncover global environmental patterns that challenge many earlier generalisations. Particularly, we show: (i) the global frequency of AOA is extremely uneven, with few clades dominating AOA diversity in most ecosystems; (ii) characterised AOA do not represent most predominant clades in nature, including soils and oceans; (iii) the functional role of the most prevalent environmental AOA clade remains unclear; and (iv) AOA harbour molecular signatures that possibly reflect phenotypic traits. Our work synthesises information from a decade of research and provides the first integrative framework to study AOA in a global context.
Top- Alves, Ricardo J. Eloy
- Minh, Bui Quang
- Urich, Tim
- von Haeseler, Arndt
- Schleper, Christa
Category |
Journal Paper |
Divisions |
Bioinformatics and Computational Biology |
Journal or Publication Title |
Nature Communications |
ISSN |
2041-1723 |
Publisher |
Springer Nature Publishing AG |
Number |
1 |
Volume |
9 |
Date |
17 April 2018 |
Official URL |
http://dx.doi.org/10.1038/s41467-018-03861-1 |
Export |