
We’re Doing It Live: A Multi-Method Empirical Study
on Continuous Experimentation

Gerald Schermanna,∗, Jürgen Citoa, Philipp Leitnera,
Uwe Zdunb, Harald C. Galla

aDepartment of Informatics, University of Zurich, Switzerland
{schermann, cito, leitner, gall}@ifi.uzh.ch

bUniversity of Vienna, Austria
uwe.zdun@univie.ac.at

Abstract

Context: Continuous experimentation guides development activities based on data collected on a subset of online users
on a new experimental version of the software. It includes practices such as canary releases, gradual rollouts, dark
launches, or A/B testing.
Objective: Unfortunately, our knowledge of continuous experimentation is currently primarily based on well-known and
outspoken industrial leaders. To assess the actual state of practice in continuous experimentation, we conducted a
mixed-method empirical study.
Method: In our empirical study consisting of four steps, we interviewed 31 developers or release engineers, and performed
a survey that attracted 187 complete responses. We analyzed the resulting data using statistical analysis and open cod-
ing.
Results: Our results lead to several conclusions: (1) from a software architecture perspective, continuous experimen-
tation is especially enabled by architectures that foster independently deployable services, such as microservices-based
architectures; (2) from a developer perspective, experiments require extensive monitoring and analytics to discover run-
time problems, consequently leading to developer on call policies and influencing the role and skill sets required by
developers; and (3) from a process perspective, many organizations conduct experiments based on intuition rather than
clear guidelines and robust statistics.
Conclusion: Our findings show that more principled and structured approaches for release decision making are needed,
striving for highly automated, systematic, and data- and hypothesis-driven deployment and experimentation.

Keywords: release engineering, continuous deployment, continuous experimentation, empirical study

1. Introduction

Many software developing organizations are looking into
ways to further speed up their release processes and to get
their products to their customers faster [1]. One instance
of this is the current industry trend to “move fast and
break things”, as made famous by Facebook [2] and in the
meantime adopted by a number of other industry lead-
ers [3]. Another example is continuous delivery and de-
ployment (CD) [4]. Continuous delivery is a software de-
velopment practice where software is built in such a way
that it can be released to production at any time, sup-
ported by a high degree of automation [5]. Continuous
deployment goes one step further; software is released to
production as soon as it is ready, i.e., passing all quality
gates along the deployment pipeline. These practices pave
the way for controlled continuous experimentation (e.g.,
A/B testing [6], canary releases [4]), which are a means

∗Corresponding author

to guide development activities based on data collected on
a subset of online users on a new experimental version of
the software. Unfortunately, our knowledge of continuous
experimentation practices is currently primarily based on
well-known and outspoken industrial leaders [6, 7]. This
is a cause for concern for two reasons. Firstly, it raises
the question to what extent our view of these practices is
coined by the peculiarities and needs of a few innovation
leaders, such as Microsoft, Facebook, or Google. Secondly,
it is difficult to establish what the broader open research
issues in the field are.

Hence, we conducted a mixed-method empirical study,
in which we interviewed 31 software developers and re-
lease engineers from 27 companies. To get the perspective
of a broader set of organizations, we specifically focused
on a mix of different team and company sizes and do-
mains. However, as continuous experimentation is espe-
cially amenable for Web-based applications, we primarily
selected developers or release engineers from companies
developing Web-based applications for our interviews. We

Preprint submitted to Journal of Information and Software Technology December 21, 2018

Canary Release

Old Version
95%

5% New Version

Dark Launch
Existing
System

100%
(duplicated
traffic)

New
Feature

A/B Test

Variant A

Variant B

100%
50%

50%

Figure 1: Overview of canary releases, dark launches, and A/B testing.

combined the gathered qualitative interview data with an
online survey, which attracted a total of 187 complete re-
sponses. The design of the study was guided by the fol-
lowing research questions.

RQ1: What principles and practices enable and hinder
organizations to leverage continuous experimentation?

We identified the preconditions for setting up and con-
ducting continuous experiments. Continuous experimen-
tation is facilitated through a high degree of deployment
automation and the adoption of an architecture that en-
ables independently deployable services (e.g., microservices-
based architectures [8]). Important implementation tech-
niques include feature toggles [9] and runtime traffic rout-
ing [10]. Experimenting on live systems requires more
insight into operational characteristics of these systems.
This requires extensive monitoring and safety mechanisms
at runtime. Developer on call policies are used as risk mit-
igation practices in an experimentation context. Experi-
ment data collection and interpretation is essential. How-
ever, not all teams are staffed with experts in all relevant
fields, we have seen that these teams can request support
from internal consulting teams (e.g., data scientists, Dev-
Ops engineers, or performance engineers).

RQ2: What are the different flavors of continuous ex-
perimentation and how do they differ?

Having insights into the enablers and hindrances of ex-
perimentation, we then investigated how companies make
use of experimentation. Organizations use different fla-
vors of continuous experimentation for different reasons.
Business-driven experiments are used to evaluate new func-
tionality from a business perspective, first and foremost
using A/B testing [6]. Regression-driven experiments are
used to evaluate non-functional aspects of a change in a
production environment, i.e., validate that a change does
not introduce an end user perceivable regression. In our
study, we have observed differences in these two flavors
concerning their main goals, evaluation metrics, how their
data is interpreted, and who bears the responsibility for
different experiments. We have also seen commonalities
in how experiments are technically implemented and what
their main obstacles of adoption are.

Based on the outcomes of our study, we propose a num-
ber of promising directions for future research. Given the
importance of architecture for experimentation, we argue

that further research is required on architectural styles
that enable continuous experimentation. Further, we con-
clude that practitioners are in need of more principled ap-
proaches to release decision making (e.g., which features
to conduct experiments on, or which metrics to evaluate).

The rest of this paper is structured as follows. In Sec-
tion 2, we introduce common continuous experimentation
practices. Related previous work is covered in Section 3.
Section 4 gives more detail on our chosen research method-
ology, as well as on the demographics of our study partici-
pants and survey respondents. The main results of our re-
search are summarized in Sections 5 and 6, while more de-
tails on the main implications and derived future research
directions are given in Section 7. Finally, we conclude the
paper in Section 8.

2. Background

Adopting CD, thus increasing release velocity, has been
claimed to allow companies to take advantage of early cus-
tomer feedback and faster time-to-market [1]. However,
moving fast increases the risk of rolling out defective ver-
sions. While sophisticated test suits are often successful
in catching functional problems in internal test environ-
ments, performance regressions are more likely to remain
undetected, hitting surface only under production work-
loads [11]. Techniques such as user acceptance testing help
companies estimate how users appreciate new functional-
ity. However, the scope of those tests is limited and al-
lows no reasoning about the demand of larger populations.
To mitigate these risks, companies have started to adopt
various continuous experimentation practices, most impor-
tantly canary releases, gradual rollouts, dark launches, and
A/B testing. We provide a brief overview of these exper-
imentation practices in Section 2.1, followed by an intro-
duction to two common techniques how these practices can
be implemented in Section 2.2.

2.1. Experimentation Practices

Figure 1 illustrates the practices of canary releases,
dark launches, and A/B testing.

Canary Releases. Canary releases [4] are a practice
of releasing a new version or feature to a subset of cus-
tomers only (e.g., randomly selecting 5% of all customers
in a geographic region), while the remaining customers

2

continue using the stable, previous version of the applica-
tion. This type of testing new functionality in production
limits the scope of problems if things go wrong with the
new version.

Dark Launches. Dark, or shadow, launching [2, 12] is
a practice to mitigate performance or reliability issues of
new or redesigned functionality when facing production-
scale traffic. New functionality is deployed to produc-
tion environments without being enabled or visible for any
users. However, in the backend, “silent” queries generated
based on production traffic are forwarded to the “shadow”
version. This provides insights into how the feature would
be behaving in production, without actually impacting
users.

Gradual Rollouts. Gradual rollouts [4] are often
combined with other continuous experimentation practices,
such as canary releases or dark launches. The number of
users assigned to the newest version is gradually increased
(e.g., increase traffic routed to the new version in 5% steps)
until the previous version is completely replaced or a pre-
defined threshold is reached.

A/B Testing. A/B testing [6] comprises running two
or more variants of an application in parallel, which only
differ in an isolated implementation detail. The goal is
to statistically evaluate, usually based on business metrics
(e.g., conversion rate), which of those versions performed
better, or whether there was a statistically significant dif-
ference at all.

2.2. Implementation Techniques

The two common implementation techniques for con-
ducting experiments are feature toggles and runtime traffic
routing.

Feature Toggles. Feature toggles [9] are a code-level
experimentation technique. In their simplest form, they
are conditional statements in the source code deciding
about which code block to execute next (e.g., whether a
certain feature is enabled for a specific user or user group).

1 i f i sEnabled (’ newFeature ’ , $user)
2 # code b lock containing new fea ture
3 else
4 # code b lock containing o ld f unc t i ona l i t y
5 end

Runtime Traffic Routing. Runtime traffic routing is
a network-level experimentation technique. Multiple ver-
sions of an application or service run in parallel (e.g., as
virtual machines, cloud instances, or containers). Depend-
ing on filter criteria applied on user requests (e.g., header
information such as cookies, device identifiers), dynam-
ically configured (network-level) components (e.g., prox-
ies) decide to which concrete version of an application or
service requests should be forwarded. A special type of
traffic routing are blue/green deployments [13], which in-
clude two or more active versions at the same time, but
only one serves production traffic.

3. Related Work

Release engineering and CD is currently a popular topic
of study in software engineering and data science. We cate-
gorized related work into (1) research related to continuous
integration (CI) as a prerequisite for CD and continuous
experimentation, (2) research related to CD including its
adoption and challenges involved, and (3) research cover-
ing continuous experimentation practices and experience
reports.

3.1. Continuous Integration

Continuous Integration (CI) as prerequisite for CD has
been studied extensively in recent years. Vasilescu et al. [14]
studied the effects of CI in the context of open source
projects that use pull requests on GitHub. Hilton et al. [15]
conducted a detailed analysis of the usage of CI in open
source projects and showed that CI supports more fre-
quent releases and is widely adopted by popular software
projects. Recently, Hilton et al. [16] reported on an em-
pirical study investigating the barriers and needs devel-
opers face when using CI including trade-offs related to
security, flexibility, and assurance. Similarly, Debbiche
et al. [17] reported on the challenges a telecommunica-
tions company faced on their way to adopt CI. Brandtner
et al. [18] have found that integrating build information
from multiple sources across the CI tool chain can sup-
port developers to stay aware about the quality and health
state of a software system. St̊al and Bosch [19] proposed a
model for documenting the practice of CI derived from a
systematic literature review and illustrated its application
on an industry case study. In the scope of CI, there are
also a multitude of research on software builds and test-
ing. Beller et al. [20] studied how central testing is to the
CI process and analyzed more than 2 million builds on the
Travis CI service. Similarly, Rausch et al. [21] investigated
the factors that lead to build failures on Travis CI. A sim-
ilar research question was also investigated by Vassallo et
al. [22], who additionally compared build failures of OSS
projects with projects of a financial organization, leading
to a taxonomy of build failures.

3.2. Continuous Delivery and Deployment

Roadmaps and Literature Reviews. Adams and
McIntosh [23] provided a roadmap for future research on
CD and release engineering practices. Similarly, Rodriguez
et al. [24] conducted a systematic literature review on CD
research articles and addressed potential fields for future
research. In their systematic literature review, Shahin et
al. [25] classified available approaches and tools in the con-
text of CI and CD. Moreover, they identified challenges,
practices, and gaps for future research considering the cur-
rent state of CI and CD. Rahman et al. [26] conducted a
qualitative analysis of CD practices performed by 19 soft-
ware companies by analyzing company blogs and similar
online texts. However, they did not conduct interviews
or a formal survey beyond what is already available in

3

blogs. In their white paper, Forrester [27] conducted a
survey with 325 business and IT executives and showed
that many companies have a low level of maturity when
it comes to CD, and consequently are not able to keep
innovation as high as business aims for.

DevOps. There are also studies on the state of the art
in DevOps. The most authoritative source on this comes
from Puppet Lab [28], a provider of Infrastructure-as-Code
tooling, which releases annual reports on the state of Dev-
Ops. Academic studies in this field include our own previ-
ous work [29] about integrating runtime monitoring data
from production environments into developer tools, but
also the work conducted in the CloudWave project [30].
Lwakatare et al. [31] combined a literature survey and
practitioner interviews to investigate the DevOps “phe-
nomenon”. They identified collaboration, automation, mea-
surement, and monitoring as the characterizing DevOps
elements. In a more recent study, Lwakatare et al. [32]
studied the relationship of DevOps to agile, lean, and CD
approaches. Shahin et al. [33] identified different types of
team structures by investigating how development and op-
erations teams are organized in the industry for adopting
CD practices.

CD Adoption and Challenges. Recent research has
comprised multiple studies on the challenges companies
face when adopting CD. Leppanen et al. [34] and Olsson
et al. [35] conducted studies with multiple companies dis-
cussing technical and organizational challenges, and their
state of CD adoption. Similarly, Chen [1], and Neely and
Stolt [36] provide experience reports from a perspective
of a single case study company, the obstacles they needed
to overcome and the benefits they gained by establishing
CD-based release processes. Claps et al. [37] identified
social challenges that companies face, and present mitiga-
tion strategies. Recently, Chen [38] presented six strate-
gies to overcome adoption challenges and in addition pro-
posed possible directions for future research. Bellomo et
al. [39] investigated architectural decisions companies take
to enable CD and introduced deployability and design tac-
tics. Itkonen et al. [40] investigated the adoption of CD
in a single case study company and report on the benefits
it enables for both customers and developers. Fitzgerald
and Stol [41] reported on the need for a tighter collabo-
ration between software development and business strat-
egy to enable continuous planning. In previous work [42],
we derived a model based on the trade-off between release
confidence (i.e., the effort companies put into quality gates
throughout the development process) and the velocity of
releases (i.e., the pace with which they can release new
versions).

As Facebook is one of the main drivers in the profes-
sional developer scene surrounding CD and continuous ex-
perimentation, the company is also commonly the subject
of related studies. Feitelson et al. [2] describe practices
Facebook adopted to release on a daily basis. In a recent
work, Savor et al. [43] compared CD experiences at Face-
book and OANDA and revealed that CD allows scaling in

both the number of developers and code base sizes without
decreasing productivity.

3.3. Continuous Experimentation

Experience Reports. There are also a multitude of
academic publications discussing how key industrial play-
ers conduct continuous experiments. Tang et al. [12] give
insights how Facebook manages multiple versions running
in parallel (e.g., using A/B testing) with a sophisticated
configuration-as-code approach. There are also experience
reports of Microsoft [6] and Google [7] on how they con-
duct experiments at a large scale. These works frame this
research as a data science rather than a software or re-
lease engineering topic. In contrast, Kevic et al. [44] in-
vestigated experimentation at Microsoft from a software
engineering perspective. Using Bing as a case study, they
investigated the complexity of the experimentation pro-
cess and results show that code changes for experiments
are four times larger than other code changes. Similarly,
Fabijan et al. [45] investigated the evolution of experimen-
tation at Microsoft and presented a model detailing tech-
nical, organizational, and business evolution to provide a
guidance towards data-driven experimentation.

Process and Design. Fagerholm et al. [46] investi-
gated the preconditions for setting up an experimentation
system and characterized software instrumentation to col-
lect, analyse, and store data as one of the challenges for
experimentation. Bakshy and Frachtenberg [47] provide
guidelines for correctly designing and analyzing bench-
mark experiments. Bakshy et al. [48] proposed a language
for describing online field experiments, including A/B test-
ing, at Facebook. Kohavi et al. [49] provided a practical
guide for conducting experiments. Tarvo et al. [50] built
a tool for automated canary testing incorporating the au-
tomated collection and analysis of metrics using statistics.
Tamburrelli and Margara [51] rephrase A/B testing as a
search-based software engineering problem targeting au-
tomation by relying on aspect-oriented programming and
genetic algorithms.

Implementation Techniques and Tooling. Rah-
man et al. [52] analyzed the usage and evolution of fea-
ture toggles in 39 releases of Google Chrome and dis-
cussed their strengths and drawbacks. Recently, Veer-
araghavan et al. [10] described how Facebook uses a tool
called Kraken to control (i.e. route) live user traffic on
various levels (i.e., data center, server) to identify and re-
solve bottlenecks across their application ecosystem. Our
own tooling, Bifrost [53], supports the specification of ex-
periments in a domain-specific language and uses runtime
traffic routing for redirecting user requests to the right
service versions.

3.4. Open Issues

Despite this significant body of work, we observe some
relevant gaps. Primarily, the existing body of research uses
case study research based on one, or very few, companies.

4

In our work, we conduct a mixed-method study based on
a larger sample size. Further, we focus on the software
developer’s or release engineer’s point of view, rather than
the perspective of managers, product owners, or data sci-
entists. Lindgren and Münch [54] recently did a step into
a similar direction, focusing on a manager’s perspective.
They looked at the state of experimentation in 10 Finnish
IT companies and came to the conclusion that it is not
yet mature, as experimentation is rarely systematic and
continuous. This is similar to what we have learned from
some of our interview participants. However, we were also
able to recruit several companies across multiple countries
which make heavy use of experimentation. Other notable
recent related research has been done by Shahin et al. [55].
Their work focuses on practitioner reports from multiple
companies regarding architectural issues of continuously
deploying software. This work, which has been conducted
in parallel to our study, largely comes to similar conclu-
sions as we do regarding the importance of architecture for
implemented experiments.

4. Research Methodology

We conducted a mixed-method study [56] consisting of
two rounds of semi-structured, qualitative interviews com-
bined with a quantitative survey. Figure 2 provides an
overview of the research methodology. All interview ma-
terials and survey questions are part of the paper’s online
appendix1. Further details on the design and execution of
our study complementing the information presented here
can be found in our case study protocol [57, 58] in the
paper appendix. Prior to conducting the initial round of
qualitative interviews, we performed a pre-study to iden-
tify practices associated with continuous experimentation.

4.1. Pre-Study

Protocol. The goal of the pre-study was to serve as
a basis for formulating questions for the qualitative part
of our study. As a starting point, we studied Rahman et
al. [26], Feitelson et al. [2], Humble and Farley [4], and the
Forrester report [27], which we considered standard CD
literature at the time we conducted our pre-study (the
mapping study by Rodriguez et al [24], which we also con-
sider seminal for the field, was not yet available). In ad-
dition we studied multi-vocal literature [59], i.e., unpub-
lished or non-peer-reviewed sources of information usu-
ally produced by organizations or practitioners. This in-
cluded studying tech blogs of industrial leaders such as
Facebook [60], Etsy [61], Twitter [62], Google [63], and
Netflix [64]. These companies are known for conduct-
ing experiments and using highly automated release pro-
cesses, hence we used their blog posts to supplement the

1http://www.ifi.uzh.ch/en/seal/people/schermann/

projects/expstudy.html

studied academic resources. To avoid potential bias in-
troduced by our selection of blogs and inspired by Barik
et al. [65], we then used Hacker News2 as an additional
tool to identify further popular web resources. Articles
were found using hn.algolia.com, a keyword-based Hacker
News search engine. We searched for articles containing
the keywords “continuous delivery” and “continuous de-
ployment”, which were posted between Jan 1 2011 and
Nov 1 2015, and sorted them based on their popularity on
Hacker News. For both keywords, we considered the first
80 articles. Our primary focus was on articles containing
mainly experience reports, i.e., how companies make use of
CD or continuous experimentation in the trenches. We re-
moved those with dead links and those that mainly adver-
tised specific tools. We ended up with 17 (continuous de-
livery) and 25 (continuous deployment) matching articles.
We analyzed the articles based on the usage of CD and
experimentation practices, compared them to the findings
derived from literature, and created an interview guide di-
vided into five themes: the release process in general, roles
and responsibilities, quality assurance, issue handling, and
release and experiment evaluation. A full list of articles,
the detailed search criteria, and the resulting interview
guide can be found in our online appendix.

Threats to Validity. The interview guide and the se-
lection of questions for the qualitative phases of the study
might have lead participants to answer towards our pos-
sibly biased notion of CD and experimentation (i.e., re-
searcher bias). We mitigated this threat by building a
foundation of understanding on the topic that is based on
both previous academic work and online articles of well-
known industry representatives. Potential bias introduced
by our selection of these representatives is mitigated by
including further experience reports and articles gathered
via a keyword-based search on Hacker News. However,
identifying whether a Hacker News article is suitable (i.e.,
whether it is an experience report or only advertising a
service or tooling) introduced a further potential bias that
we mitigated by having the authors discuss the relevancy
of each article. Another limitation regarding the suitabil-
ity and validity of the interview questions as a result of the
pre-study is that the first author designed all the questions.
However, they were rigorously reviewed and verified by the
other authors. In addition, some of the questions got im-
proved based on participant feedback during the study.

4.2. Qualitative Interview Study (Interview1)

Protocol. Based on the interview guide generated in
the pre-study, we then conducted a first round of inter-
views. We fostered an exploratory character via a semi-
structured interview process. All interviews included the
mentioned five themes and discussion of each theme started
off with an open question. Except for the first theme, top-
ics were not covered in any particular order, but instead

2https://news.ycombinator.com/

5

Deep-Dive Interviews (Interview2)Quantitative SurveyInterview Study (Interview1)Pre-Study

Literature Review

Multi-Vocal Literature Review

Selected Tech & Company
Blogs

Hacker News Study

20 Interviews

Open Coding & Card Sorting

Interview1 Findings

Transcription

Interview1 Findings

Survey Design

Data Collection

Survey Result Analysis

187 Complete Responses

Interview1
Findings Survey Results

Deep Dive Interview Guide

11 Interviews

Card Sorting & Data Analysis

Interview2 Findings

Transcription

Survey Distribution

Data Analysis

683 Cards
80 articles: “continuous delivery”

80 articles: “continuous deployment”

Interview Guide

Interview Guide

Figure 2: Overview of research methodology consisting of four steps.

followed the natural flow of the interview. In total, the
interview guide for this phase consisted of 52 questions.
However, we did not ask every single question to each par-
ticipant. The questions we asked rather depended on the
flow of the interview and thus whether certain follow-up
questions for the five themes were promising. Both, open
and follow-up questions, can be found in our online ap-
pendix. The interviews were conducted by the first, the
second, and the fourth author, either on-site in the areas
of Zurich and Vienna, or remotely via Skype. All inter-
views where held in English or German, ranged between 35
and 60 minutes, and were recorded with the interviewee’s
approval.

Participants. We recruited interviewees from indus-
try partners and our own personal networks, and increased
our data set using snowball sampling [66], i.e., by ask-
ing existing interviewees to put us in contact with fur-
ther potential interview partners that they are aware of.
In total, we conducted 20 interviews in this phase, with
developers or release engineers (P1 to P20, one female)
from companies across multiple domains and sizes (see Ta-
ble 1 and Figure 3). These companies range in size from
single-person startups to global enterprises with more than
100,000 employees, and are located in Austria, Germany,
Switzerland, Ireland, Ukraine, and the US. To ensure a
broad understanding of the impact of CD and continu-
ous experimentation on software development, we inter-
viewed practitioners with different levels of seniority (av-
erage 9 years, standard deviation 5 years) and different
project roles. However, we required that all participants
have insights into (technical) details on their company’s or
project’s release process. We primarily selected companies
developing Web-based applications, as our pre-study has
shown that this is the application model most amenable for
continuous experimentation. However, in spirit with the
exploratory nature of our study, we also included other ap-
plication types when companies mentioned their use of CD

or continuous experimentation. Although participants P9,
P10, and P11 are employed by the same company, their
teams work on different products utilizing different tech-
nology stacks and release processes. Due to the nature of
the interviews, some of the questions target personal opin-
ions, while others target the process, team, or even com-
pany level. Consequently, when discussing and reporting
the results we sometimes refer to the participant’s compa-
nies or team.

Analysis. The recorded interviews were transcribed
by the first two authors. We coded the interviews on sen-
tence level without any a priori codes or categories. The
first three authors then analyzed the qualitative data using
open card sorting [67] (683 cards in total), and categorized
the participants’ statements, resulting in the set of find-
ings described in the following. All findings are supported
by statements of multiple participants. All selected quotes
of interviews held in German were translated to English.

Threats to Validity. For the objectives of this study
it was important to recruit interview participants that are
approximately evenly distributed between organizations of
varying sizes, divergent domains, and backgrounds (years
of experience and age of participants). Snowball sampling
helped us to increase our sample size. However, a po-
tential disadvantage of this strategy is that it may suffer
from community bias, as the first participants are prone
to impacting the overall sample. We addressed this threat
by selecting study participants purposefully, focusing on
practitioners and also reviewed their online profiles, espe-
cially for those participants which were suggested to us via
snowballing. Further, a potential threat to our empirical
findings is that our results are not generalizable beyond the
subjects involved in the interviews. We mitigate this effect
by employing a mixed-method study validating our inter-
view findings in a more general context using a quantita-
tive survey in the following step. Furthermore, we rely on
self-reported (as opposed to observed) behavior and prac-

6

tices (self-reporting bias). Hence, participants may have
provided idealized data about the CD and experimenta-
tion maturity of their companies. Furthermore, it is possi-
ble that we introduced bias through the mis-interpretation
or mis-translation of “raw” results (interview transcripts).
To avoid observer bias, these results were analyzed and
coded by three authors of the study.

4.3. Quantitative Survey

Protocol. To validate and substantiate the findings
from our qualitative interviews on a larger sample size, we
designed an anonymous Web-based survey consisting of,
in total, 39 questions. Similar to the first round of inter-
views, we structured the survey into multiple themes: re-
lease process in general, software deployment, and issues
in production. The survey mainly consisted of a combi-
nation of multiple-choice, single-choice, and Likert-scale
questions. Although the survey had its focus on quanti-
tative aspects, we also included some free-form questions
to gain further thoughts and opinions in a more qualita-
tive manner. Depending on individual responses, we dis-
played different follow-up questions (i.e., branches in the
survey) for the purpose of identifying underlying reasons
(e.g., reasons for making use of canary releases, and rea-
sons against). In total we had 7 branches (i.e., 7 manda-
tory questions) in our survey, thus the number of ques-
tions a participant had to answer varied. With this survey
design we wanted to avoid presenting a participant with
questions that do not make sense based on her previous
answers.

Participants. We distributed the survey within our
personal networks, social media, via two DevOps related
newsletters3,4, and via a German-speaking IT news por-
tal5. As monetary incentives have been found to have a
positive effect on participation rates [68], we offered the op-
tion to enter a raffle for two Amazon 50$ gift vouchers on
survey completion. In total, we collected 187 complete re-
sponses (completion rate of 28% out of 667 responses). On
average, it took the participants 12 minutes to fill out the
survey. The survey was available online for three weeks in
February 2016. Survey participants reported an average
of 8 years of relevant experience in the software domain
(standard deviation 4 years). Similar to the interviews,
for some questions we were interested in the development
and deployment process on the team or company level.
Hence, we sometimes stick to the company level when dis-
cussing and reporting results. The resulting participant
demographics for the survey is summarized on the bottom
part of Figure 3.

Analysis. We analyzed the distributions of responses
to Likert-scale, multiple-choice, and single-choice questions.
In particular, we have correlated survey responses with the

3http://www.devopsweekly.com/
4http://sreweekly.com/
5http://heise.de

application model (Web-based or other) and the company
size, as these two factors have emerged as important fac-
tors of influence in the interviews. Further, we coded the
answers to open questions in the same style as for the in-
terviews.

Threats to Validity. We advertised our survey over
various social media channels to attract a high number
of respondents. However, participation in online surveys
is necessarily voluntary. Hence, it is likely that the sur-
vey has attracted a respondent demography with substan-
tial interest and familiarity with CD and experimentation
practices (self-selection bias). Furthermore and similar to
our interviews, participants may have provided idealized
data about their companies’ states on CD and experimen-
tation (self-reporting bias). We piloted the survey with
a small initial set of practitioners and gathered feedback
to improve the survey before distributing it to a larger
community and to avoid potential sources of ambiguity.
Similar to our interview transcripts, there is the possibil-
ity that we introduced bias through mis-interpreting or
mis-translating “raw” results gathered from the free-form
questions in the survey.

4.4. Qualitative Deep-Dive Interviews (Interview2)

Protocol. When revisiting our interview and survey
findings, we identified the following topics to be of particu-
lar interest: (1) experiment design (e.g., metrics, hypothe-
ses, duration), (2) implementation techniques for experi-
ments, and (3) experiment result interpretation. In order
to get more profound insights, we defined a set of 32 more
detailed questions and conducted a second round of struc-
tured interviews. We followed the same protocol as in the
initial interview round. Interviews lasted between 20 and
30 minutes and were again recorded with the interviewee’s
approval. Note that, we did not ask every single question
to each participant, as this would have exceeded the tar-
geted time frame. The questions we asked depended on
the flow of the interview and thus the different techniques
applied by the participant’s company or team.

Participants. We again recruited participants from
our personal networks and through snowball sampling. In
total, we conducted 11 additional interviews with develop-
ers or release engineers (D1 to D11) from 9 different com-
panies in various domains located in Germany, Switzer-
land, the United Kingdom, and the US (see Table 1 and
Figure 3). Participants D4 and D5, and participants D6
and D11 are employed by the same companies. However,
as in the first interview phase, all participants work on dif-
ferent teams, and participants D6 and D11 also work on
different products. On average, participants of the second
round of interviews had 12 years experience (standard de-
viation 7 years). All of the selected companies for the sec-
ond round of interviews develop Web-based applications.

Analysis. The recordings of the second round of quali-
tative interviews were transcribed by the first author. The
first three authors again used open coding to categorize

7

Interviewee
Company Application Experience (in Years)ID

Type Country App. Type App. Domain
Role

Total In Company
Team Size

P1 SME AT Web Sports News & Streaming DevOps Engineer 3 3 3–6
P2 SME AT Enterpr. SW Document Composition Software Engineer 4 4 3–5
P3 SME CH Web Employee Management Software Engineer 10 5 1–3
P4 SME CH Web Telecommunication Software Engineer 15 4 3–7
P5 SME AT Web Online Retail Software Architect 5 5 15–20
P6 SME AT Desktop SharePoint Software Engineer 4 4 2–7
P7 Corp. UA Web Employee Management Software Engineer 5 5 4–6
P8 SME AT Enterpr. SW Insurance Software Engineer 12 12 5–8
P9 SME CH Enterpr. SW E-Government Solution Architect 13 13 4–6
P10 SME CH Web Mobile Payment Solution Architect 16 6 60–70
P11 SME CH Web Mobile Payment Solution Architect 11 4 15-20
P12 Corp. DE Web Cloud Provider DevOps Engineer 1 1 9–11
P13 Startup AT Web Online Code Quality Analysis DevOps Engineer 16 1 1
P14 Corp. IE Web Network Monitoring Public Cloud Architect 10 1 6–8
P15 Corp. US Web Cloud Provider Program Manager 15 3 8–10
P16 SME AT Enterpr. SW E-Government Project Lead 15 9 3–7
P17 Startup US Web Babysitter Platform Software Engineer 4 2 6–8
P18 Startup US Web Event Management Director of Engineering 5 1 5–7
P19 SME US Web E-Commerce Platform Software Engineer 5 3 3–7
P20 SME AT Embedded SW Automotive Software Software Engineer 3 3 3–5

D1 SME US Web CMS Provider DevOps Engineer 10 1 3–5
D2 SME DE Web Q&A Platform Head of Development 10 3 4–7
D3 Startup CH Web HR Software Head of Development 10 7 4–5
D4 SME DE Web Travel Reviews & Booking Software Engineer 7 2 5–7
D5 SME DE Web Travel Reviews & Booking Software Engineer 8 2 4–6
D6 Corp. CH Web Telecommunication Team Lead 5 4 7–9
D7 Corp. UK Web Scientific Publisher Director of Engineering 9 3 3–12
D8 SME CH Web Network Services Team Lead 30 3 5–8
D9 Corp. US Web Video Streaming Head Release Engineering 19 3 5–9
D10 SME CH Web Sustainability Solutions DevOps Engineer 10 8 1–4
D11 Corp. CH Web Telecommunication Software Engineer 10 2 5–10

Table 1: Interview study participants of both rounds of interviews

7

16

4

corporation

small or medium
enterprise

startup

0 5 10 15
Interview − Company Size

10

10

10

1

more than
10 years

6 − 10 years

3 − 5 years

0 − 2 years

1 5 10
Interview − Experience

25

4

1

1

web applications

enterprise software

desktop software

embedded software

0 10 20
Interview − Application Type

Interview round
interview.1

interview.2

35

99

53corporation

small or medium
enterprise

startup

0 25 50 75 100
Survey − Company Size

16

46

62

62more than
10 years

6 − 10 years

3 − 5 years

0 − 2 years

0 20 40 60
Survey − Experience

105

34

23

10

8

7

web applications

enterprise software

desktop software

mobile applications

embedded software

other

0 25 50 75 100
Survey − Application Type

Figure 3: Demographics of interview study participants (top) and survey participants (bottom) subdivided into company sizes (left), experience
(center), and application type (right).

the participants’ statements and to gather more profound
insights into continuous experimentation.

Threats to Validity. For the second round of qualita-
tive interviews we are subject to the same threats to valid-
ity as in the first round of interviews that the reader should
keep in mind when interpreting our results. We again re-
cruited interview participants that are evenly distributed
between organizations of varying sizes, divergent domains,
and backgrounds. However, in this phase of interviews we

focused solely on companies developing Web-based appli-
cations. As we were especially interested in continuous
experimentation, we provided potential interview candi-
dates with a brief outline of the goals of our study. While
this allowed us to filter for participants that could provide
us with useful information, this also introduced a potential
threat that they shared information based on what they
thought we wanted to know (i.e., hypothesis guessing), or
withheld information or opinions that they thought would

8

be unpopular (i.e., evaluation apprehension) [69]. We mit-
igated this threat by assuring that both their answers and
company affiliation would be anonymized.

5. Practices for Continuous Experimentation

In this section, we cover best practices that facilitate
continuous experimentation which emerged from our study.
We start with technical practices (e.g., automation, archi-
tectural considerations) and move on to more organiza-
tional and cultural topics (e.g., awareness, developer on
call).

5.1. Technical Practices

Automation and CI. To enable continuous exper-
imentation, companies need to invest in deployment au-
tomation. A common implementation in CD projects are
deployment pipelines [13, 4]. Such pipelines consist of mul-
tiple defined phases a change has to pass until it reaches
the production environment. The intrinsic goal behind
investments in CD is to increase velocity, i.e., the time
needed to pass all the quality gates and approval steps un-
til a change reaches the production environment, while at
the same time ensuring that the quality of the resulting
product stays high [42]. Recently, there has been a mul-
titude of research works on the challenges companies face
on their way adopting CD, including technical and orga-
nizational [34, 35, 1], as well as social challenges [37]. Our
findings on obstacles regarding deployment automation are
in line with existing research, including companies’ inter-
nal policies (e.g., testing guidelines that are too strict in
case of P4), or customers which do not appreciate higher
release frequencies (e.g., P9).

Concerning continuous integration (CI), an often-cited
prerequisite for CD and continuous experimentation [4],
all but one company have embraced CI. However, CI has
been widely covered by recent research. Hence, we omit a
more detailed discussion on this topic and refer the reader
to existing work (e.g., [14, 15]) covered in Section 3.

Architectural Concerns of Continuous Experi-
mentation. A suitable software architecture has been
shown to be essential for experimentation, as it influences
both, a company’s velocity and release frequency:

”It is difficult to release individual parts of the system as de-
pendencies between new code and the system in the back are
just too high” -P5

To tackle this problem, P5 mentioned that in his com-
pany they have started migrating from their monolithic
application architecture to smaller, independently deploy-
able services (i.e., microservices) [8, 70, 71]. A similar
result has also recently been independently reported by
Shahin et al. [55]. More generally, we have observed this
trend across all our interviewees who use experimentation
extensively. All of the companies they work for either have

migrated to, or started from scratch with, a microservices-
based software architecture. Different parts or functional-
ity of a system are usually developed at a different pace and
in different teams, so it comes quite natural that compa-
nies favor this option of independently deploying certain
parts of their system. Another benefit our interviewees
(e.g., D7) mentioned is that functionality is implemented
with the technology which fits best, and non-monolithic
architectures reduce the aversion of experimenting with
more recent technology stacks. However, migrating to or
designing architectures with many loosely-coupled entities
bears its own risks. Suboptimal design decisions (e.g., us-
ing a central database for all services) lead to painful re-
leases involving costly coordination among multiple teams
whenever database schema changes occur (e.g., D6). How-
ever, once monoliths are broken down into multiple ser-
vices (e.g., 70 – 80 services for D4’s company, hundreds
of services in case of D9), identifying the root causes of
production issues becomes more challenging:

”[Root cause analysis] is difficult, and that’s one of the main
problems we face and we still have to tackle. If there is a severe
issue and something is not working, guesswork starts, every-
one’s asking about reasons and trying things out” -D4

Many teams and services are involved in troubleshoot-
ing these distributed problems. Traces of failed requests
need to be carefully analyzed, and multiple deployments
and their changes and running experiments have to be con-
sidered. One approach to tackle this is by forming a sepa-
rate, centralized team or task force supporting the decen-
tralized service teams.

”[...] they will get all the services in that area on basically a
Slack channel, and then relevant engineers will start looking at
their services and it’s like a war room. ” -D9

Implementation Techniques. We observed multiple
options on how to technically implement continuous ex-
perimentation. There is no “one size fits all” solution, and
many companies combine multiple implementation tech-
niques.

Feature Toggles. The implementation technique for
continuous experimentation that was named most frequently
in our study are feature toggles [52, 9]. They are used for
canary testing and for gradual rollouts (e.g., D2, D9), for
hiding not yet finished features in production code (e.g.,
D7, P20), to bucket users into groups for A/B testing (e.g.,
P19), or for dark launching new functionality (e.g., D9).
Interestingly, some of our interview participants associated
feature toggles with permission mechanisms, e.g., for reg-
ulating user access to specific features (e.g., P9, D6). D2
appreciate that properly managed and synchronized (e.g.,
using tools such as ZooKeeper6) feature toggles give them
more control over their application ecosystem:

6https://zookeeper.apache.org/

9

”We do [feature toggling] on backend and frontend services,
and especially on our iOS and Android apps because of their
restricted (app store) release cycles. You want to be sure that
if something is wrong, you can turn it off immediately across
all frontends.” -D2

As also reported by Rahman et al. [52], our intervie-
wees mentioned technical debt [72] and the additional level
of complexity feature toggles add to systems (e.g., P13,
D6) as major drawbacks. As Hodgson [9] stated, feature
toggles are easy to use, but they come with a maintenance
cost. D2 mentioned that they reached a point where con-
tinuously maintaining and testing 150 feature toggles be-
came infeasible due to state explosion. Issues appeared
when someone inadvertently flipped a flag and reactivated
dead code. As a consequence, they drastically reduced and
limited the number of feature toggles that are allowed to
be active at the same time.

”I’m not using feature toggles and I don’t intend to do so [...]
Configuration leads to complexity, and every time you add com-
plexity, you end up with additional complexity when you have
to remove it at some point.” -P13

Runtime Traffic Routing. Besides feature toggles, an-
other common implementation technique is runtime traffic
routing (e.g., D2, D5). Depending on request header in-
formation (e.g., set cookies, device information), user re-
quests are routed to selected backend instances, and, con-
sequently, to specific versions of the software.

”When we could not make it with feature toggles (about 20 –
30% of the cases), we had to think about alternatives. In case
of AdSense and Optimizely we set a cookie such that a user
always gets the same version.” -D2

A special type of traffic routing that is commonly used
among our interview participants’ companies are blue/
green deployments [13]. They use blue/green deployments
mainly for canary testing followed by gradual rollouts.
Once the first instance of new version works as expected,
the remaining old instances are replaced in a stepwise man-
ner, until a full rollout is reached.

Early Access. A final, relatively conservative, variation
of continuous experimentation among our participants is
providing specific users or user groups early access to bi-
naries (e.g., P8). The main advantage of this model is,
unlike for instance traffic routing, that it is not specific
to Web-based applications. However, the downside is that
the application provider has limited control over their ex-
periments, and cannot, for instance, enforce the usage of
the new version for specific users. Further, this experimen-
tation scheme requires substantial manual and administra-
tive effort.
Our interview findings are partially in line with our sur-
vey respondents (see Table 2). We use a color coding
scheme throughout the tables of this paper in which darker
cell background colors emphasize higher percentage values.
Due to our focus on companies offering Web-based prod-
ucts in the qualitative parts of our study, we had only
one company (P8’s company) providing their software in

form of binaries, as opposed to our survey participants
with 29%. Regarding our survey participants, feature tog-
gles are especially used by companies providing Web-based
products (45%), while they are less frequently used for
other application models (25%). While traffic routing is
also frequently used for Web-based products (45%) among
our survey participants, it is less important in other appli-
cation types (12%), in which pre-access to binaries is more
common (47%).

a
ll

n
=

7
0

W
e
b

n
=

3
8

o
t
h
e
r

n
=

3
2

s
t
a
r
t
.

n
=

8

S
M

E
n
=

4
3

c
o
r
p
.

n
=

1
9

other 6% 8% 3% 12% 5% 5%
permissions 17% 18% 16% 38% 16% 11%
dont’ know 20% 13% 28% 12% 21% 21%

binaries 29% 13% 47% 12% 33% 26%
traffic routing 30% 45% 12% 38% 23% 42%

feature toggles 36% 45% 25% 50% 35% 32%

Table 2: Implementation techniques in use for continuous experi-
mentation (multiple-choice).

Monitoring. An effect of highly automated pipelines
is that not only new features reach production faster, but
so do bugs. While delivery pipelines typically consist of a
number of automated or manual quality checks, bugs are
bound to slip through on occasion. This changes the way
how companies have to deal with issues:

”I think the faster you move, the more tolerant you have to be
about small things going wrong, but the slower you move, the
more tolerant you have to be with large change sets that can be
unpredictable.” -P18

Highly automated pipelines allow companies to fix those
small issues fast. Monitoring is a prerequisite for keeping
developers aware of events in production environments.
With continuous experimentation, the importance of mon-
itoring applications even increases. Monitoring is not only
used to determine if everything runs as expected (i.e.,
through health checks), but also to support rollout deci-
sions (e.g., increase traffic assigned to a canary release) and
decide about the continuation of ongoing experiments and
the outcome of completed experiments (e.g., determining
the outcome of an A/B test).

”The decision whether to continue rolling out is based on mon-
itoring data. We look at log files, has something happened, did
we get any customer feedback, if there is nothing for a couple
of days, then we move on.” -P16

Interview participants mentioned that they do not only
rely on monitoring data to identify runtime issues, but also
take customer feedback, for instance provided via bug re-
ports, into account. This was also supported by our survey
results. Customer feedback (85%) and active monitoring
(76%) are both widely used among survey respondents (see
Table 3). For Web-based applications, monitoring and cus-
tomer feedback are in balance, while for other application
types, customer feedback (90%) is dominant (67% moni-
toring). This is not surprising, as monitoring Web-based
applications is technically easier than for other applica-

10

tion models, and supported by existing Application Per-
formance Monitoring (APM) tools, such as New Relic [73].

a
ll

n
=

1
8
7

W
e
b

n
=

1
0
5

o
t
h
e
r

n
=

8
2

s
t
a
r
t
.

n
=

3
5

S
M

E
n
=

9
9

c
o
r
p
.

n
=

5
3

don’t know + other 4% 2% 6% 3% 5% 2%
monitoring 76% 83% 67% 89% 72% 75%

customer feedback 85% 81% 90% 80% 88% 83%

Table 3: How issues are usually detected (multiple-choice).

5.2. Organizational and Cultural Practices

Awareness. Awareness refers to activities that fos-
ter transparency of the development and experimentation
process for every stakeholder (e.g., developers, testers, op-
erations). Similarly to monitoring, awareness is becoming
even more important once continuous experiments are con-
ducted. Multiple deployments and experiments conducted
at the same time can negatively influence data collection
and statistically robust analysis, i.e., correctly identify-
ing and dealing with the noise induced by concurrent ex-
periments. Consequently, it is important that developers,
release engineers, and other stakeholders stay informed.
We distinguish between awareness throughout the devel-
opment process, and during experimentation. The former
typically covers tooling that tracks status or progress of
features through tasks or tickets (e.g., Pivotal tracker).
The latter involves various ways of informing other teams
about experiments being conducted, e.g., internal wiki or
blog posts (D1), e-mail notifications (D9), or meetings of
product owners and team leads (D2). Combined solutions
involve online dashboards, or public screens in the office,
which display information such as build status, test results,
or production performance metrics. Another way to pro-
mote awareness and transparency is through signals sent
in the form of asynchronous communication tools that are
integrated with the team collaboration chat tools, such as
Slack or HipChat [74].

Developer on Call. Interviewees agree that the no-
tion of developer on call, i.e., that a developer needs to
be available to provide operational support after a release,
has become a widely accepted practice in their organiza-
tion. This was not only the case for companies following
a service-based architecture, where being responsible as a
team for your own services comes naturally, but also for
other companies we interviewed. In case of issues, devel-
opers know best about their changes and can help opera-
tions to identify the problem faster and contribute to the
decision about subsequent actions. Additionally, P16 also
specifically mentions a learning effect for developers:

”Developers need to feel the pain they cause for customers. The
closer they are to operations the better, because of the massive
learning effect.” -P16

This practice is strongly related to DevOps and em-
phasizes a shift in culture that is currently taking place.
Traditional borders between development, quality assur-
ance, and operations seem to vanish progressively. This

addition of responsibility could lead developers to writing
and testing their code more thoroughly, as some partici-
pants indicated:

”If you don’t have enough tests and you deploy bad code it will
fire back because you would be on call and you have to support
it” -P14

Some participants (e.g., P7) mention that their com-
panies avoid the additional burden of keeping developers
on call on weekends by releasing only during office hours.
However, for many companies and domains, deployment
weekends are a business necessity (e.g., P9). Others fol-
low a more pragmatic process with a clear handover of
responsibility. For instance, at D5’s company, developers
provide a manual containing step by step descriptions for
operations on how to act in certain circumstances (e.g.,
rollbacks, flipping a feature toggle to turn off the experi-
ment).

Our survey confirmed these findings (see Table 4). The
majority of survey respondents stated that developers never
hand off their responsibility for a change. When compar-
ing company sizes, developers are on call particularly at
startups (74%), but even in larger corporations this con-
cept is applied frequently (45%). While in SMEs and cor-
porations (23%) developers hand off their responsibility
directly after development, this is almost never the case
for startups (3%).

a
ll

n
=

1
8
7

W
e
b

n
=

1
0
5

o
t
h
e
r

n
=

8
2

s
t
a
r
t
.

n
=

3
5

S
M

E
n
=

9
9

c
o
r
p
.

n
=

5
3

don’t know + other 4% 2% 5% 3% 1% 8%
preproduction 9% 10% 9% 9% 8% 11%

staging 12% 15% 9% 11% 12% 13%
development 19% 12% 28% 3% 23% 23%

never 56% 61% 50% 74% 56% 45%

Table 4: Phase in the release process after which developers typically
hand off responsibility for their code (single-choice).

Decentralized Teams and Consultants. Many in-
terview participants are not only supported by central
teams providing infrastructure (e.g., deployment pipelines,
containers with pre-configured monitoring) and tooling,
but also by a range of consulting teams. In companies
that adopt microservices, teams developing functionality
are autonomous in most of their decisions, including ex-
perimentation. However, not all teams are staffed with
experts in all relevant fields to either conduct or inter-
pret experiments (e.g., data scientists, DevOps engineers).
These teams can request support from centralized teams,
e.g., for identifying the right set of metrics and thresholds
to assess a service’s health state (e.g., D9, D1). We fur-
ther observed that tooling and infrastructure provided by
a centralized team increase technology homogeneity, since
they not only provide, but also maintain, standard tools:

”[...] you are allowed whatever tool you want. The interesting
thing is, [...] teams are not required to use [tool name] if they
don’t want to, but everyone uses it” -D9

11

Teams using their own technology stacks are required
to maintain them, leading to additional effort. Further, the
service team is held responsible when their non-standard
tools fail or lead to other issues.

6. Conducting Experiments

After covering common practices, this section focuses
on how companies actually conduct continuous experiments.
A central aspect that emerged from our study is that there
are fundamentally two classes of experiments, namely ex-
periments conducted to identify and mitigate the impact of
software regressions, such as functional bugs that evaded
detection in the delivery pipeline, performance regressions,
or scalability issues (regression-driven experiments) and
experiments conducted to evaluate different software de-
sign or implementation decisions from a business perspec-
tive (business-driven experiments). While superficially sim-
ilar on a technical level, different concrete practices are
typically used to implement those classes of experiments.
Business-driven experiments are primarily conducted us-
ing A/B testing. For regression-driven experiments, mul-
tiple techniques are in use, including canary releases, dark
launches, and gradual rollouts. We summarize the main
characteristics, differences, and commonalities of these classes
of experiments in Table 5.

6.1. Regression-Driven Experiments

This variant is about mitigating technical risks and
verifying the correct functioning of a new version or fea-
ture. Regression-driven experiments are used to detect
functional problems that slipped through unit or integra-
tion testing, performance regressions, or new features that
do not scale to production workloads.

”Even though [a new feature is] tested in test, it’s still the data
combinatorics in production are so vastly different than we can
simulate in test that in some cases we do find issues in produc-
tion.” -D9

Such production “health checks” are implemented in
various ways and on differing scales. A commonly used
practice among our interview participants are canary re-
leases. Release engineers either make use of them for all
changes, or, more commonly, use this practice for specific
changes that are considered particularly critical. A typi-
cal use case is scalability testing in Web-based applications
(e.g., P4, D2).

”[We use canary releases] especially in those cases when we
have concerns how it would scale when all users get immediate
access to this new feature.” -P4

Our survey has shown that 63% of practitioners are
not using any variant of regression-driven experimentation
(Table 6). Consistent with our interview results, this flavor
of experimentation – among those that actually make use
of it – is not bound to companies developing Web-based

applications. There is no significant difference in our sur-
vey responses in terms of its adoption between developers
of Web-based applications and others. However, for de-
velopers using other application models, partial rollouts
usually come in the form of simple pilot or early access
phases. These are usually manually-administered with
hand-picked friendly customers (e.g., companies of P8, P9,
D3). This concept is similar to pre-release versions (e.g.,
alpha, beta, RC) sometimes used in desktop and enterprise
software. Such early-access canaries are typically not sys-
tematically monitored and experiment outcomes are de-
termined primarily by analyzing user feedback.

Dark or shadow launches, as pioneered by Facebook,
are rarely used among our interviewees. Only D9 conducts
dark launches in a similar fashion as described by Face-
book, by implementing and controlling experiments using
feature toggles. D1 mentioned that they do not have the
necessary scale for it, and D2 does not see a pressing need.
D5, however, occasionally conducts a simplified version of
dark launches:

”We do have a procedure such that as long as a service [version]
is not effectively enabled in production we push every feature
branch to prod, thus we can ensure that it runs as we expect
[...] including [real or generated] traffic would be the next logical
step.” -D5

Metrics. In case of canary releases, measured met-
rics consist of standard application (e.g., response times)
and infrastructure (e.g., CPU utilization) metrics. This
is consistent with our results from a previous study [70].
Interviewees did not have strict rules on what to moni-
tor, nor do they have access to clear thresholds or tests
that help them assess whether specific monitoring data
should be considered “healthy” for a given application. In-
stead, practitioners conduct health assessments iteratively
and primarily based on intuition. If a metric value ap-
pears problematic (e.g., appears to be visually different
in a dashboard), they take action based on informal past
experience rather than well-defined processes and empiri-
cal data. This is consistent with our experiences in earlier
studies [29, 75]. If formal thresholds are used, they are
often based on historical metrics gathered from previous
releases. Even though a minority in our study population,
some interviewees (e.g., D2, D4, D9) also used a priori
defined metrics and thresholds.

”On a low level basis, [...] [we] basically do an apples to apples
comparison for about 2000 metrics, so every team is kinda free
to pick their own. [...] they are looking for deviations [...] if
you spin up version 2, it does a comparison and then you can
basically say what the variance is allowed to be.” -D9

Notifications are typically sent automatically if the data
shows any (negative) deviations from the baseline version.
D5 mentioned that setting concrete thresholds is tricky
and often leads to false alarms. Hence, they refrain from
setting specific thresholds.

Responsibility. In microservices-based architectures,
which many of our interview participants use extensively

12

Regression-Driven Experiments Business-Driven Experiments
Main Goals Mitigation of technical problems (e.g., related

to bugs or performance regressions), conducting
health checks, testing scalability on production
workload

Evaluation from a business perspective of new
features or different implementation decisions (do
customers appreciate the change, is it in line with
monetary incentives and company goals?)

Common Practices Canary releases, dark launches, gradual rollouts A/B testing
Used Metrics Typically multiple application and infrastructure

level metrics (e.g., response time) in combination
with simple-to-measure business metrics

Primarily business metrics, sometimes combined
with small selection of application metrics

Data Interpretation Often intuitive and based on experience, less pro-
cess driven (do metrics “seem higher than be-
fore”?)

More statistically rigorous hypothesis testing
based on carefully selected metrics

Experiment Duration Minutes to multiple days Often in the order of weeks (see also Kevic et
al. [44])

Selection of Target Users Often small scoped (e.g., small percentage of
users, user groups, regions), sometimes gradually
increased until full rollout

Two or more groups (percentage of user base, user
groups, regions) of same size, constant size during
experiment

Responsibility Siloization, single team or developers Multiple teams and services involved, requires co-
ordination, awareness, and commitment across
team borders

Impl. Techniques Feature toggles, dynamic traffic routing, distribution of different variants in form of binaries
Main Obstacles Architecture, limited number of users, missing business value or not worth investments, lack of

expertise

Table 5: Summary and comparison of regression-driven and business-driven experiments.

a
ll

n
=

1
8
7

W
e
b

n
=

1
0
5

o
t
h
e
r

n
=

8
2

s
t
a
r
t
.

n
=

3
5

S
M

E
n
=

9
9

c
o
r
p
.

n
=

5
3

for all features 18% 15% 22% 6% 22% 19%
for some features 19% 21% 17% 17% 21% 17%
no experimentation 63% 64% 61% 77% 57% 64%

Table 6: Usage of regression-driven experimentation (single choice).

(P10, P12, P14, P15, P19, D2, D4, D5, D7, D9), regression-
driven experiments are often characterized by “siloization”.
Teams responsible for a service decide when and how long
to conduct experiments on this service. Moreover, it is
typically the task of the team to interpret monitoring data
collected during the experiment. However, not all teams
have the necessary data science or domain knowledge to
do so with confidence. Hence, centralized support teams
are sometimes available that help identify metrics to look
after, interpret collected data, and identify issues causing
experiments to fail (e.g., D1, D4, D9). In other companies
(e.g., P4’s company), conducting experiments is a shared
task between release engineers, team leads, and operations,
which is outside the traditional microservice team struc-
ture.

Duration and User Selection. The duration of ca-
nary tests, dark launches, and gradual rollouts varies from
few minutes (e.g., in case of D7, whose team conducts very
short-term 5-minute health checks) to multiple days, but
rarely takes longer than two weeks. The end of the spec-
trum includes those companies rolling out on a data center
level (e.g., companies of P12, D8) or directly contact their
customers for feedback (e.g., through early access phases
in case of D3 and P8). The amount of, and which, users
are considered for an experiment depend on a new feature’s
complexity, i.e., the more critical a feature, the higher the
risk, thus the smaller the scope of the experiment initially.

User selection varies and involves random selection on user
traffic level, specific user groups (e.g., role, device), or en-
tire regions and countries. Some companies (e.g., of P16
or D1) apply further risk mitigation strategies by following
an “eat your own dog food” [76] approach. That is, they
are rolling out and testing new versions of their software
internally first before rolling out to external customers.

6.2. Business-Driven Experiments

The primary purpose of business-driven experimenta-
tion, most commonly associated with A/B testing, is to
evaluate the business value of specific features, implemen-
tation decisions, or products. Prerequisite for business-
driven experimentation is that the versions under test are
technically sound. In our study, the central system-under-
test for this type of experiments were user facing fron-
tends. A special case was the company of D5 that relied
on A/B testing also for their migration from a monolithic
to a microservices-based architecture. The company of D7
sometimes conduct, as they called it, “fake A/B tests”,
in which they were interested in the demand for a certain
feature without actually implementing it due to high costs
and unknown demand. They integrated a mockup into the
user interface and kept track of user interactions.

”We used it as our decision basis, in that mentioned case we
implemented the feature because data have shown that it gener-
ates more downloads and thus more money” -D7

23% of our survey respondents have adopted A/B test-
ing. Interestingly, this practice is not only bound to com-
panies developing Web-based applications, even though
they still represent the majority with 63% of A/B test
users in our survey. Consistent with our interviews, eval-
uating changes in the user interface is the most common

13

use case (88%) in our survey, but backend features are also
A/B tested by 44% of the respondents.

Metrics. Due to their higher strategic importance,
decision making in business-driven experiments tends to
be governed less by intuition and experience, and more by
statistically sound data analysis. Companies more often
start experiments with clearly defined hypotheses, decid-
ing a priori about what to expect (i.e., metrics and de-
viations), which users to invite or select, and how long
the experiment should take. Our interviewees often had
a selection of domain-specific key performance indicators
(KPIs) they looked at specifically throughout those exper-
iments, such as conversion rates or sales figures:

”It was about evaluating KPIs, how did they perform in both
groups, what did we expect. Prerequisite is that you have to
ensure during development that you can measure those metrics
later on.” -D2

Responsibility. Business-driven experiments often
involve more than a single team. For instance, frontend
functionality leverages multiple backend services, thus co-
ordination and commitment among all teams along the call
path is required. Teams need to make sure that multiple
experiments, both regression- and business-driven, do not
negatively influence each other. Some companies (e.g., of
D2) only allow exactly one experiment being conducted
for a single part of the application (e.g., frontend site),
while others (e.g., of D1, D9) tackle this problem through
long test durations and large sample sizes, and treat other
experiments simply as noise:

”There is the ability to see if it affected it, but I dont think we
necessarily pay too much attention. [...] overall, A/B tests run
for a long time, I think they evaluate this as noise” -D9

Experiment data interpretation requires substantial ex-
pertise in statistics and data science. Interpretation is
either a shared task (e.g., D1), or carried out by single
team members, often product owners of frontends (e.g.,
D2, D4).

Duration and User Selection. The exact duration
of business-driven experimentation varied, but was typi-
cally in the area of 4 to 6 weeks for our interviewees. Ex-
periment durations are dependent on getting enough data
to allow for statistical significant conclusions and to deal
with fluctuations:

”Feature performance varied on a daily basis, could be different
on day three than on day four, that’s why we take enough time
to [collect data and] draw valid conclusions.” -D2

Similar to regression-driven experiments, user selection
strategies vary, and can include random sampling, specific
roles or user groups, and regions or countries. Moreover,
the concrete user selection strategy depends on the actual
feature being tested, and may require coordination with
marketing and product development (e.g., in case of P17)
as well.

In terms of size of test and control groups, we identified
different approaches. D2’s company uses the same sizes

each time for test and control groups to facilitate data
interpretation. 1% of the user traffic is used as test group
for the new feature, and 1% of the user traffic as control
group. The remaining 98% get the same version as the
control group without being tracked. D1 mentioned that
it depends on the teams experience, some conduct 50:50
scale experiments, others start with 2% versus 98% of user
traffic.

6.3. Obstacles of Continuous Experimentation

We now report on the main problems and obstacles to
adopting continuous experimentation, both of the regression-
and business-driven variety. For the 63% of respondents
that are not actually using any variation of regression-
driven experiments, the largest obstacle is a software ar-
chitecture that does not easily support experimentation.
This was particularly evident for SMEs and corporations,
and for companies that develop Web-based products (64%,
versus 48% for others). It is likely that this is because most
Web-based products in these domains are still deployed as
monolithic 3-tier applications. For startups, software ar-
chitecture is slightly less of a concern. However, startups
often do not have a sufficiently large customer base to war-
rant regression-driven experimentation. This is linked to a
third, similar problem preventing the adoption of this type
of experiments – some teams or companies simply do not
see any business value in conducting them. Interestingly,
lack of expertise was only seen as a minor barrier for adop-
tion, given by 26% of respondents overall. A summary of
the main reasons against adopting regression-driven exper-
iments is shown in Table 7.

a
ll

n
=

1
1
7

W
e
b

n
=

6
7

o
t
h
e
r

n
=

5
0

s
t
a
r
t
.

n
=

2
7

S
M

E
n
=

5
6

c
o
r
p
.

n
=

3
4

other 18% 1% 10% 7% 4% 6%
lack of expertise 26% 27% 24% 15% 34% 21%
no business sense 39% 39% 40% 41% 36% 44%
number customers 39% 46% 30% 56% 38% 29%
architecture 57% 64% 48% 44% 66% 53%

Table 7: Reasons against conducting regression-driven experiments
(multiple-choice).

A summary of the main reasons against business-driven
experiments as resulting from our survey is given in Ta-
ble 8. Unsurprisingly, and similarly to the obstacles for
regression-driven experiments, for those 77% of partici-
pants that are not making use of A/B testing, the biggest
challenge is a software architecture that does not support
running and comparing two or more versions in parallel.
Unsuitable software architectures are mainly a problem
for SMEs and corporations, while for startups a small user
base is seen as a major obstacle. This also was an issue
that emerged from our interviews:

”We only have around 130 customers, it is actually easier to
just talk to everybody.” -P18

Once enough data points are collected to ensure sta-
tistical power, expertise is needed to analyze and draw

14

valid conclusions. However, a lack of expertise was only
mentioned by a minority of respondents (15%) as a prob-
lem. Interestingly, many companies report that they do
not have the features for which it would be worth con-
ducting A/B tests. A similar theme has also emerged in
the interviews. The return on investment, both financial
and time, of creating and/or setting up appropriate tool-
ing would be just too low. This was mentioned by 33%
of our survey participants. While limitations because of
internal policies are minor factors for startups, for corpo-
rations this represents a strong barrier.

a
ll

n
=

1
4
4

W
e
b

n
=

7
8

o
t
h
e
r

n
=

6
6

s
t
a
r
t
.

n
=

2
5

S
M

E
n
=

7
4

c
o
r
p
.

n
=

4
5

other 6% 4% 8% 4% 1% 13%
don’t know 6% 5% 6% 4% 7% 4%

lack of knowledge 15% 19% 11% 12% 15% 18%
policy / domain 21% 14% 29% 12% 22% 24%
number of users 28% 32% 23% 44% 27% 20%

investments 33% 35% 30% 44% 31% 29%
architecture 50% 53% 47% 40% 59% 40%

Table 8: Reasons against conducting business-driven experiments
(multiple-choice).

6.4. Summary

Having covered the two flavors of continuous experi-
mentation that emerged from our study, we now want to
summarize the usage of continuous experimentation prac-
tices among our interview participants (i.e., including both
interview rounds Interview1, and Interview2). Table 9 pro-
vides an overview of the prevalence of microservices-based
architectures, the usage of implementation techniques (i.e.,
feature toggles, traffic routing, and early access to bina-
ries), whether developers are “on call”, and finally, whether
development teams are supported by decentralized teams
and consultants. Besides those practices, Table 9 also de-
picts if and of which classes of continuous experimentation
(i.e., regression-driven and business-driven) the company
or team makes use of. For each participant in our inter-
view studies, we provide a simple mapping whether the
participant’s team uses (turquois), does not use (white),
or partially uses (color graded turquois) a respective prac-
tice or type of continuous experimentation. Partial usage
means that the respective company or team does have con-
crete plans to use a practice or is currently in the process
of migration (e.g., moving from a monolithic towards a
microservices-based architecture).

Developer on call is a widely accepted practice among
our interview participants, while decentralized and con-
sulting teams are especially common in larger organiza-
tions. Feature toggles and traffic routing are the typi-
cal implementation techniques for continuous experimen-
tation. However, although being a niche practice, some of
our interview participants prefer a more conservative ap-
proach of providing certain users early access to the newest
binaries. We also see that microservices-based architec-
tures are strongly represented in those companies making
extensive use of either regression-driven or business-driven

continuous experimentation. Among our interview par-
ticipants, regression-driven continuous experimentation is
more common than business-driven continuous experimen-
tation. However, four companies do have concrete plans
for conducting business-driven continuous experimentation.

7. Implications

We now discuss the main implications of our study. We
focus on the underlying problems and principles we have
observed, and propose directions for future research.

Architectural support for experimentation. As
discussed in Section 6, a (legacy) system architecture is a
dividing barrier between companies that do and those that
do not adopt continuous experimentation. Such an archi-
tecture makes advanced practices, such as canary releases
or A/B testing, hard to implement. We have observed that
applying feature toggles (see Section 5) to circumvent ar-
chitectural limitations for implementing experimentation
comes at the price of increased complexity, which neg-
atively affects maintainability and code comprehension.
Moreover, as reported by Rahman et al. [52] they intro-
duce technical debt. Microservices, or other architectural
models that foster independently deployable components
or services, are a promising enabling technology to ease
experimentation, but the community is currently lacking
formal research into the tradeoffs associated with such ar-
chitectural styles. For instance, we have observed that
practitioners currently lack means to decompose an ap-
plication into microservices in the first place, or identify
which microservice is causing a runtime issue along the
call path. Further, more studies are needed to assess the
suitability of microservices for various continuous experi-
mentation practices.

Modeling of variability. Related to the previous im-
plication, the results reported in Section 5 imply that prac-
titioners currently struggle with the complexity induced
by feature toggles. Hence, it can be argued that more
research is needed on better formalisms for modeling the
software variability induced by feature toggles, as well as
for their practical implementation without polluting the
application’s source code with release engineering func-
tionality. There has been a multitude of research around
variability, i.e., how software can be adjusted for different
contexts (e.g., Galster et al. [77], Capilla et al. [78]). We
suspect that concepts such aspect-oriented software devel-
opment [79] and (dynamic) product line engineering [80]
could serve as useful abstractions in the domain of con-
tinuous experimentation. However, their usage did not
emerge in our study even though these techniques have
been available for years.

From intuition to principled decision making.
In Section 6, we have observed that many release engi-
neers are mostly going by intuition and previous experi-
ence when defining metrics and thresholds to evaluate the
success of regression-driven experiments. Similarly, which

15

Practice

P
1
4

P
1
9

D
9

D
7

D
4

D
5

D
2

D
1

P
1
2

P
1
5

P
1
6

P
1
8

P
1
7

D
6

P
4

D
8

P
8

P
1

P
5

P
9

P
1
0

P
1
3

D
3

D
1
1

P
1
1

P
3

D
1
0

P
7

P
6

P
2

P
2
0

Microservices Arch.
Feature Toggles
Traffic Routing
Early Access
Dev on Call
Decentral. Teams
Regr.-Driven Exp.
Business.-Dr. Exp.

Table 9: Usage of continuous experimentation practices by our interview participants.

features to conduct canary tests on, or which (fraction of)
users to evaluate, is rarely based on a sound statistical or
empirical basis. Hence, research should strive to identify,
for various application types, the principal metrics that al-
low for evaluating the success of an experiment, and iden-
tify best practices on how to select changes that require
experimentation. Further, robust statistical methods need
to be devised that suggest how long to run at which scope
(e.g., number of users) to achieve the required level of con-
fidence. A main challenge for this line of research will be
that release engineers cannot generally be expected to be
trained data scientists. This is particularly true for smaller
companies, for which release decision making needs to re-
main cost-efficient and statistically sound on a small sam-
ple size.

The many hats of developers. An underlying
theme of our study results is that developers in those com-
panies that use models such as DevOps, developer on call,
microservices, or continuous experimentation, often need
to juggle their core task of writing code against many other
responsibilities, including operations support, release plan-
ning, and data analysis—often under considerable pres-
sure to move fast [3]. While we have observed that some
companies provide central support teams (e.g., through
dedicated data science consultants [81]), in many compa-
nies the teams need to acquire the necessary expertise to
handle these new job aspects themselves. However, not
only the software developer’s role is subject to change in
the context of CD and continuous experimentation, but
also the software architect’s. As reported by Hohpe et
al. [82], software architecture has also become broader and
more complex, requiring practitioners to steadily keep in-
formed about new technology such as microservices-based
architectures. Designing complex systems is more than
leveraging object-oriented design skills, it involves leading,
mentoring, and conveying complex concepts in approach-
able terms. Follow-up studies will be required that address
these changes in the job profile of software developers and
architects.

8. Conclusions

We report on an exploratory, yet systematic, empiri-
cal study on the practices of continuous experimentation.
Continuous experimentation guides development activities
based on data collected on a subset of online users on a new

experimental version of the software. As continuous exper-
imentation is especially amenable for Web-based applica-
tions, we primarily selected developers or release engineers
from companies developing Web-based applications for the
qualitative phases of the study. The insights provided by
our study help to understand the state of practice in this
field, how companies use experimentation and which chal-
lenges they face when adopting it. First, many compa-
nies practice it as an experience-driven “art” with little
empirical or formal basis. Our study suggests that foun-
dational support is needed for moving towards principled
approaches for release decision making. Second, small and
independently deployable services (e.g., microservice archi-
tectures) have emerged as a enabling technology, named by
all our interviewees who heavily use experimentation tech-
niques. However, we found that guidelines are required on
how to decompose (monolithic) applications and migrate
to such microservices-like architectural styles. And third,
the advent of experimentation and continuous deployment
processes has led to a shift in responsibilities. Developer
on call policies have become widely accepted, in which de-
velopers are not only responsible for the code they write,
but also decide in collaboration with their team which ex-
periments to conduct and which metrics to consider for
evaluation.

Once a more principled approach for release decision
making is established, we envision this to lead to well-
defined, structured continuous experimentation processes
implemented in code (i.e., Experimentation-as-Code), anal-
ogously to the already established concept of Infrastructure-
as-Code [83]. Such Experimentation-as-Code scripts can
be structured into multiple phases with clearly specified
gateways and repair actions. This will not only provide
means for further automation, but also facilitate the doc-
umentation, transparency, and even formal verification of
experimentation processes. We have already proposed ini-
tial steps into this direction as part of our proof-of-concept
system Bifrost [53].

Acknowledgments

The authors would like to thank all interview and sur-
vey participants. The research leading to these results has
received funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agree-
ment no. 610802 (CloudWave), and from the Swiss Na-

16

tional Science Foundation (SNSF) under project name
“Whiteboard” (SNSF Project no. 149450).

Appendix - Case Study Protocol

For planning, conducting, and reporting our study, we
followed the case study protocol proposed by Brereton et
al. [57]. We further considered the guidelines reported by
Runeson et al. [58]. The following sections provide de-
tails on study design, case selection, data collection, and
analysis.

1. Background

The goal of our study was to identify (1) the princi-
ples and practices that enable and hinder organizations to
leverage continuous experimentation, and (2) how compa-
nies use experimentation and how their techniques differ.
In Section 3, we provide details on related work in the
area of release engineering and list open issues we tried to
address within the context of our study. Prior to start-
ing the data collection process of our study, we conducted
a literature review (i.e., our pre-study) to identify typi-
cal practices associated with continuous experimentation
and derive a questionnaire for the first round of qualitative
interviews (see Section 4.1 for details).

2. Design

Our study was designed as an embedded, multiple-case
study. We followed a multiple-case design as we are inter-
ested in the state of practice in continuous experimenta-
tion. Rather than limiting our data collection to a single
case study company, we aimed for a more comprehensive
view on the field. We interviewed 31 developers or release
engineers from 27 companies. The object of study was the
release process of the participating companies. Depending
on the size and the domain of a company it could be the
case that multiple (different) release processes are in place
(e.g., for different products, or projects). Within the con-
text of our study, we focused on those processes our par-
ticipants are associated with, i.e., the product or project
they are working on. In three cases during the qualita-
tive phases of the study we collected data from within the
same company. For these cases, we ensured that data on
projects or products with different release processes were
collected. We chose an embedded study design since we
are not only integrating data from multiple cases, but also
analyze multiple embedded components from each case,
i.e., multiple units of analysis. We further position our
study as exploratory [58], as it sought to generate new in-
sights, and we adopted a “soft” case approach according to
Braa and Vidgen [84] as our research outcome was about
gaining understanding. We complemented our qualitative
data by conducting a quantitative online survey.

An important step in our study was the literature re-
view (i.e., pre-study) to get a notion of the practices as-
sociated with continuous experimentation and to serve as

a basis for developing a (first) questionnaire. Section 4.1
provides details on the pre-study, including the consid-
ered related research and multi-vocal literature, and the
search criteria used. The literature review was not sys-
tematic (SLR). Rather, given the exploratory character of
our study, we sought to identify a set of key concerns or
themes (i.e., forming a theoretical framework) that are im-
portant considerations when reviewing the state of prac-
tice in continuous experimentation. These key concerns
further establish the boundaries of our study and directly
link to the units of analysis (i.e., release process, roles and
responsibilities, quality assurance process, issue handling
process, experimentation process, experimentation design,
experimentation implementation techniques, and experi-
ment result interpretation) and consequently, support us in
answering our research questions introduced in Section 1.

2.1. Interview Study 1 - Key Concerns

In the following, we will briefly describe the key con-
cerns and themes (i.e., units of analysis) covered in the
first qualitative phase of our study.

Release process in general. The goal is to ana-
lyze the single phases (e.g., building, testing, deploying) a
(code) change has to pass through once a developer pushes
the change to the version control system triggering the re-
lease process. This allows us to get a first overview of the
release process, whether development, quality assurance,
and operations tasks are tightly connected or strictly sep-
arated within a company, and how automated the entire
process is.

Roles and responsibilities. This concern sheds light
on the various stakeholders involved in the software re-
lease process. Questions covered within this theme involve,
amongst others, who decides to ship a certain feature, who
is responsible for problems that might appear, are develop-
ers required to stay on call, and how aware are the various
stakeholders about ongoing and upcoming releases and ex-
periments.

Quality assurance. Within this theme we are inter-
ested in details how a company ensures software quality.
This involves analyzing whether quality assurance is sep-
arated into multiple stages within a so-called deployment
pipeline, whether manual approving is necessary in be-
tween, and whether builds happen exactly once through-
out the release process.

Issue handling. This concern deals with the process
of handling issues, whether problems detected in the pro-
duction environment are treated different than other issues
and how those issues are typically detected (e.g., monitor-
ing measures in place), by whom, and how long does it
take to fix them.

Release and experiment evaluation. This concern
should provide us insights into the experimentation pro-
cess of a company or project. It unveils how companies
keep track of experiments, whether there are strictly de-
fined processes for testing new features on a small fraction

17

of the user base, and how do the various stakeholders in-
volved interact with each other.

2.2. Interview Study 2 - Key Concerns

In order to get more profound insights into the exper-
imentation processes, we divided the release and experi-
ment evaluation concern into three more detailed key con-
cerns for the second round of interviews that are briefly
sketched in the following.

Experiment design. This key concern covers the
topic of how companies plan and design experiments. It
helps us to determine whether experimentation follows a
strict process (e.g., defining hypotheses, pre-selected set of
metrics to monitor) or is more driven by the developer’s
gut-feeling and who is typically involved and responsible
when designing and planning experiments.

Implementation techniques. The theme of imple-
mentation techniques covers the technical aspect of con-
tinuous experimentation. It sheds light on the various
techniques (e.g., feature toggles, traffic routing) used for
different types of experimentation (e.g., canary releases,
A/B testing) and how these are combined.

Experiment result interpretation. Experimenta-
tion is all about data collection and data interpretation.
We are interested in how companies interpret the collected
data, in which intervals, and who is responsible for it.

3. Case Selection

Ideally, the cases (i.e., companies or projects in our
study) should be selected intentionally and the units of
analysis should have variation in their properties such that
the application of data analysis methods reveal new in-
sights. In our study, the recruited companies range in size
from single-person startups to global enterprises. For the
qualitative phases of our study, we selected companies or
projects across multiple different domains (see Table 1).
We primarily selected companies or projects developing
Web-based applications, as our pre-study revealed that
this is the application model which is most amenable for
continuous experimentation. However, in spirit with the
exploratory nature of the study, we also included other ap-
plication types when our contacts mentioned their use of
CD or continuous experimentation.

4. Case Study Procedure and Roles

The design of our study did not require direct access
to specific company or project data (e.g., documentation,
source code, test reports). The first round of interviews
were conducted by the first, the second, and the fourth
author, either on-site in the areas of Zurich and Vienna,
or remotely via Skype. The deep-dive interviews (i.e., sec-
ond round of interviews) were conducted by the first and
the second author, either in Zurich, or remotely via Skype.
The design of the quantitative survey involved all authors

and the survey was hosted on the survey platform Type-
form7.

5. Data Collection

When starting the study, it was not decided how many
iterations (i.e., steps) should be conducted. The initial
design considered a single round of qualitative interviews
and a quantitative online survey. To get more profound
insights, we conducted a second round of interviews after
the survey phase. Finally, data was collected using two
rounds of interviews combined with a quantitative online
survey (i.e., data and methodological triangulation). Both
data collection techniques include the direct involvement
of software developers or release engineers, i.e., first degree
contact according to Lethbridge et al. [85]. The interviews
with 31 developers of 27 companies are the primary source
of information within the context of the study as much of
the knowledge that is of particular interest (e.g., current
issues with the release process) is not available anywhere
else than in the minds of the interviewed participants. The
quantitative survey was used to validate and substantiate
the findings from the qualitative interviews.

5.1. Interviews

Interview design. Both rounds of interviews followed
the same design. Based on the findings of the pre-study
(i.e., key concerns and themes) an interview guide was
generated that we used to conduct the first round of in-
terviews. For the second round of interviews, we created
a new questionnaire based on the results of the first round
of interviews and the survey results to get more profound
insights into the experimentation processes. For both in-
terview phases, we fostered an exploratory character via a
semi-structured interview process. All interviews included
the mentioned themes and the discussion of each theme
started off with an open question. Except for the first
theme, topics were not covered in any particular order,
but instead followed the natural flow of the interview.

Selection of participants. We recruited interviewees
from industry partners and our own personal networks,
and increased our data set using snowball sampling [66],
i.e., by asking existing interviewees to put us in contact
with further potential interview partners that they are
aware of. Key factor for recruiting interview participants
was that they have insights into the (technical) details of
their company’s or project’s release process. Therefore, we
refrained from interviewing participants in management
roles. Another selection criterion was years of experience
within the current company. We specified one year of ex-
perience as our lower limit for both rounds of interviews.

5.2. Survey

Survey design. To substantiate the findings of the
first round of qualitative interviews, we designed an anony-

7https://www.typeform.com/

18

mous Web-based survey consisting of, in total, 39 ques-
tions. We structured the survey into the three themes
release process in general, software deployment (covering
the release and experiment evaluation, and roles and re-
sponsibilities key concerns), and issues in production (cov-
ering quality assurance, and issue handling key concerns).
The survey mainly consisted of a combination of multiple-
choice, single-choice, and Likert-scale questions. Although
the survey had its focus on quantitative aspects, we also
included some free-form questions to gain further thoughts
and opinions in a more qualitative manner.

Survey participants. In surveys subjects are sam-
pled from a population to which results are intended to be
generalized [58]. To address a “tech-savvy” population we
distributed the survey within our personal networks (i.e.,
industry contacts), social media, via two DevOps related
newsletters8,9, and via a German-speaking IT news por-
tal10. Survey participants reported an average of 8 years
of relevant experience in the software domain (standard
deviation 4 years). The resulting participant demograph-
ics for the survey is summarized on the bottom part of
Figure 3.

5.3. Data Storage

All interviews were audio recorded with the intervie-
wees’ approvals. We sent a consent form to the intervie-
wees multiple days prior the interviews containing details
on data usage and storage. The audio files and the inter-
view transcriptions generated during the process of data
analysis will be stored for 5 years on a university server
not accessible by the public. The recorded data will be
properly deleted afterwards. The survey data will be ex-
ported from the survey platform and kept for five years on
the same university server.

6. Analysis

Coding. The first and the second author transcribed
the recorded interviews. The first, the second, and the
third author coded the transcriptions on a sentence level
without a priori codes or categories. For the second round
of interviews, we reused codes and added new ones when
required. The free-form questions of the survey were coded
following the same procedure.

Card sorting. The first three authors analyzed (i.e.,
investigator triangulation) the qualitative data using open
card sorting [67] (683 cards in total), and categorized the
participants’ statements, resulting in the set of findings
presented in Sections 5 and 6. The cards were designed
in such a way that each statement was on a single card
supplemented with the participant’s ID, the actual code,
the company type (i.e., startup, SME, corporation), and
the application type. The additional information was used

8http://www.devopsweekly.com/
9http://sreweekly.com/

10http://heise.de

to allow for better clustering and identifying differences
amongst the various companies or projects involved. All
clusters and thus findings are required to be supported by
statements of multiple participants.

Chain of evidence. The pre-study was the basis for
formulating the interview questions for the first qualita-
tive phase. The card sorting findings of the first qualita-
tive phase formed the basis for the survey questions and
response options respectively (e.g., reasons against con-
ducting experiments). We analyzed survey results using
the statistical software R. The questionnaire of the second
round of interviews was based on the analysis of survey re-
sults and the findings of the first qualitative phase. All the
selected quotes in the paper represent coded statements.

7. Limitations
In Section 4 we present limitations and threats to valid-

ity associated with the single phases of our study in detail.
An additional limiting factor throughout the interviews is
that we only consider data points from a single perspective
that are potentially biased having the participants pro-
viding idealized data about the CD and experimentation
maturity of their companies. In the context of the study
it was not possible to analyze additional resources (i.e.,
data triangulation on a case level) such as process docu-
mentation, or deployment scripts. We tried to mitigate
this factor by conducting a quantitative online survey to
validate the findings of the first qualitative phase.

8. Reporting
Within this paper, we do not only report on the find-

ings of our study, we also provide the reader additional
information on the study design (i.e., this case study pro-
tocol). Moreover, we provide the interested reader a com-
prehensive online appendix11 including all interview mate-
rials (i.e., questionnaires), survey questions, survey results
in form of a report, and the survey’s raw results. We do
not expose the names of study participants and the com-
panies they are working for. We used our findings to pro-
pose potential directions for future research to the research
community.

9. Schedule
The first month of this research was used for planning

the study, in the second month we conducted the pre-
study. The first round of interviews required two months in
total, the transcription of the interviews happened in par-
allel. Coding and card sorting took another month, similar
to the preparation and execution of the survey. We spent
a month on writing an initial version of this report. The
second round of interviews was conducted in two months.
The final data analysis (i.e., coding, card sorting) required
us another month. A second version of this report was
written afterwards (one month), which was revised three
times since then (taking about a month each).

11http://www.ifi.uzh.ch/en/seal/people/schermann/

projects/expstudy.html

19

References

[1] L. Chen, Continuous Delivery: Huge Benefits, but
Challenges Too, Software, IEEE 32 (2) (2015) 50–54.
doi:10.1109/MS.2015.27.

[2] D. G. Feitelson, E. Frachtenberg, K. L. Beck,
Development and Deployment at Facebook,
IEEE Internet Computing 17 (4) (2013) 8–17.
doi:http://doi.ieeecomputersociety.org/10.1109/MIC.2013.25.

[3] J. Rubin, M. Rinard, The Challenges of Staying Together
While Moving Fast: An Exploratory Study, in: Proceedings
of the 38th International Conference on Software Engineer-
ing, ICSE ’16, ACM, New York, NY, USA, 2016, pp. 982–993.
doi:10.1145/2884781.2884871.
URL http://doi.acm.org/10.1145/2884781.2884871

[4] J. Humble, D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation,
Addison-Wesley Professional, 2010.

[5] M. Fowler, Continuous Delivery,
http://martinfowler.com/bliki/ContinuousDelivery.html

(May 2013).
[6] R. Kohavi, A. Deng, B. Frasca, T. Walker, Y. Xu, N. Pohlmann,

Online Controlled Experiments at Large Scale, in: Proceedings
of the 19th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), ACM, New York, NY,
USA, 2013, pp. 1168–1176. doi:10.1145/2487575.2488217.
URL http://doi.acm.org/10.1145/2487575.2488217

[7] D. Tang, A. Agarwal, D. O’Brien, M. Meyer, Overlapping ex-
periment infrastructure: More, better, faster experimentation,
in: Proceedings 16th Conference on Knowledge Discovery and
Data Mining, Washington, DC, 2010, pp. 17–26.

[8] S. Newman, Building Microservices, ”O’Reilly Media, Inc.”,
2015.

[9] P. Hodgson, Feature Toggles,
http://martinfowler.com/articles/feature-toggles.html

(Jan. 2016).
[10] K. Veeraraghavan, J. Meza, D. Chou, W. Kim, S. Margulis,

S. Michelson, R. Nishtala, D. Obenshain, D. Perelman, Y. J.
Song, Kraken: Leveraging live traffic tests to identify and re-
solve resource utilization bottlenecks in large scale web services,
in: Proceedings of the 12th USENIX Conference on Operating
Systems Design and Implementation, OSDI’16, USENIX Asso-
ciation, Berkeley, CA, USA, 2016, pp. 635–650.
URL http://dl.acm.org/citation.cfm?id=3026877.3026926

[11] K. C. Foo, Z. M. J. Jiang, B. Adams, A. E. Hassan, Y. Zou,
P. Flora, An Industrial Case Study on the Automated Detection
of Performance Regressions in Heterogeneous Environments, in:
Proceedings of the 37th International Conference on Software
Engineering - Volume 2, ICSE ’15, IEEE Press, Piscataway, NJ,
USA, 2015, pp. 159–168.
URL http://dl.acm.org/citation.cfm?id=2819009.2819034

[12] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, R. Karl, Holistic Configuration Man-
agement at Facebook, in: Proceedings of the 25th Symposium
on Operating Systems Principles (SOSP), ACM, New York, NY,
USA, 2015, pp. 328–343. doi:10.1145/2815400.2815401.
URL http://doi.acm.org/10.1145/2815400.2815401

[13] L. Bass, I. Weber, L. Zhu, DevOps: A Software Architect’s
Perspective, Addison-Wesley Professional, 2015.

[14] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, V. Filkov,
Quality and Productivity Outcomes Relating to Continuous
Integration in GitHub, in: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ES-
EC/FSE 2015, ACM, New York, NY, USA, 2015, pp. 805–816.
doi:10.1145/2786805.2786850.
URL http://doi.acm.org/10.1145/2786805.2786850

[15] M. Hilton, T. Tunnell, K. Huang, D. Marinov, D. Dig, Us-
age, costs, and benefits of continuous integration in open-
source projects, in: Proceedings of the 31st IEEE/ACM In-
ternational Conference on Automated Software Engineering,

ASE 2016, ACM, New York, NY, USA, 2016, pp. 426–437.
doi:10.1145/2970276.2970358.
URL http://doi.acm.org/10.1145/2970276.2970358

[16] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, D. Dig,
Trade-offs in continuous integration: Assurance, security, and
flexibility, in: Proceedings of the 2017 11th Joint Meet-
ing on Foundations of Software Engineering, ESEC/FSE
2017, ACM, New York, NY, USA, 2017, pp. 197–207.
doi:10.1145/3106237.3106270.
URL http://doi.acm.org/10.1145/3106237.3106270

[17] A. Debbiche, M. Dienér, R. Berntsson Svensson, Challenges
when adopting continuous integration: A case study, in:
Product-Focused Software Process Improvement: 15th Interna-
tional Conference, PROFES 2014, Helsinki, Finland., Springer
International Publishing, 2014, pp. 17–32.

[18] M. Brandtner, E. Giger, H. Gall, Supporting continuous in-
tegration by mashing-up software quality information, in:
2014 Software Evolution Week - IEEE Conference on Soft-
ware Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE), 2014, pp. 184–193. doi:10.1109/CSMR-
WCRE.2014.6747169.

[19] D. St̊ahl, J. Bosch, Modeling continuous integration
practice differences in industry software development,
Journal of Systems and Software 87 (2014) 48 – 59.
doi:http://dx.doi.org/10.1016/j.jss.2013.08.032.
URL http://www.sciencedirect.com/science/article/pii/

S0164121213002276

[20] M. Beller, G. Gousios, A. Zaidman, Oops, my tests broke the
build: An explorative analysis of travis ci with github, in: Pro-
ceedings of the 14th International Conference on Mining Soft-
ware Repositories, MSR ’17, IEEE Press, Piscataway, NJ, USA,
2017, pp. 356–367. doi:10.1109/MSR.2017.62.
URL https://doi.org/10.1109/MSR.2017.62

[21] T. Rausch, W. Hummer, P. Leitner, S. Schulte, An Empirical
Analysis of Build Failures in the Continuous Integration Work-
flows of Java-Based Open-Source Software, in: 14th Interna-
tional Conference on Mining Software Repositories (MSR’17),
2017.

[22] C. Vassallo, G. Schermann, F. Zampetti, D. Romano, P. Leit-
ner, A. Zaidman, M. D. Penta, S. Panichella, A tale of ci build
failures: an open source and a financial organization perspec-
tive, in: Proceedings of the 33rd IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2017, p. nn.

[23] B. Adams, S. McIntosh, Modern Release Engineering in a
Nutshell – Why Researchers should Care, in: Proceedings of
the International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Future of Software Engineering
(FOSE) Track, 2016.

[24] P. Rodŕıguez, A. Haghighatkhah, L. E. Lwakatare, S. Tep-
pola, T. Suomalainen, J. Eskeli, T. Karvonen, P. Ku-
vaja, J. M. Verner, M. Oivo, Continuous Deployment
of Software Intensive Products and Services: A System-
atic Mapping Study, Journal of Systems and Software-
doi:http://dx.doi.org/10.1016/j.jss.2015.12.015.
URL http://www.sciencedirect.com/science/article/pii/

S0164121215002812

[25] M. Shahin, M. A. Babar, L. Zhu, Continuous integration, de-
livery and deployment: A systematic review on approaches,
tools, challenges and practices, IEEE Access 5 (2017) 3909–
3943. doi:10.1109/ACCESS.2017.2685629.

[26] A. Rahman, E. Helms, L. Williams, C. Parnin, Synthesizing
Continuous Deployment Practices Used in Software Develop-
ment, in: Agile Conference (AGILE), 2015, 2015, pp. 1–10.
doi:10.1109/Agile.2015.12.

[27] ThoughtWorks and Forrester Consulting, Continuous Delivery:
A Maturity Assessment Model,
https://info.thoughtworks.com/Continuous-Delivery-

Maturity-Model.html (2013).
[28] Puppet Labs, State of DevOps Report,

https://puppetlabs.com/2016-devops-report (2016).

20

[29] J. Cito, P. Leitner, T. Fritz, H. C. Gall, The Making of
Cloud Applications: An Empirical Study on Software De-
velopment for the Cloud, in: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (ES-
EC/FSE), ACM, New York, NY, USA, 2015, pp. 393–403.
doi:10.1145/2786805.2786826.
URL http://doi.acm.org/10.1145/2786805.2786826

[30] D. Bruneo, T. Fritz, S. Keidar-Barner, P. Leitner, F. Longo,
C. Marquezan, A. Metzger, K. Pohl, A. Puliafito, D. Raz,
A. Roth, E. Salant, I. Segall, M. Villari, Y. Wolfsthal, C. Woods,
CloudWave: where Adaptive Cloud Management Meets Dev-
Ops, in: Proceedings of the Fourth International Workshop on
Management of Cloud Systems (MoCS 2014), 2014.

[31] L. E. Lwakatare, P. Kuvaja, M. Oivo, Dimensions of devops,
in: International Conference on Agile Software Development,
Springer, 2015, pp. 212–217.

[32] L. E. Lwakatare, P. Kuvaja, M. Oivo, Relationship of devops to
agile, lean and continuous deployment: A multivocal literature
review study, in: Product-Focused Software Process Improve-
ment: 17th International Conference, PROFES 2016, Trond-
heim, Norway., Springer, 2016, pp. 399–415.

[33] M. Shahin, M. Zahedi, M. A. Babar, L. Zhu, Adopting con-
tinuous delivery and deployment: Impacts on team structures,
collaboration and responsibilities, in: Proceedings of the 21st
International Conference on Evaluation and Assessment in Soft-
ware Engineering, ACM, 2017, pp. 384–393.

[34] M. Leppanen, S. Makinen, M. Pagels, V.-P. Eloranta, J. Itko-
nen, M. Mantyla, T. Mannisto, The Highways and Country
Roads to Continuous Deployment, IEEE Software 32 (2) (2015)
64–72. doi:10.1109/MS.2015.50.

[35] H. Olsson, H. Alahyari, J. Bosch, Climbing the ”Stairway to
Heaven” – A Mulitiple-Case Study Exploring Barriers in the
Transition from Agile Development towards Continuous Deploy-
ment of Software, in: Proceedings of the 38th EUROMICRO
Conference on Software Engineering and Advanced Applications
(SEAA), 2012, pp. 392–399. doi:10.1109/SEAA.2012.54.

[36] S. Neely, S. Stolt, Continuous Delivery? Easy! Just
Change Everything (Well, Maybe It Is Not That Easy),
in: Agile Conference (AGILE), 2013, 2013, pp. 121–128.
doi:10.1109/AGILE.2013.17.

[37] G. G. Claps, R. B. Svensson, A. Aurum, On the Journey to Con-
tinuous Deployment: Technical and Social Challenges Along the
Way, Information and Software Technology 57 (0) (2015) 21 –
31. doi:http://dx.doi.org/10.1016/j.infsof.2014.07.009.

[38] L. Chen, Continuous delivery: Overcoming adoption
challenges, Journal of Systems and Software (2017) –
doi:http://dx.doi.org/10.1016/j.jss.2017.02.013.
URL http://www.sciencedirect.com/science/article/pii/

S0164121217300353

[39] S. Bellomo, N. Ernst, R. Nord, R. Kazman, Toward Design
Decisions to Enable Deployability: Empirical Study of Three
Projects Reaching for the Continuous Delivery Holy Grail, in:
Proceedings of the 44th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN), 2014, pp.
702–707. doi:10.1109/DSN.2014.104.

[40] J. Itkonen, R. Udd, C. Lassenius, T. Lehtonen, Perceived
benefits of adopting continuous delivery practices, in: Pro-
ceedings of the 10th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, ESEM
’16, ACM, New York, NY, USA, 2016, pp. 42:1–42:6.
doi:10.1145/2961111.2962627.
URL http://doi.acm.org/10.1145/2961111.2962627

[41] B. Fitzgerald, K.-J. Stol, Continuous software engineering and
beyond: Trends and challenges, in: Proceedings of the 1st In-
ternational Workshop on Rapid Continuous Software Engineer-
ing, RCoSE 2014, ACM, New York, NY, USA, 2014, pp. 1–9.
doi:10.1145/2593812.2593813.
URL http://doi.acm.org/10.1145/2593812.2593813

[42] G. Schermann, J. Cito, P. Leitner, H. C. Gall, Towards Qual-
ity Gates in Continuous Delivery and Deployment, in: 2016

IEEE 24th International Conference on Program Comprehen-
sion (ICPC), IEEE, 2016, pp. 1–4.

[43] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck,
M. Stumm, Continuous Deployment at Facebook and OANDA,
in: Proceedings of the 38th International Conference on Soft-
ware Engineering Companion, ICSE ’16, ACM, New York, NY,
USA, 2016, pp. 21–30. doi:10.1145/2889160.2889223.
URL http://doi.acm.org/10.1145/2889160.2889223

[44] K. Kevic, B. Murphy, L. Williams, J. Beckmann, Character-
izing experimentation in continuous deployment: a case study
on bing, in: International Conference on Software Engineering,
Software Engineering in Practice, ICSE SEIP, Buenos Aires,
2017.

[45] A. Fabijan, P. Dmitriev, H. H. Olsson, J. Bosch, The evolution
of continuous experimentation in software product development,
in: International Conference on Software Engineering, ICSE,
Buenos Aires, 2017.

[46] F. Fagerholm, A. S. Guinea, H. Mäenpää, J. Münch,
The right model for continuous experimentation, Jour-
nal of Systems and Software 123 (2017) 292 – 305.
doi:http://dx.doi.org/10.1016/j.jss.2016.03.034.
URL http://www.sciencedirect.com/science/article/pii/

S0164121216300024

[47] E. Bakshy, E. Frachtenberg, Design and Analysis of Benchmark-
ing Experiments for Distributed Internet Services, in: Proceed-
ings of the 24th International Conference on World Wide Web
(WWW), 2015, pp. 108–118. doi:10.1145/2736277.2741082.
URL http://doi.acm.org/10.1145/2736277.2741082

[48] E. Bakshy, D. Eckles, M. S. Bernstein, Designing and
Deploying Online Field Experiments, in: Proceedings of
the 23rd International Conference on World Wide Web,
WWW ’14, ACM, New York, NY, USA, 2014, pp. 283–292.
doi:10.1145/2566486.2567967.
URL http://doi.acm.org/10.1145/2566486.2567967

[49] R. Kohavi, R. Longbotham, D. Sommerfield, R. M. Henne, Con-
trolled experiments on the web: survey and practical guide,
Data Mining and Knowledge Discovery 18 (1) (2009) 140–181.
doi:10.1007/s10618-008-0114-1.
URL http://dx.doi.org/10.1007/s10618-008-0114-1

[50] A. Tarvo, P. F. Sweeney, N. Mitchell, V. Rajan, M. Arnold,
I. Baldini, CanaryAdvisor: A Statistical-based Tool for Ca-
nary Testing (Demo), in: Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis (IS-
STA), ACM, New York, NY, USA, 2015, pp. 418–422.
doi:10.1145/2771783.2784770.
URL http://doi.acm.org/10.1145/2771783.2784770

[51] G. Tamburrelli, A. Margara, Towards Automated A/B Test-
ing, in: Proceedings of the 6th International Symposium on
Search-Based Software Engineering (SSBSE), Vol. 8636 of Lec-
ture Notes in Computer Science, Springer, 2014, pp. 184–198.

[52] M. T. Rahman, L.-P. Querel, P. C. Rigby, B. Adams, Feature
Toggles: Practitioner Practices and a Case Study, in: Proceed-
ings of the 13th International Conference on Mining Software
Repositories, MSR ’16, ACM, New York, NY, USA, 2016, pp.
201–211. doi:10.1145/2901739.2901745.
URL http://doi.acm.org/10.1145/2901739.2901745

[53] G. Schermann, D. Schöni, P. Leitner, H. C. Gall, Bifrost:
Supporting continuous deployment with automated enact-
ment of multi-phase live testing strategies, in: Proceedings
of the 17th International Middleware Conference, Middle-
ware ’16, ACM, New York, NY, USA, 2016, pp. 12:1–12:14.
doi:10.1145/2988336.2988348.
URL http://doi.acm.org/10.1145/2988336.2988348

[54] E. Lindgren, J. Münch, Raising the Odds of Success: the
Current State of Experimentation in Product Development,
Information and Software Technology 77 (2016) 80 – 91.
doi:http://dx.doi.org/10.1016/j.infsof.2016.04.008.
URL http://www.sciencedirect.com/science/article/pii/

S0950584916300647

21

[55] M. Shahin, M. A. Babar, L. Zhu, The intersection of contin-
uous deployment and architecting process: Practitioners’ per-
spectives, in: Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measure-
ment, ESEM ’16, ACM, New York, NY, USA, 2016, pp. 44:1–
44:10. doi:10.1145/2961111.2962587.
URL http://doi.acm.org/10.1145/2961111.2962587

[56] F. Shull, J. Singer, D. I. Sjøberg, Guide to Advanced Empirical
Software Engineering, Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2007.

[57] P. Brereton, B. Kitchenham, D. Budgen, Z. Li, Using a pro-
tocol template for case study planning, in: Proceedings of the
12th International Conference on Evaluation and Assessment in
Software Engineering, EASE’08, BCS Learning & Development
Ltd., Swindon, UK, 2008, pp. 41–48.
URL http://dl.acm.org/citation.cfm?id=2227115.2227120

[58] P. Runeson, M. Host, A. Rainer, B. Regnell, Case Study Re-
search in Software Engineering: Guidelines and Examples, 1st
Edition, Wiley Publishing, 2012.

[59] V. Garousi, M. Felderer, M. V. Mäntylä, The need for multivo-
cal literature reviews in software engineering: Complementing
systematic literature reviews with grey literature, in: Proceed-
ings of the 20th International Conference on Evaluation and As-
sessment in Software Engineering, EASE ’16, ACM, New York,
NY, USA, 2016, pp. 26:1–26:6. doi:10.1145/2915970.2916008.
URL http://doi.acm.org/10.1145/2915970.2916008

[60] Facebook, Engineering Blog,
https://code.facebook.com/posts/ (2016).

[61] Etsy, Code as Craft,
https://codeascraft.com/ (2016).

[62] Twitter, The Twitter Engineering Blog,
https://blog.twitter.com/engineering (2016).

[63] Google, Google Developers Blog,
https://developers.googleblog.com/ (2016).

[64] Netflix, The Netflix Tech Blog,
http://techblog.netflix.com/ (2016).

[65] T. Barik, B. Johnson, E. Murphy-Hill, I Heart Hacker
News: Expanding Qualitative Research Findings by Analyz-
ing Social News Websites, in: Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering (ES-
EC/FSE), ACM, New York, NY, USA, 2015, pp. 882–885.
doi:10.1145/2786805.2803200.
URL http://doi.acm.org/10.1145/2786805.2803200

[66] R. Atkinson, J. Flint, Accessing hidden and hard-to-reach pop-
ulations: Snowball research strategies, Social research update
33 (1) (2001) 1–4.

[67] D. Spencer, Card Sorting: Designing Usable Categories, Rosen-
feld Media, 2009.

[68] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, T. Zimmermann,
Improving Developer Participation Rates in Surveys, in: Pro-
ceedings of the 6th International Workshop on Cooperative and
Human Aspects of Software Engineering (CHASE), 2013, pp.
89–92. doi:10.1109/CHASE.2013.6614738.

[69] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell,
A. Wesslen, Experimentation in Software Engineering: An In-
troduction, Kluwer Academic Publishers, 2000.

[70] G. Schermann, J. Cito, P. Leitner, All the Services Large and
Micro: Revisiting Industrial Practice in Services Computing, in:
Proceedings of the 11th International Workshop on Engineering
Service Oriented Applications (WESOA’15), 2015.

[71] G. Mazlami, J. Cito, P. Leitner, Extraction of microservices
from monolithic software architectures, in: 2017 IEEE Interna-
tional Conference on Web Services (ICWS), 2017, pp. 524–531.
doi:10.1109/ICWS.2017.61.

[72] P. Kruchten, R. L. Nord, I. Ozkaya, Technical debt: From
metaphor to theory and practice, IEEE Software 29 (6) (2012)
18–21. doi:10.1109/MS.2012.167.

[73] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan,
W. Shang, Studying the effectiveness of application performance
management (apm) tools for detecting performance regressions
for web applications: An experience report, in: Proceedings of
the 13th International Conference on Mining Software Reposi-
tories, MSR ’16, ACM, New York, NY, USA, 2016, pp. 1–12.
doi:10.1145/2901739.2901774.
URL http://doi.acm.org/10.1145/2901739.2901774

[74] B. Lin, A. Zagalsky, M. Storey, A. Serebrenik, Why Devel-
opers Are Slacking Off: Understanding How Software Teams
Use Slack, in: Proceedings of the 19th ACM Conference on
Computer Supported Cooperative Work and Social Computing
(CSCW) Companion, ACM, New York, NY, USA, 2016, pp.
333–336. doi:10.1145/2818052.2869117.
URL http://doi.acm.org/10.1145/2818052.2869117

[75] J. Cito, P. Leitner, H. C. Gall, A. Dadashi, A. Keller, A. Roth,
Runtime Metric Meets Developer - Building Better Cloud Ap-
plications Using Feedback, in: Proceedings of the 2015 ACM
International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software (Onward! 2015), ACM,
New York, NY, USA, 2015.

[76] A. Moskowitz, Eat Your Own Dog Food, j-LOGIN 28 (5).
URL http://www.usenix.org/publications/login/2003-10/

pdfs/moskowitz.pdf

[77] M. Galster, D. Weyns, D. Tofan, B. Michalik, P. Avgeriou,
Variability in software systems - a systematic literature review,
IEEE Transactions on Software Engineering 40 (3) (2014) 282–
306. doi:10.1109/TSE.2013.56.

[78] R. Capilla, J. Bosch, K.-C. Kang, et al., Systems and software
variability management, Concepts Tools and Experiences.

[79] G. Kiczales, Aspect-oriented Programming, ACM Computing
Surveys 28 (4). doi:10.1145/242224.242420.
URL http://doi.acm.org/10.1145/242224.242420

[80] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic
Software Product Lines, Computer 41 (4) (2008) 93–95.
doi:10.1109/MC.2008.123.

[81] M. Kim, T. Zimmermann, R. DeLine, A. Begel, The Emerging
Role of Data Scientists on Software Development Teams, in:
Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, ACM, New York, NY, USA, 2016, pp.
96–107. doi:10.1145/2884781.2884783.
URL http://doi.acm.org/10.1145/2884781.2884783

[82] G. Hohpe, I. Ozkaya, U. Zdun, O. Zimmermann, The software
architect’s role in the digital age, IEEE Software 33 (6) (2016)
30–39. doi:10.1109/MS.2016.137.

[83] W. Hummer, F. Rosenberg, F. Oliveira, T. Eilam, Testing Idem-
potence for Infrastructure as Code, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013, pp. 368–388. doi:10.1007/978-3-642-
45065-5 19.
URL http://dx.doi.org/10.1007/978-3-642-45065-5_19

[84] K. Braa, R. Vidgen, Interpretation, intervention, and reduc-
tion in the organizational laboratory: a framework for in-
context information system research, Accounting, Manage-
ment and Information Technologies 9 (1) (1999) 25 – 47.
doi:https://doi.org/10.1016/S0959-8022(98)00018-6.
URL http://www.sciencedirect.com/science/article/pii/

S0959802298000186

[85] T. C. Lethbridge, S. E. Sim, J. Singer, Studying software
engineers: Data collection techniques for software field stud-
ies, Empirical Software Engineering 10 (3) (2005) 311–341.
doi:10.1007/s10664-005-1290-x.
URL https://doi.org/10.1007/s10664-005-1290-x

22

