
On-Demand Automated Traceability Maintenance and
Evolution

Muhammad Atif Javed, Faiz UL Muram, and Uwe Zdun

University of Vienna, Faculty of Computer Science,
Software Architecture Research Group, Vienna, Austria

{muhammad.atif.javed,faiz.ulmuram,uwe.zdun}@univie.ac.at

Abstract. After the painstaking process of traceability construction, a substantial
evolution of a software system, such as a new major version leads to the decay of
traceability links. To date, however, none of the published studies have considered
the on-demand update of traceability links. This paper presents an on-demand au-
tomated approach for case-based maintenance and evolution of traceability links
in the context of different versions of a software project. The approach focuses on
the component-to-component features for identification and prioritization of pre-
vious traceability cases, which are then used to perform reuse and adaptation of
traceability links based on the matches and mismatches, respectively. The adapted
(i.e., newly constructed) traceability links can then be verified by a human analyst
and stored in a case base. The approach has been validated using an open-source
framework for mobile games, named Soomla Android store.

1 Introduction

The constructed traceability links need to be maintained continuously or on-demand as
a project evolves so that up-to-date traceability links are available when needed. The
need for continuous traceability maintenance is triggered by changes to any of the soft-
ware artefacts (like any architecture component) that, in turn, can be triggered by chan-
ges to artefacts within a traceability chain (e.g., underlying requirements and the code
classes that implement the component). The semi-automatic support for such mainte-
nance is achieved in some existing approaches [2, 6, 10]. However, continuous tracea-
bility maintenance might not be a feasible solution in case of a substantial evolution
of a software system, such as a new major version in large real-world project in which
hundreds of developers are involved, maybe even at different distributed locations. For
such new major versions, traceability links are subject to and undergo reconstruction in
general.

The proposed on-demand traceability maintenance and evolution approach consists
of four phases: First, the pre-existing traceability links need to be organized as cases.
Second, the extracted features of a new component are used to identify and prioritize the
stored traceability cases. Third, the new requirements and code classes are matched with
the requirements and code classes in previously implemented components. The links
concerning the matched requirements and code classes are reused; however, adaptation
is performed for mismatches between the requirements, architectural components and
code classes. Finally, the adapted (i.e., newly constructed) links can be verified by a

2 M.A. Javed, F. UL Muram and U. Zdun

human analyst and stored in the dedicated case base for future use. The feasibility of
the proposed approach is demonstrated by maintaining and evolving the traceability
links of the Soomla Android store1 Version 2.0 to the Version 3.6.17.

The rest of this paper is organized as follows: Section 2 discusses the related work.
Section 3 describes the on-demand maintenance and evolution of traceability links.
Section 4 presents a case study. Section 5 compares the results of the proposed ap-
proach to an information retrieval methods based tool. Section 6 concludes the paper
and discusses future work.

2 Related Work

Hammad et al. [6] developed a tool, called SrcTracer that supports traceability from the
source code to the design to maintain consistency with the design during code evolution.
The approach examines the source code changes based on a lightweight analysis and
syntactic differentiation to evaluate whether a particular change alters the design or not.
The changes in the source code that lead to design changes include adding or removing
of classes, methods and their relationships. Cleland-Huang et al. introduce a concept
for the identification of change types that are applied to requirements in their event-
based traceability approach [3]. The authors capture seven types of change activities
to requirements, in particularly create, inactivate, modify, merge, refine, decompose
and replace. However, the approach concentrates more on the manual construction of
traceability links instead of maintaining them.

Mäder et al. [10] introduce a semi-automatic strategy, called traceMaintainer to de-
termine changes in UML models to update pre-existing traceability relations. The ap-
proach records all changes to model elements and uses this information to find a match
within a set of predefined patterns of recurring development activities. Buchgeher and
Weinreich [2] introduce the LISA approach that captures traceability relations through
observing the developer as she/he is working on the architecture design and implemen-
tation. These approaches, however, focus on the continuous maintenance of traceability
links that might not be feasible when a large real-world project substantially evolve
(i.e., a new major version). The research in Borg et al. [1] focus on the extraction of
traceability information that has been specified as a by-product of completing impact
analyses reports by using history mining and storage of extracted traceability informa-
tion in a semantic network. They have not considered the use of extracted traceability
as a way to either update or validate the traceability record.

3 Building a Case-Based Reasoner for Traceability Maintenance
and Evolution

An overview of the proposed on-demand traceability maintenance and evolution appro-
ach is shown in Figure 1. It describes the procedure used for case-based representation
of software traceability (Section 3.1), similarity assessment and retrieval of stored trace-
ability cases (Section 3.2), reuse and adaptation of traceability links at the architectural
level (Section 3.3), and revision and retention of traceability links (Section 3.4).

1 http://soom.la/.

On-Demand Automated Traceability Maintenance and Evolution 3

Phase 1: Case representation of software traceability

Step 2.1: Extraction of component features

from a new architecture version

Phase 2: Similarity assessment and retrieval of stored traceability cases

Step 2.2: Comparative analysis of component-to-component features

for identification and prioritization of stored traceability cases

Step 3.2: Compute function name and

global variable dependencies of reused

classes for evolutionary changes

Phase 3: Reuse and adaptation of traceability links at the architectural level

Step 3.3: Perform information

retrieval analysis for variation

in all indicator terms

Step 3.4: Adapt the

mutual and tightly

coupled links

Step 4.1: Validate the adapted

traceability links

Phase 4: Revision and retention of traceability links

Step 4.2: Store the traceability links

for future problem solving situation

Step 3.1: Reuse of traceability

links for the matched component

requirements and code classes

Step 1.1: Organizing the components as software architecture elements and their interconnections (problem description)

and traceability links to requirements and the source code (solution)

Fig. 1: The steps of the on-demand traceability maintenance and evolution approach

3.1 Case Representation of Software Traceability

In case-based reasoning paradigm, a problem situation is organized as a case which
consists of two parts, as shown in Listing 1.1: problem description and solution. The
former describes the components as software architecture elements and their intercon-
nections, while the later contains the traceability links to artefacts produced in the other
activities of the development process, such as requirements and implementation.

The idea with the problem description part is the selection of substitutable com-
ponent(s) among a variety of candidate components that might solve a given problem.
The information about an architectural component might be enclosed inside particular
XML tags and attributes. The component identification number distinguishes a com-
ponent from others components, the name represents a name of the component and
the description specifies functionalities offered by a component. A port describes an
interaction point; it would have provided or required interfaces that provide specific in-
formation about the services offered or required by a component. A connector defines
a pathway of interaction between components and have source and target ends. The so-
lution part of a case comprises of traceability links to the underlying requirements that
can be distinguished by an identification number and the code classes that implement
the particular requirement within the component. For efficient reuse and adaptation, it
was decided to separate each requirement and its corresponding implementation classes
so that unaffected traceability links shall be avoided from adaptation.

Listing 1.1: Features and traceability links of the StoreAssets component in the Soomla
Android store Version 2.0
<Case ID = "C53">
<Problem Part>
<Feature List>
<Component ID="SC1" Name="StoreAssets" Description="The StoreAssets component impleme-

nts the virtual currencies, virtual goods, as well as their classification and pr-
ice models." />

<Port Name="Assets" Kind="Prov" Interfaces="" />

4 M.A. Javed, F. UL Muram and U. Zdun

<Port Name="AssetsInfo" Kind="Prov" Interfaces="" />
<Connector Source="Assets" Target="ControlAssets" TargetComponent="StoreController" />
<Connector Source="AssetsInfo" Target="InfoStorage" TargetComponent="DatabaseServices"

/>
</Feature List>

</Problem Part>
<Solution Part>
<Trace Links>
<Requirement ID="1.2.0" Description="The SOOMLA Android store supports consumable ite-

ms. The user is expected to consume virtual goods and repurchase them. Tokens, co-
ins and gems are some examples of virtual currencies. To purchase the virtual goo-
ds, the static and balance driven price models should be implemented. After some
time, when the virtual currency is insufficient, the user would have to purchase a
virtual currency pack, such as 10 coins pack or 20 coins pack. The pack holds the
virtual currency and its corresponding price, i.e., the cost of the pack." />

<Code Classes="VirtualCurrency.java, VirtualCurrencyPack.java, VirtualItemNotFoundExc-
eption.java, AbstractPriceModel.java, StaticPriceModel.java, BalanceDrivenPriceMo-
del.java, JSONConsts.java" />

</Trace Links>
<Trace Links>
<Requirement ID="2.2.0" Description="SOOMLA also supports non-consumable items that are

expected to last forever. This type of goods will be used to implement additional
levels, a remove ads feature, or upgrading to a premium version of the game." />

<Code Classes="NonConsumeableItem.java, VirtualGood.java, VirtualCategory.java, Google-
MarketItem.java, AbstractVirtualItem.java" />

</Trace Links>
</Solution Part>

</Case>

3.2 Similarity Assessment and Retrieval of Stored Traceability Cases

The assessment of component-to-component features for case retrieval includes two
steps. First, all the components together with their features are extracted from the given
software architecture. Second, the stored cases are traversed in order to find the similar
cases, i.e., a set of candidate components whose characteristics/features match with the
new architectural component.
Algorithm 1 Algorithm for retrieval of traceability cases
1: Input: A new case-problem Cpn would have a set of features f = { f1, f2, ..., fn}, where n
2: refers to the number of new component features
3: Output: The degree of similarity between the versions of an architectural component
4: Local variables: The component features f ′ = { f ′1, f ′2, ..., f ′m} within in the problem part of
5: a previous case Cpr, where m concerns the number of features
6: The weight factor W is assigned to the components’ features so that w = {w1,w2, ...,wn}
7: Begin
8: start from i = 1 –> select one case Cpni (0≤ j ≤ m)
9: Begin

10: for each f ′j of Cpr do (0≤ j ≤ n)
11: Begin
12: compare individual features f and f ′:
13: do Equation 2
14: End
15: calculate the similarity of overall features using Equation 1
16: End
17: End

Let Sim1 and Sim2 be the similarity values of two previous cases Cpr1 and Cpr2,
respectively. Of course, for a new case problem Cpn, a case Cpr1 is more preferable

On-Demand Automated Traceability Maintenance and Evolution 5

if Sim1 is higher than Sim2, because Cpr1 is more similar to the new case problem.
The global similarity GSIM (Equation 1) concerns the overall features while the local
similarity LSIM (Equation 2) focuses on matching fi (ith feature) of a new component
with the f ′j (jth feature) of a previous component incorporated in a traceability case. It
was decided to assign the similarity weights (Wi) ranging from 1.0 – 3.0. In particular,
the highest weight is assigned to component interfaces or otherwise its description;
whereas the component name, port name and port kind are weighted 2.0, 1.5 and 1.0,
respectively. Algorithm 1 illustrates the case retrieval mechanism.

GSIM([f1, f2, ..., fn][f ′1, f ′2, ..., f ′m]) =
n m

∑
i=1 j=1

Wi.LSIM(fi, f ′j) (1)

LSIM(f , f ′) =

{
1, if f = f ′

0, otherwise
(2)

3.3 Reuse and Adaptation of Traceability Links at the Architectural Level

The artefacts produced in the other activities of the development process, such as re-
quirements and source code are matched with the solution part of retrieved traceability
case(s) that underlies requirements and code classes implemented in a previous compo-
nent. If component requirements and code classes are matched, the relevant traceability
links are reused. However, transformation adaptation is performed for mismatches bet-
ween the requirements, architectural components and the code classes.

Based on our experiences and observations from various empirical investigations
and open source software systems, we have noticed that a main driver for trusted and
cost-effective traceability construction is the achievement of highest precision for the
initial traceability links [7, 9]. It is therefore decided to use the unchanged traceability
links, if available, as an active countermeasure to arbitrarily making traceability de-
cisions and to maintain and preserve the trust in further traceability construction [8].
The reuse and adaptation is performed in four steps: (i) the links for matched parts
are reused, (ii) the function name and global variable dependencies of reused classes
are computed, (iii) the information retrieval analysis based on the indicator terms for
variation in architectural components, requirements and undetected classes is perfor-
med, and (iv) the mutual and tightly coupled classes are linked with the corresponding
development artefacts. The availability of reused links demonstrated better results for
on-demand traceability maintenance and evolution.

3.4 Revision and Retention of Traceability Links

The validation by a human analyst is strongly required in automated traceability tools.
Nevertheless, the problems in automated traceability might not be completely elimi-
nated when extensive set of traceability links are candidates for validation [5]. The
focus on reuse and adaptation of traceability links would reduce the burden on a human
analyst, in particularly the already verified traceability links from the past (i.e., reused
links) in both matched and partially matched cases might be omitted from validation.

6 M.A. Javed, F. UL Muram and U. Zdun

However, only adapted traceability links for evolutionary changes would be made avai-
lable to human analyst for validation. The revised solution part is combined with the
problem description part in order to be stored as a new case so that the new traceability
case becomes available for future problem solving situation.

4 Case Study

The Soomla Android store allows mobile game developers to easier implement virtual
currencies (e.g., tokens, coins, gems), virtual goods and in-app purchases. Due to the
added support for virtual goods, rewards, store events and payment mechanisms, the
migration from older to later versions (≥ 3.6.X) of the Soomla Android store is re-
commended. The complete maintenance and evolution of traceability links cannot be
discussed due to space limitations and similar technical details. Therefore, the rest of
this section describes one of the affected component, named as StoreAssets.

Listing 1.2: Upgradtion of previously constructed traceability links of the StoreAssets
component to the Version 3.6.17
<Case ID="75">
<Problem Part>
<Feature List>
<Component ID="SC1" Name="StoreAssets" Description="The StoreAssets component implemen-

ts the virtual currencies, virtual goods, rewards as well as their classification."
/>

<Port Name="Assets" Kind="Prov" Interfaces="" />
<Port Name="AssetsInfo" Kind="Prov" Interfaces="" />
<Connector Source="Assets" Target="ControlAssets" TargetComponent="StoreController" />
<Connector Source="AssetsInfo" Target="InfoStorage" TargetComponent="DatabaseServices"
/>

</Feature List>
</Problem Part>
<Solution Part>
<Trace Links>
<Requirement ID="1.3.6.17" Description="The SOOMLA Android store supports consumable

items. The user is expected to consume virtual goods and repurchase them. Tokens,
coins and gems are some examples of virtual currencies. After some time, when the
virtual currency is insufficient, the user would have to purchase a virtual curr-
ency pack, such as 10 coins pack or 20 coins pack. The pack holds the virtual cu-
rrency and its corresponding price, i.e., the cost of the pack. In addition, the
user should be able to earn a specific reward after achieving certain criteria in
game progress." />

<Code Classes="VirtualCurrency.java, VirtualCurrencyPack.java, VirtualItemNotFoundEx-
ception.java, BadgeReward.java, RandomReward.java, Reward.java, SequenceReward.-
java, VirtualItemReward.java, Schedule.java, SoomlaEntity.java, JSONConsts.java,
JSONFactory.java" />

</Trace Links>
<Trace Links>
<Requirement ID="2.3.6.17" Description="SOOMLA also supports non-consumable items that

are expected to last forever. This type of goods will be used to implement additi-
onal levels, a remove ads feature, or upgrading to a premium version of the game."
/>

<Code Classes="VirtualGood.java, VirtualItem.java, VirtualCategory.java, EquippableVG.-
java, LifetimeVG.java, SingleUseVG.java, SingleUsePackVG.java, UpgradeVG.java, Mark-
etItem.java, PurchasableVirtualItem.java" />

</Trace Links>
</Solution Part>

</Case>

The adaptation of traceability links is performed in three steps. First, the function
name and global variable dependencies of reused classes are computed. This led to the

On-Demand Automated Traceability Maintenance and Evolution 7

identification of eleven classes for the first underlying requirement. In case of second
requirement, five classes are identified out of which four classes are strongly linked as
means of «extends» relationship. Second, the information retrieval analysis based on
the indicator terms is performed, which leads to the identification of nine and twelve
classes for the requirements, respectively. The variation in first requirement text co-
vers the variation in component description. Besides that, the undetected classes are
not used for adaptation as the indicator terms in excluded requirement text are matched
with the deleted classes. The mutual terms, if available, would be used for the recovery.
Finally, the mutual and tightly coupled classes are linked with the requirement in Ver-
sion 3.6.17, as shown in Listing 1.2. The adaptation process correctly identified all the
classes realizing the particular requirement within a StoreAssets component.

5 Experimental Evaluation

In circumstances of a new major version, the information retrieval techniques are com-
monly used to reconstruct the traceability links. As means of comparison, the traceabi-
lity links for Soomla Android store Version 3.6.17 are reconstructed using an informa-
tion retrieval based tool, called Traceclipse2. Particularly, the latent semantic indexing
is used for traceability construction.

Factors
On-Demand Maintenance and Evolution (OME) Traceclipse Tool Weight >=0.1 (TWF) Traceclipse Tool All Links (TAL)

Reused Adapted Irrelevant Missed Generated Irrelevant Missed Generated Irrelevant Missed

StoreAssets 6 16 0 0 84 67 5 170 149 1

StoreController 11 43 8 1 24 13 36 85 38 0

DatabaseServices 4 3 0 0 40 37 4 85 78 0

Billing 0 43 36 0 32 27 2 83 76 0

CryptDecrypt 3 1 0 0 8 7 3 84 83 3

Table 1: Summary of achieved results for the Soomla Android store Version 3.6.17

 Recall Precision F-measure

OME vs. TWF OME vs. TAL OME vs. TWF OME vs. TAL OME vs. TWF OME vs. TAL

Cliff's delta -0.5158 -0.1548 -0.5995 -0.6319 -0.6019 -0.5859

Cohen's delta -2.8780 -0.6614 -2.1561 -2.1100 -2.6114 -2.0095

Standard deviation of delta 0.1792 0.2340 0.2780 0.2994 0.2304 0.2915

z/t score of delta -4.5505 -1.0458 -3.4091 -3.3362 -4.1290 -3.1774

Confidence interval low -0.8301 -0.5656 -1.0435 -1.0863 -0.9867 -1.0131

Confidence interval high -0.2014 0.2559 -0.1555 -0.1774 -0.2170 -0.1587

Degrees of freedom 4.0112 4.0066 5.3214 6.5339 4.5955 7.7932

p-value 0.0103 0.3545 0.0172 0.0138 0.0108 0.0134

Table 2: Cliff’s δ Test for the Soomla Android store Version 3.6.17

Table 1 summarizes the achieved results for the Soomla Android store. For statisti-
cal analysis of the retrieved results, the Cliff’s δ [4] – a robust non-parametric test – is
used to evaluate the significance of the found results. The results from the Cliff’s δ test
are shown in Table 2. It is noticeable to see that significant differences emerged for all
comparisons except with the recall of all traceability links. The main reason behind par-
ticular result is the rather higher number of generated links by the Traceclipse tool. The
results for the Soomla Android store Version 3.6.17 provide strong evidence that our
on-demand maintenance and evolution approach improved the precision and f-measure
of traceability links for the new version of a software project, compared to an IR-based
tool called Traceclipse.

2 http://www.cs.wm.edu/semeru/traceclipse/

8 M.A. Javed, F. UL Muram and U. Zdun

6 Conclusions and Future Work

This paper has proposed an on-demand traceability maintenance and evolution appro-
ach in which the component-to-component features are used for identification and pri-
oritization of stored traceability cases, which are then used to perform reuse and adap-
tation of traceability links based on the matches and mismatches, respectively. The pre-
vious traceability links for the exactly matched parts are not only reused, but also not
considered for validation by a human analyst. However, the adapted solution (i.e., newly
constructed traceability links) can be verified by a human analyst and stored in the case
base for future problem solving situations. The proposed approach demonstrated reli-
able results than the information retrieval based tool, called Traceclipse. In the future,
our plan is to build a catalogue of guidelines as best practices for traceability reuse and
adaptation across projects, organizations, domains, product lines and supporting tools.

References

1. M. Borg, O. C. Z. Gotel, and K. Wnuk. Enabling traceability reuse for impact analyses:
A feasibility study in a safety context. In 7th International Workshop on Traceability in
Emerging Forms of Software Engineering, TEFSE ’13, pages 72–78, 2013.

2. G. Buchgeher and R. Weinreich. Automatic tracing of decisions to architecture and imple-
mentation. In 9th Working IEEE/IFIP Conference on Software Architecture, WICSA ’11,
pages 46–55, 2011.

3. J. Cleland-Huang, C. K. Chang, and Y. Ge. Supporting event based traceability through high-
level recognition of change events. In 26th International Computer Software and Applicati-
ons Conference on Prolonging Software Life: Development and Redevelopment, COMPSAC
’02, pages 595–600, 2002.

4. N. Cliff. Dominance statistics: Ordinal analyses to answer ordinal questions. The Psycholo-
gical Bulletin, 114:494–509, 1993.

5. A. Dekhtyar, O. Dekhtyar, J. Holden, J. Hayes, D. Cuddeback, and W.-K. Kong. On hu-
man analyst performance in assisted requirements tracing: Statistical analysis. In 19th IEEE
International Requirements Engineering Conference, RE ’11, pages 111–120, 2011.

6. M. Hammad, M. L. Collard, and J. I. Maletic. Automatically identifying changes that impact
code-to-design traceability during evolution. Software Quality Control, 19(1):35–64, Mar.
2011.

7. M. A. Javed, S. Stevanetic, and U. Zdun. Cost-effective traceability links for architecture-
level software understanding: A controlled experiment. In 24th Australasian Software Engi-
neering Conference, ASWEC ’ 15 Vol. II, pages 69–73, 2015.

8. M. A. Javed, S. Stevanetic, and U. Zdun. Towards a pattern language for construction and
maintenance of software architecture traceability links. In 21st European Conference on
Pattern Languages of Programs, EuroPlop ’16, pages 24:1–24:20, 2016.

9. M. A. Javed and U. Zdun. On the effects of traceability links in differently sized software
systems. In 19th International Conference on Evaluation and Assessment in Software Engi-
neering, EASE ’15, pages 11:1–11:10, 2015.

10. P. Mäder and O. Gotel. Towards automated traceability maintenance. J. Syst. Softw.,
85(10):2205–2227, Oct. 2012.

