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Abstract. Microservice APIs represent the client perspective on microservice-
based software architecture design and related practices. Major issues in API de-
sign concern the quality aspects of the API. However, it is not well understood
today what the established practices related to those quality aspects are, how these
practices are related, and what the major decision drivers are. This leads to great
uncertainty in the design process. In this paper, we report on a qualitative, in-
depth study of 31 widely used APIs plus 24 API specifications, standards, and
technologies. In our study we identified six recurring architectural design deci-
sions in two API design contexts with a total of 40 decision options and a total of
47 decision drivers. We modelled our findings in a formal, reusable architectural
decision model. We measured the uncertainty in the resulting design space with
and without use of our model, and found that a substantial uncertainty reduction
can be potentially achieved by applying our model.

1 Introduction

Many approaches have been proposed for designing service-based architectures (see
e.g. [15,17,23]). A recent approach which evolved from established practices in service-
oriented architectures are microservices [14,22]. The microservices approach empha-
sizes business capability- and domain-driven design, service development in indepen-
dent teams, cloud-native technologies/architectures, polyglot persistence, lightweight
containers, and a continuous DevOps approach to service delivery (see [11,14,22]).
When realizing microservices architectures a core task is to design the service con-
tracts or Application Programming Interfaces (APIs). In this context, we focus on the
problem to design for, realize, enforce and maintain quality aspects of the microser-
vice API – which are of key importance as the API is usually the only visible aspect
of the microservice from the client’s perspective. An API provider has to perform the
balancing act of providing a high-quality service in a cost-effective way. Quality of an
API has many dimensions, starting with the functionality, but also including many other
qualities such as reliability, performance, security, and scalability – sometimes the lat-
ter are referred to as Quality of Service (QoS) guarantees. They are usually conflicting



with each other, but almost always need to be balanced with economic qualities such as
costs and time to market. Many quality measures related to service QoS exist, but only
a few of them are directly related related to APIs [13].

The main challenge for microservice API designers is to determine the appropri-
ate quality trade-off during the design of the microservice API. Numerous practices
exist and have complex relations among each other. Many decision drivers have to be
understood and might be conflicting among each other. Therefore, architects orienting
themselves and navigating in the microservice API design space usually face a high
uncertainty in their decision making, related to finding and assessing the knowledge
needed for making an informed decision. Once all required knowledge has been gath-
ered, a high uncertainty on how to combine which practices remains; the impact of these
practices and their combinations on the many potentially relevant quality trade-offs is
not clear either. This paper aims to study the following resulting research questions:

– RQ1 (a) What are established practices to design for, realize, communicate and
maintain the quality of a microservice API? (b) What are the relations among those
practices? (c) What are decision drivers of those decisions? (d) Which impact do
the practices and their combinations impose on the decision drivers?

– RQ2 (a) How high is the decision making uncertainty in this design space? (b) Can
this decision making uncertainty be reduced? If so, how?

This paper makes three major contributions. First, we gather knowledge about estab-
lished practices, their relations, and their decision drivers in the form of a microservice
APIs design space based on a qualitative study of 55 knowledge sources (including
31 widely used APIs). Our second contribution is the codification of this knowledge
in form of a reusable Architectural Design Decision (ADD) model which we for-
mally modelled based on a UML2 meta-model. We also described newly documented
patterns using pattern templates (which can be found in another publication along with
technical details [19], whereas this paper focuses only on decision modelling aspects).
In total we documented six decisions in two contexts with 40 decision options and 47
decision drivers. Please note that we limited our scope to message representations in
the interface contracts, and excluded e.g. the architectural decisions required in service
implementations (which were addressed in our earlier works [23]). Finally, we estimate
the decision making uncertainty in this design space, calculate the uncertainty left af-
ter applying the guidance of our ADD model, and compare the two. Our model shows
a potential to substantially reduce the uncertainty not only by documenting established
practices, but also by organizing the knowledge in a model.

The remainder of this paper is organized as follows: In Section 2 we compare to
the related work. Section 3 explains the research methods we have applied in our study.
Then Section 4 describes our reusable ADD model. Section 5 provides the uncertainty
reduction estimation. The findings are discussed in Section 6, and Section 7 concludes.

2 Related Work

Quite a number of studies on services focus on QoS aspects (see e.g. [13,18,21]). In
microservice-specific studies related to quality, topics like the increased operations



qualities when combined with DevOps (see e.g. [1]), qualities in service decomposition
[7], or specific qualities like trade-offs in self-adaptive architectures [8] are studied. The
specific quality aspects of the API, which is of high practical relevance as the API is the
only part of the microservices visible to the client, is not yet a major focus of study.

A number of approaches study microservice patterns and best practices: The mi-
croservice patterns by Richardson [17] address microservice design and architecture
practices. Another set of patterns on microservice architecture structures has been pub-
lished by Gupta [6], microservice best practices are discussed in [11], and similar ap-
proaches are summarized in a recent mapping study [15]. So far, none of those ap-
proaches has been combined with a formal model and API quality is not a major focus.

Decision documentation models (examples are those covering service-oriented so-
lutions [23], service-based platform integration [12], REST vs. SOAP [16], and big
data repositories [5]) promise to improve the situation, but the focus on this kind of
research is not yet on API design. The model developed in our study can be classified
as a reusable ADD model [23]. Other authors have combined decision models with
formal view models [9]. We apply those techniques in our work, but also extend them
with a modelling approach and a detailed uncertainty reduction estimation. Exploiting
uncertainties has been used in software architecture traceability research before [20].

3 Research Method

This paper aims to systematically study the established practices in the field of mi-
croservice API quality aspects. A number of methods have been suggested to study es-
tablished practices. A classical method is pattern mining (see e.g. [3]) which starts with
the authors’ own experiences, searches systematically for other known uses in real-life
systems, and then applies a series of feedback loops to improve the pattern. A num-
ber of techniques have been suggested for improving this research method. Hentrich
et al. [10] define a pattern mining method as a form of qualitative research resembling
methods like Grounded Theory (GT) [4]. Like GT, we studied each knowledge source
in depth. We followed a similar coding process, as well as a constant comparison pro-
cedure to derive our model. In contrast to classical GT, our research began with initial
research questions, as in Charmaz’s constructivist GT [2]. Whereas GT typically uses
textual analysis, we used textual codes only initially and then transferred them into
formal UML models and text in pattern templates.

Our knowledge mining happened in many iterations. That is, we searched for one or
a few new knowledge sources, applied open and axial coding [4] to identify candidate
categories, and compared with the so-far-designed model continuously. We improved
this model incrementally. A crucial question in GT is when to stop this process; here,
theoretical saturation [4] has attained widespread acceptance in qualitative research: We
stopped our analysis when 5 to 7 additional knowledge sources did not add anything
new to our understanding of the research topic. As a result of this very conservative
operationalization of theoretical saturation, we studied a rather large number of knowl-
edge sources in depth (55 in total, summarized in Table 1, see [19] for more details
on the sources), whereas most qualitative research often saturates with a much lower
number of knowledge sources. In addition to 31 APIs and their documentations, our



search led us to 24 additional knowledge sources (specifications, standards, and tech-
nologies) directly related to the design of a number of APIs. Our search was based on
our own experience, APIs we have access to and worked with. We also used on major
search engines (e.g., Google, Bing) and online API directories and topic portals (e.g.,
ProgrammableWeb, InfoQ) to find known uses and validate intermediate results. We in-
cluded knowledge sources, if they were about widely used APIs (i.e., many more users
than just the original authors), use modern service technologies, and follow at least
some of the microservice tenets summarized in Section 1. Note that not always those
APIs are labelled as microservice APIs, but as microservice tenets have been in use
long before the microservice term was coined, and as some RESTful HTTP APIs share
the same technological underpinnings, we have also considered them in our study.

Table 1: Knowledge Sources Included in the Study

APIs Studied 31 Amazon EC2 API, Amazon S3, AWS Lambda, Cloud Convert API, Confluence REST API, Facebook
Graph API, File Transfer Service API, Finance Industry Web Service API, GitHub API v3, GitHub
API v4, Google Calendar API, Google Compute Engine, JIRA Cloud API, LinkedIn API, Microsoft
Azure, Microsoft Dynamics CRM, Microsoft Graph API, Open Weather Map, Optimizely, PayPal API,
Quandl API, Salesforce API, Singlewire, Stripe API, SWIFT, Swiss Bank API, Swiss Federal Admin-
istration registry of companies web service API, Swiss Insurance API, TMForum REST API, Twitter
API, YouTube Data API

API-Related
Specifications,
Standards,
Technologies
Studied

24 Adidas API Spec, Amazon API Gateway, apistylebook.com, Basic Authentication, CHAP, EAP, EC
SLA Guidelines, HTTP/1.1: Conditional Requests, JSON API Spec, Kerberos, LDAP, MuleSoft API
Manager, OAuth, OpenID Connect 1.0, OWASP REST Security, Play2 Guard, REST API design book,
RESTful Web Services Cookbook, RFC 7519, SAML, SLA Best Practices, SLA Whitepaper, Suggested
REST Practices, TM Forum Applications Framework 3.0

4 Reusable ADD Model for API Quality

In this section, we report on the reusable ADD model that resulted from our study. Fig-
ure 1 shows an overview of the reusable decisions and their relationships, as well as
their major decision contexts. Our model contains all kinds of decision contexts in API
design in a separate domain model of which we only use a small part in this paper:
Most decisions on API quality have to be made for combinations of API clients and the
API those clients access. Many such decisions can be made for large groups of those
combinations, such as all clients with freemium access or all clients accessing a spe-
cific API. One decision needs to be made at the level of operations in the API. Note that
in Figure 1 the decisions inherit those contexts from their (sub-)categories. Below we
describe our findings for each of the decisions in detail. Note that all elements of our
reusable ADD model are instances of a meta-model (with meta-classes such as Deci-
sion, Category, Pattern, AND Combined Group, and so on), which we introduce in this
paper implicitly in the text with the uses of the meta-classes in our model. Please note
that in this paper we focus on the decision models and their decision drivers. For space
reasons, it is not possible to provide all technical details. Detailed patterns explaining
the decision options used in this paper, including examples, known uses, and detailed
discussions of decision drivers can be found in another publication describing the pat-
terns using pattern templates [19]. The patterns are part of a larger pattern language
effort started and summarized in [24].
Reusable Decision: Identification and Authentication of the API Client. Identifica-
tion and authentication are important for API providers that are paid for or use freemium



Quality Category : Category

Operation-Specific
Qualities : Category

Avoid Unnecessary Data
Transfer : Decision

Operation : Domain
Class

Endpoint-Specific Qualities
: Category

Client Identification
and Authentication

: Decision

Explicit Specification
of Quality Objectives

and Penalties : Decision

Prevent API Clients
From Excessive API

Usage : Decision

: AND Combined Group

API Client : Domain
Class

has sub-category

«decide for some instances
of»

has sub-category

«Consider If Not Decided
Yet»

«Consider If Not Decided
Yet»

«Consider If Not Decided
Yet»

«decide for some instances
of»

Metering and Charging
for API Consumption

: Decision

API : Domain Class

Communicate Errors
: Decision

Fig. 1. API Quality: Reusable ADD Model – Overview of Required Decisions and Categories

models: the API provider can grant authorization based on the API client’s proven iden-
tity. This is key to ensure security, but also impacts many other qualities; e.g., if un-
known clients can access the API without control or known clients can make excessive
use of the API, the performance of the system can degrade, reliability can be in dan-
ger, or costs (e.g., for used cloud resources) can rise. The typical decision to be made
here is shown in Figure 2. The simplest option is to chose no secure identification and
authentication needed, which is suitable only if the a number of clients is limited and
if the risks with respect to abuse or excessive use are low. The obvious alternative is to
introduce an Authentication mechanism for the API (which includes identification). An
API Key that assigns each client a unique token that the client can present to the API
endpoint for identification is a minimalistic solution. If security is an issue, API Keys
are not enough. In conjunction with an additional secret key that is not transmitted,
API Keys can be used to securely authenticate a client. Another secure alternative are
authentication or authorization protocols such as OAuth, SAML, Kerberos, or LDAP.

There are a number of decision criteria that need to be considered in this decision.
First of all, the level of required security, as outlined above. In addition, API Keys are
only a slight degradation in terms of ease of use for clients compared to doing noth-
ing; the other options are less easy to use as they require dealing with more complex
protocol APIs and setting up the required infrastructure. In addition, the management
of user account credentials required in authentication and authorization protocols can
be tedious both on client and provider side; this is avoided in all options using API
Keys. With regard to the performance of the solution, doing nothing has no overhead.
API Key options have a slight overhead for processing the key(s). Authentication and
authorization protocols tend to have more overhead as they also offer additional fea-
tures. The API Key options also decouple the client making an API call from the client’s
organization, as using the customer’s account credentials would needlessly give system
administrators and developers full account access.
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Fig. 2. Client Identification and Authentication Decision

Please that in our models we use the term practice as a superset of patterns and
other established practices; only those practices that have been described in pattern
form (e.g., in our related publications [19]) are denoted with the stereotype Pattern, all
other existing practices are denoted as Practice.
Reusable Decision: Communicate Errors. A common quality concern for APIs is
how to communicate errors as this has direct impacts on qualities like avoiding and
fixing defects, costs of defect fixing, robustness and reliability problems due to unfixed
defects, and so on. Of course, one option is not to handle the error at all, but this is
usually not advisable – at least, for production APIs. A common solution, if only one
protocol stack is used (e.g., HTTP over TCP/IP), is to use Protocol-level Error Codes,
e.g., status codes in HTTP, but this does not work if error reporting needs to work across
multiple protocols, formats, and platforms. In such cases the Error Reporting pattern
should be used so that replies include in addition to machine-readable error codes, also
a textual description of the error is provided for the API developer. Also such error
messages can carry parameters and constants in order to allow internationalization of
error messages when reporting the to the user of the client application.

Error Reporting : Pattern Protocol-Level Error
Codes : Practice

: Do Nothing

«Can Be Combined With»

«Option»
{name = "perform

API-level error reporting"}

«Option»
{name = "communicate

errors only using
the application or
transport protocol

error codes"}

«Option»
{name = "provide

not specific solution
for communicating

errors"}

Communicate Errors
: Decision

Fig. 3. Communicate Errors Decision

Rate Limit : Pattern

Authentication : Practice

Prevent API Clients
From Excessive API

Usage : Decision

Client Identification
and Authentication

: Decision
: Do Nothing

«Can Use»

«Option»
{name = "yes"}

«Consider If Not Decided
Yet»

«Option»
{name = "no"}

Fig. 4. Prevent API Clients from Excessive
API Usage Decision



The main decision drivers (see Figure 3) to introduce any kind of error reporting are
help in fixing defects and increased robustness and reliability. Error reporting leads to
better maintainability and evolvability, and the more it explains errors and thus reduces
the effort in the task of finding the cause of a defect, the more effective it is; thus the
Error Reporting pattern performs better in this regard than simple error codes. Error
Reporting is also better performing with regard to interoperability and portability as
it better enables supporting protocol, format, and platform autonomy. However, the
more elaborate error messages can reveal information that is problematic with regard to
security, as revealing more information about system internals opens up attack vectors.
Error Reporting requires more work, if internationalization is required, as the more
detailed information needs to be translated.
Reusable Decision: Preventing API Clients from Excessive API Usage. Excessive
use by a few clients can significantly limit the availability of the service for other clients.
Thus preventing excessive API usage by clients is needed. Assuming API clients can be
identified as previously discussed, their individual usage of the API can be monitored
for billing purposes. If offsetting the expense of operating the microservice to its clients
is not enough to limit their traffic (e.g., using a Rate Plan, see next decision), an explicit
Rate Limit can be introduced to safeguard against API clients that overuse the API. The
limit can be expressed in number of requests per period of time. If this limit is exceeded,
further requests can either be declined, be processed later or with lower priority.

The decision is shown in Figure 4. The major decision criteria to be considered in
this decision are: A certain level of scalability and performance needs to be maintained
by the provider, but could be in danger if clients abuse the API. Means for supporting
client awareness of Rate Limits are required so that clients can find out know how much
of their limits they have already used up. Establishing Rate Limits helps the provider
to support qualities such as resilience, reliability, and fault tolerance as they make it
hard for clients to abuse the API in a way that puts those qualities at risk. All these
potential benefits must be contrasted to the impact and severity of risks of API abuse
and economic aspects. Introducing Rate Limits produces costs and can be seen critically
by clients as well as additional complexity if clients are allowed to negotiate their limits.
Reusable Decision: Metering and Charging for API Consumption. If the API is
a commercial offering, the API provider might want to charge for its usage. Thus a
means for identifying and authenticating clients is required (see decision above). Then
the provider can monitor clients and assign a Rate Plan which measures API usage
e.g. on a per-call level and is used to bill API clients, advertisers, or other stakeholders
accordingly. As shown in Figure 5, we can alternatively not meter and charge the client.
In the context of a Rate Plan sometimes a Rate Limit is used to ensure fair use. Figure
5 also illustrates possible variants of the Rate Plan pattern: Pricing can be based on
actual usage, on market-based allocation (or with its sub-variant based on auctions), or
on flat-rate subscriptions. All those variants can be combined with a freemium model.

The major drivers for this decision are usually economic aspects, such as pricing
models and selecting a variant of the pattern that suits the provider or the consumer
business model best. The benefits of applying the pattern need to be contrasted to the
efforts and costs required to meter and charge customers. Accuracy is central as API
clients expect to be billed only for the services they actually have consumed. Accurate
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Flat-rate Subscription
: Pattern

Freemium Model : Pattern

Usage-based Pricing
: Pattern

Auction-style Allocation
: Pattern

Market-based Allocation
: Pattern

Client Identification
and Authentication
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«Can Use»
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«Can Be Combined With»
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«Variant»
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«Variant»
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«Variant»
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«Consider If Not Decided
Yet»

«Option»
{name = "no"}

Metering and Charging
for API Consumption

: Decision

«Variant»

Fig. 5. Metering and Charging for API Consumption Decision

metering requires an adequate meter granularity to be defined. As information about
metering and charging contains sensitive information about clients, e.g. indications of
how well they do in their markets, it needs extra protection with regard to security.
Reusable Decision: Explicit Specification of Quality Objectives and Penalties.
Quality objectives are kept implicit and vague for many APIs. If the client requires (or
even pays for) stronger guarantees or the provider wants to make explicit guarantees
(e.g., to differentiate from competitors), an explicit specification of quality objectives
and penalties can be considered. This can be done by introducing a Service Level
Agreement (SLA) which is an extension of the API description detailing measurable
Service Level Objectives (SLOs) and penalties in case of violation. Any Rate Plan
and Rate Limit should refer to the SLA if these patterns are used (and vice versa).
SLAs require means for identifying and authenticating clients; usually authentication
practices have to be used. There are a number of typical variants of the pattern: SLAs
only used for internal use, SLAs with formally specified SLOs, and those with only
informally specified SLOs, e.g., with natural language.

As shown in Figure 6, the main decision drivers are: Attractiveness from consumer
point of view can be higher if guarantees about qualities can be made. However, this
must be contrasted to possible issues related to cost-efficiency and business risks from
a provider point of view. Some guarantees are required by government regulations and
legal obligations like those related to personal data protection such as the EU General
Data Protection Regulation (GDPR). If a provider intends to make any guarantees about
the quality of its service (typical candidates concern the microservice availability, per-
formance and scalability, or security and privacy), then such qualities become decision
drivers for this decision. Finally, the decision relates to business agility and vitality as
the business model of a client might rely on the above named qualities of a service.
Reusable Decision: Avoid Unnecessary Data Transfer. The decision described in this
section contains four patterns addressing different situations in which unnecessary data
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Fig. 6. Explicit Specification of Quality Objectives and Penalties Decision

is transferred by the operations of an API. Note that in contrast to the prior decisions,
this one needs to be made per operation as only a detailed analysis of the individual
needs of the clients can indicate whether the data transfer can be reduced or not.

It can be hard for API providers to design operations that provide the required data
exactly: the needs of clients might not be predictable and/or differ from each other.
One solution is to let the API client provide a Wish List in the request enumerating all
desired data elements so that the API provider can deliver only the desired elements in
the response. A Wish List is not always easy to specify, e.g., if only certain fractions of
nested or repetitive parameter structures are required. An alternative that works better
for complex parameters is to let the client send a more expressive Wish Template that
mirrors the structure of the desired responses (but contains dummy data) in its request.

If multiple clients repeatedly request the same data, which seldom changes, unnec-
essary data transfer can be avoided through a Conditional Request. To make requests
conditional, they contain additional metadata parameters so that the provider may only
process the request if a condition is met; e.g., in RESTful HTTP APIs, the provider
could provide a fingerprint, which the client can then include in subsequent requests to
indicate the latest known version of the resource that the client already has retrieved.

Another scenario is when one client makes multiple related requests that form log-
ical batches. If the provider receives and replies to all requests individually, perfor-
mance and scalability may suffer. This can be avoided by defining a Request Bundle as
a container message that assembles multiple individual requests and is accompanied by
metadata such as number of and identifiers of individual requests. Exchanging a single
large message is usually more efficient than transferring multiple short messages. This
comes at a price of increased effort for request processing on the provider side.

Sometimes no data transfer reduction is possible or wanted for the target opera-
tion(s); no action has to be taken in that case. Alternatively, unnecessary data transfer
can be avoided through the patterns explained above. A combination of Conditional
Request with either Wish List or Wish Template can be useful to indicate which subset
of changed data is requested. Request Bundle can be combined with any of the prior
alternatives, but combining multiple of the patterns increases the complexity of the API.
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Fig. 7. Avoid Unnecessary Data Transfer Decision

The main decision driver for this decision as illustrated in Figure 7 is the individual
information needs of a client which need to be analyzed to find out which of the pat-
terns combinations can provide benefits. Consider situations where data transfer over
the network is perceived as a potential bottleneck: Data parsimony can further drive the
decision as the patterns can help to reduce bandwidth consumption during data trans-
mission. Avoiding unnecessary data transfers can improve performance, as transferring
all data elements to all clients all the time would harm response time, throughput, pro-
cessing time, cost, etc. Security can be a driver to apply or not to apply the patterns
Wish List and Wish Template: enabling clients to provide options on which data to re-
ceive may unwittingly expose sensitive data or open up additional attack vectors. On the
other hand, data that is not transferred cannot be stolen and cannot be tampered with.
Finally, going from an API with a fixed data representation to an API where clients
can dynamically determine what content will be retrieved – which all four patterns do
– increases the complexity of API design and programming. This is e.g. evidenced in
GraphQL which can be seen as an extreme form of Wish Template. In addition, the
special cases introduced by the patterns cause more testing and maintenance efforts.

5 Preliminary Estimation of Uncertainty Reduction

Architectural decision making is always tied to the given context; e.g., our ADD
model documents decisions in two different contexts CON = {API & API Client,
API Operation}. In each context the architect needs to make a set of decisions DEC.
For each, d ∈ DEC there are a number of decision options OPTd possible to choose
for decision d. Finally, there is a set of criteria CRId that need to be considered
when making a decision d. There are many different kinds of uncertainties involved
in making ADDs in a field in which the architect’s experience is limited. The obvious
contribution of our ADD model is that it helps to reduce the uncertainty whether all
relevant, necessary and sufficient elements for making a correct decision have been
found (for each of the sets named above CON,DEC,OPT, and CRI). Another
kind of uncertainty reduction is the uncertainty reduction our ADD model provides



compared to using the same knowledge, but in a completely unorganized fashion. We
want to estimate this kind of uncertainty reduction here. Exploiting uncertainties has
been used in a similar way in software architecture traceability research before [20].
Our model provides organization to the design knowledge at a number of levels:

– It groups and interrelates decisions; e.g., Metering and Charging for API Consump-
tion requires consideration of Client Identification and Authentication (see Fig. 5).

– It groups decision options in decisions and interrelates them; e.g., Perform Error
Handling has three options OPTPerform Error Handling = {Error Reporting, Protocol-
Level Error Codes, Do Nothing}. Two of those are related further: Error Reporting
can be combined with Protocol-Level Error Codes (see Fig. 3).

– It associates decision criteria to decisions; e.g., Metering and Charging for API
Consumption has 4 criteria CRIMetering and Charging for API Consumption = {Economic As-
pects, Accuracy, Meter Granularity, Security} (see criteria explanations for Fig. 5).

– It pre-selects many of those criteria for the options; e.g., in Metering and Charging
for API Consumption, the criterion Security is pre-selected: Using a Rate Plan has
negative impacts on it; the option Do Nothing is preferable as it has no security
impact. In contrast, the criterion Economic Aspects needs to be investigated further
for both decision options in the concrete context and thus cannot be pre-decided.

Here, we estimate the uncertainty reduction both for each individual decision and
possible decision combinations in each context (uncertainty reduction estimations are
reported as rows in Table 2). We calculate each number both for using our ADD model
(denoted with ⊕ below) and not using our model (denoted with 	 below):

– Number of decisions nodes (ndec): Our ADD model represents each decision sepa-
rately. So the number of decision nodes for a single decision d is always ndec⊕d = 1.
Without our ADD model, each design solution (i.e., decision option in the design
space) that is not Do Nothing is a possible decision node, and it can either be se-
lected or not: ndec	d = |OPTd \ {Do Nothing}|. Please note that, if a design solu-
tion has variants, OPTd contains the base variant plus each possible variant.

– Number of required criteria assessments in a decision (ncri): Our ADD model in-
cludes explicit decision criteria per decision. Some of those are pre-decided, others
not. Let the functions decided() and undecided() select them, respectively. If all
criteria are decided in a decision, we only require one criteria assessment (assessing
the whole vector of decided criteria). If all criteria are undecided, we need to make
|CRId| assessments of criteria. Often some criteria are decided, others not, so the
number of criteria to be decided is in general:

ncri⊕d =

{
1 + |undecided(CRId)|, for decided(CRId) > 0

|CRId|, for decided(CRId) = 0

Without our ADD model, we need to assess each criterion for each decision node
(as we have no pre-decided choices): ncri	d = |CRId| × |ndec	d |.

– Number of possible decision outcomes (ndo): Our ADD model already models
each decision option separately in |OPTd| including Do Nothing, so ndo⊕d usually
equals |OPTd| unless the design space allows explicit combinations of solutions as



additional outcomes. For instance, in the decision Metering and Charging for API
Consumption the variant Freemium Model can be combined with the base variant
and all four other variants, leading to an additional five outcomes. Let the function
solComb() return the set of possible solution combinations in the options of a
decision; then ndo⊕d = |OPTd|+ |solComb(OPTd)|.
The same is true in principle for the decisions made without our ADD model, but as
the decision d is here split into multiple separate decision nodes ndec	d and without
the ADD model no information on which combinations are possible is present, we
need to consider any possible combination in ndec	d , i.e., the size of the powerset
of the decision nodes: ndo	d = |P(ndec	d )| = 2|ndec

	
d |.

For the context API Operation, there is only a single decision (i.e., avoid unnec-
essary data transfer), but in the context API & API Client there are five decisions. It is
thus also important to calculate the total uncertainty reduction in this context, where any
number of those five decisions can be taken. The combinations of ndec and ncri in a
context c ∈ CON is with or without our ADD model simply their sum for the decisions
d in the context c; let inCon() be a function selecting all decisions in a context:

ndecc =
∑

d∈{dec∈DEC| dec∈ inCon(c)}
|ndecd|

ncric =
∑

d∈{dec∈DEC| dec∈ inCon(c)}
|ncrid|

If multiple decisions need to be made, the combinations for ndo require us to con-
sider all possible combinations of decision outcomes of each and every decision:

ndoc = |P(
⋃

d∈{dec∈DEC| dec∈ inCon(c)}
ndod)|.

Table 2 shows the results of the uncertainty reduction estimation. As can be seen
without our ADD model in general more decision nodes ndec need to be considered,
ranging from 0% to 83,33% for individual decisions; and totally 70,59% in the API
client/API context and 75.00% in the operation context. For the necessary criteria as-
sessments ncri improvements are even higher, ranging from 50% to 97,73% for indi-
vidual decisions; and totally 90,16% in the API client/API context and 93,75% in the
operation context. Here this high improvement is mainly due to the pre-selected crite-
ria, which lead to criteria assessments in whole sets of criteria rather than evaluating
each criterion separately. Finally, for the number of possible decision outcomes ndo,
the improvement in uncertainty reduction for individual decisions ranges from 0% to
81,25%. The large spread is due to the fact that without our ADD model, the number of
options rises exponentially: For decisions with larger numbers of decision options the
improvement is greater than for those with only a few options. In total we see a 25%
improvement in the operation context, as this is just a single decision. The total for the
API client/API context shows a 99,94% improvement; here we use for both cases the
same exponential function for calculation, but as individual decisions were performing
much better with our model, the resulting total number is much lower than without it.

Please note that the numbers are rough estimates only, not a formal evaluation. They
indicate that substantial uncertainty reduction is possible. To harden them, further such
estimations in other design spaces are required, which could be the basis for developing
a theory. Such a theory could then be validated in empirical studies in realistic cases.



Table 2: Uncertainty Reduction Estimation

Decision # Decision Nodes
ndec

# Criteria Assess-
ments ncri

# Possible Decision
Outcomes ndo

Client Identification
and Authentication
Decision

With design space 1 1 5
Without design space 4 44 16
Uncertainty reduction 75,00% 97,73% 68,75%

Perform Error
Handling

With design space 1 1 4
Without design space 2 18 4
Uncertainty reduction 50,00% 94,44% 0,00%

Preventing API
Clients from
Excessive API
Usage

With design space 1 4 2
Without design space 1 8 2
Uncertainty reduction 0,00% 50,00% 0,00%

Metering and
Charging for API
Consumption

With design space 1 4 12
Without design space 6 24 64
Uncertainty reduction 83,33% 83,33% 81,25%

Explicit
Specification of
Quality Objectives
and Penalties

With design space 1 2 5
Without design space 4 28 16
Uncertainty reduction 75,00% 92,86% 68,75%

Total in Context API
Client / API

With design space 5 12 268435456
Without design space 17 122 482754917909
Uncertainty reduction 70,59% 90,16% 99,94%

Avoid Unnecessary
Data Transfer =
Total in Context
Operation

With design space 1 2 12
Without design space 4 32 16
Uncertainty reduction 75,00% 93,75% 25,00%

6 Discussion and Threats to Validity

We have studied knowledge on established practices on API quality aspects, relations
among those practices, and decision drivers to answer RQ1 with multiple iterations of
open coding, axial coding, and constant comparison to first codify the knowledge in
informal codes and then in a reusable ADD model. Some of our decision options were
design patterns (documented in [19] and designated as such in our models, see Figures
2 to 7). Precise impacts on decision drivers of design solutions and their combinations
were documented as well; for space reasons we only summarized those in the text and
did not show them in the UML models (see [19] for technical details).

The contributions to RQ1 in part already answer RQ2, in so far as each of the pieces
of knowledge is systematically derived from established knowledge, which helps to re-
duce uncertainty regarding finding knowledge at all and finding it correctly. In addition,
we estimated the uncertainty reduction achieved through the organization of knowl-
edge in our ADD model in Section 5. We may conclude that our ADD model (and
similar models) have the potential to lead to substantial improvements in uncertainty
reduction in all evaluation variables due to the additional organization it provides and
pre-selections it makes. For individual decisions, mastering and keeping in short term
memory the necessary knowledge for design decision making seems infeasible without
the ADD model (e.g., four decision nodes with 44 criteria assessments and 16 possi-
ble outcomes for the first decision in Table 2), but quite feasible with our ADD model.



Our model also helps to maintain an overview of the decisions ndec⊕ and criteria as-
sessments ncri⊕ in the combined API client/API context. Only the number of possible
decision outcomes for the combination of multiple decisions seem challenging to han-
dle, both in the ndo⊕ and ndo	 case. That is, despite all benefits of our approach, the
uncertainty estimations also show that a limitation of the approach is that when mul-
tiple decisions need to be combined in a context, maintaining an overview of possible
outcomes and their impacts remains a challenge – even when a substantial uncertainty
reduction and guidance is provided as in our ADD model. Further research and tool
support is needed to address this challenge. As our numbers are only rough estimates,
further research is needed to harden them and confirm them in empirical studies, possi-
bly based on a theory developed based on such preliminary estimations.

While generalizability beyond the 55 knowledge sources we studied is possible to a
large extent, our results are limited to those sources and to a lesser extent to very simi-
lar APIs. Most of the 55 source were public, Internet-wide APIs; we have studied a few
in-house APIs as well. This mix might have introduced bias or left to the omission of
important in-house practices in commercial enterprises. We could only study the API
quality aspects addressed in those sources. Thus, we do not claim any form of com-
pleteness. Our results are only valid in our set scope. In the various coding process and
review stages of our research method, each finding was checked in at least five itera-
tions by different members of our author team. However, possible misinterpretations or
biases of individual researchers or the whole author team cannot be fully excluded and
might have influenced our results. As the authors have many years of experience in the
field (gained both in industrial projects and in education of students and practitioners),
we are optimistic that this threat to validity is mitigated in our study to a large extent.

7 Conclusions

We have performed a qualitative study in which we have studied microservice API qual-
ity aspects in 55 unique sources. Our study led to the identification of six architectural
design decisions with in total 40 decision options and in total 47 decision drivers mod-
elled in a formal ADD model. In our uncertainty reduction estimations we were able
to indicate that the knowledge organization in our ADD model can lead to a significant
reduction of uncertainty where multiple decisions need to be combined. In our future
work, we plan to combine our ADD model with other aspects of API design, apply the
results in case studies e.g. in different verticals or industries, and build and empirically
validate a theory based on the preliminary uncertainty reduction estimations.
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