Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes

Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes

Abstract

Ammonia-oxidising archaea (AOA) are ubiquitous and abundant in nature and play a major role in nitrogen cycling. AOA have been studied intensively based on the amoA gene (encoding ammonia monooxygenase subunit A), making it the most sequenced functional marker gene. Here, based on extensive phylogenetic and meta-data analyses of 33,378 curated archaeal amoA sequences, we define a highly resolved taxonomy and uncover global environmental patterns that challenge many earlier generalisations. Particularly, we show: (i) the global frequency of AOA is extremely uneven, with few clades dominating AOA diversity in most ecosystems; (ii) characterised AOA do not represent most predominant clades in nature, including soils and oceans; (iii) the functional role of the most prevalent environmental AOA clade remains unclear; and (iv) AOA harbour molecular signatures that possibly reflect phenotypic traits. Our work synthesises information from a decade of research and provides the first integrative framework to study AOA in a global context.

Grafik Top
Authors
  • Alves, Ricardo J. Eloy
  • Minh, Bui Quang
  • Urich, Tim
  • von Haeseler, Arndt
  • Schleper, Christa
Grafik Top
Shortfacts
Category
Journal Paper
Divisions
Bioinformatics and Computational Biology
Journal or Publication Title
Nature Communications
ISSN
2041-1723
Publisher
Springer Nature Publishing AG
Number
1
Volume
9
Date
17 April 2018
Official URL
http://dx.doi.org/10.1038/s41467-018-03861-1
Export
Grafik Top