
A Business Collaboration Registry Model on Top of ebRIM

Birgit Hofreiter, Christian Huemer

Faculty of Computer Science

University of Vienna

Liebigg. 4, 1010 Vienna, Austria

{birgit.hofreiter, christian huemer}@univie.ac.at

Marco Zapletal

Faculty of Informatics

Vienna University of Technology

Favoritenstr. 9-11/188, 1040 Vienna, Austria

marco@ec.tuwien.ac.at

Abstract

UN/CEFACT’s Modeling Methodology (UMM) is a well
accepted approach to define inter-organizational business
processes. UMM models should be managed in a registry
for two reasons: Firstly, business partners supporting the
process can find it and bind to it. Secondly, a model -
or more important parts thereof - may be reused in an-
other model of an inter-organizational process. Accord-
ingly, registering one model as one object in a registry
is not appropriate. Those parts of a model that may be
reused must become registry objects themselves. Extract-
ing parts of a model results in objects that are logically
inter-related. Thus, a registry model taking care of these
inter-relationships is needed. In this paper we present a
so-called business collaboration registry model that sits on
top of the ebRIM (ebXML registry information model) in
order to manage UMM business collaboration models in an
ebXML registry. Furthermore, we outline the registry man-
agement functions for maintaining models in the registry.

1. Introduction

In B2B e-Commerce business partners need to col-

laborate. The execution of a collaboration depends on

commitments established between the participating part-

ners. UN/CEFACT’s Modeling Methodology (UMM) [17]

is used to model the choreography and data exchange com-

mitments to be agreed between partners. Thus, a UMM

business collaboration model becomes a kind of ’contract’

that guides a business partnership. Similiarly to a contract a

UMM model is defined from a global perspective. A global

choreography has the potential to achieve an agreement be-

tween the partners. Local choreographies derived from the

global UMM model enable the configuration of each part-

ner’s system. In order to make UMM models available to

potential business partners they should be made public in a

registry. This allows business partners to search for and to

bind to these processes.

Another reason for maintaining a UMM model in a reg-

istry is fostering reuse. It is not always an entire model that

is reused. It is even more likely that only a certain part of

a model is reused within another model. Thus, it is key

to allow registration of these well-defined parts as separate

registry objects and to extract the relevant parts if an en-

tire model is submitted. Inasmuch, there exist dependen-

cies between certain registry objects. These dependencies

describe that one registry object is executed as part of an-

other registry object, or that one registry object describes

the requirements of a choreography, which flow is speci-

fied in another registry object. Thus, a registry model sup-

porting the dependencies between certain types of registry

objects is needed. The goal of the paper is to define a busi-
ness collaboration registry model on top of the ebXML reg-

istry information model (ebRIM) [9] that manages UMM

models and parts thereof. It starts from the relevant UMM

stereotypes identifying types of registry objects and their

inter-dependencies. Furthermore, we identify features that

must be realized in a registry implementation ensuring con-

sitent management of UMM models. We are currently im-

plementing these features in a prototype registry implemen-

tation connecting our UMM modeling tool [5].

The remainder of this paper is structured as follows: In

section 2 we give a brief introduction to UMM [17] - of

which we are co-editors - and its artifacts. This helps with

identifying those artifacts that are candidate for reuse. In

section 3 we elaborate on the relationships between these

artifacts which must be handled in a business collaboration
registry model. In section 4 we outline how UMM models

and parts thereof are represented in our business collabora-
tion registry model. Section 5 outlines features for manag-

ing UMM artifacts consistently within an ebXML registry.

Section 6 focuses on related work and a short summary in

section 7 concludes the paper.

ud
 A

nn
ou

nc
e

W
as

te
 T

ra
ns

po
rt

No
tif

ie
r

«B
us

in
es

sT
ra

ns
ac

tio
nU

se
Ca

se
»

An
no

un
ce

 W
as

te

Tr
an

sp
or

t

N
ot

ifi
ee

«p
ar

tic
ip

at
es

»
«p

ar
tic

ip
at

es
»

ud
 M

an
ag

e
W

as
te

 T
ra

ns
po

rt

No
tif

ie
r

N
ot

ifi
ee

«B
us

in
es

sC
ol

la
bo

ra
tio

nU
se

C
as

e»
M

an
ag

e
W

as
te

Tr

an
sp

or
t

«p
ar

tic
ip

at
es

»
«p

ar
tic

ip
at

es
»

ad
 M

an
ag

e
W

as
te

 T
ra

ns
po

rt

«B
us

in
es

sT
ra

ns
ac

tio
nA

ct
iv

ity
»

An
no

un
ce

 T
ra

ns
po

rt
 A

rr
iv

al

«B
us

in
es

sT
ra

ns
ac

tio
nA

ct
iv

ity
»

An
no

un
ce

 W
as

te
 T

ra
ns

po
rt

sm
 W

as
te

Tr
an

sp
or

t

In
iti

al

«B
us

in
es

sE
nt

ity
S

ta
te

»
an

no
un

ce
d

«B
us

in
es

sE
nt

ity
S

ta
te

»
ar

riv
ed

Fi
na

l

ud
 M

an
ag

e
W

as
te

 T
ra

ns
po

rt
, E

x
- E

xA

«B
us

in
es

sC
ol

la
bo

ra
tio

nR
ea

liz
at

io
n»

M
an

ag
e

W
as

te

Tr
an

sp
or

t

Ex
po

rtA
ut

ho
rit

y
Ex

po
rte

r

«p
ar

tic
ip

at
es

»
«p

ar
tic

ip
at

es
»

ad
 M

an
ag

e
En

d-
to

-E
nd

 W
as

te
 T

ra
ns

po
rt

:E
xp

or
tA

ut
ho

rit
y

:E
xp

or
te

r

«S
ha

re
dB

us
in

es
sE

nt
ity

S
ta

te
»

:W
as

te
Tr

an
sp

or
t

[a
nn

ou
nc

ed
]

«B
us

in
es

sP
ro

ce
ss

A
ct

iv
ity

»
P

re
-in

fo
rm

 o
n

w
as

te

tra
ns

po
rt

«B
us

in
es

sP
ro

ce
ss

A
ct

iv
ity

»
Pr

e-
in

fo
rm

 o
n

w
as

te

tra
ns

po
rt

:Im
po

rtA
ut

ho
ri

ty
:Im

po
rt

er

«S
ha

re
dB

us
in

es
sE

nt
ity

S
ta

te
»

:W
as

te
Tr

an
sp

or
t

[a
nn

ou
nc

ed
]

«B
us

in
es

sP
ro

ce
ss

A
ct

iv
ity

»
P

re
-in

fo
rm

 o
n

w
as

te

tra
ns

po
rt

«S
ha

re
dB

us
in

es
sE

nt
ity

S
ta

te
»

:W
as

te
Tr

an
sp

or
t

[a
nn

ou
nc

ed
]

«B
us

in
es

sP
ro

ce
ss

A
ct

iv
ity

»
Pr

e-
in

fo
rm

 o
n

w
as

te

tr
an

sp
or

t

«B
us

in
es

sP
ro

ce
ss

A
ct

iv
ity

»
In

fo
rm

 o
f w

as
te

re

ce
ip

t

«B
us

in
es

sP
ro

ce
ss

A
ct

iv
ity

»
In

fo
rm

 o
f w

as
te

re

ce
ip

t

«B
us

in
es

sP
ro

ce
ss

A
ct

iv
ity

»
In

fo
rm

 o
f w

as
te

re

ce
ip

t

«B
us

in
es

sP
ro

ce
ss

A
ct

iv
ity

»
In

fo
rm

 o
f w

as
te

re

ce
ip

t

«S
ha

re
dB

us
in

es
sE

nt
ity

S
ta

te
»

:W
as

te
Tr

an
sp

or
t

[a
rri

ve
d]

«S
ha

re
dB

us
in

es
sE

nt
ity

S
ta

te
»

:W
as

te
Tr

an
sp

or
t

[a
rri

ve
d]

«S
ha

re
dB

us
in

es
sE

nt
ity

S
ta

te
»

:W
as

te
Tr

an
sp

or
t

[a
rri

ve
d]

1 2 3 4 5 6 7 8 9

1

2
6 5 3 4

9

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
m

ap
s

to
>>

<<
in

cl
ud

es
>>

<<
in

cl
ud

es
>>

<<
re

al
iz

es
>>

0

ud
 A

nn
ou

nc
e

Tr
an

sp
or

t A
rr

iv
al

No
tif

ie
r

No
tif

ie
e

«B
us

in
es

sT
ra

ns
ac

tio
nU

se
Ca

se
»

A
nn

ou
nc

e
Tr

an
sp

or
t A

rr
iv

al
«p

ar
tic

ip
at

es
»

«p
ar

tic
ip

at
es

»

ad
 A

nn
ou

nc
e

W
as

te
 T

ra
ns

po
rt

In
iti

al
 S

ta
te

«R
eq

ue
st

in
gI

nf
or

m
at

io
nE

nv
el

op
e»

:W
as

te
M

ov
em

en
tF

or
m

E
nv

el
op

e
«R

es
po

nd
in

gB
us

in
es

sA
ct

iv
ity

»
P

ro
ce

ss
 W

as
te

 M
ov

em
en

t F
or

m

«R
eq

ue
st

in
gB

us
in

es
sA

ct
iv

ity
»

No
tif

y
W

as
te

 T
ra

ns
po

rt

Re
sp

on
de

r
:N

ot
ifi

ee

«B
us

in
es

sT
ra

ns
ac

tio
nS

w
im

la
ne

»
R

eq
ue

st
or

 :N
ot

ifi
er

«B
us

in
es

sT
ra

ns
ac

tio
nS

w
im

la
ne

»

[S
uc

ce
ss

]
[F

ai
lu

re
]

ad
 A

nn
ou

nc
e

Tr
an

sp
or

t A
rr

iv
al

«R
eq

ue
st

in
gI

nf
or

m
at

io
nE

nv
el

op
e»

:T
ra

ns
po

rtA
rr

iv
al

Fo
rm

En
ve

lo
pe

«R
es

po
nd

in
gB

us
in

es
sA

ct
iv

ity
»

Pr
oc

es
s

Tr
an

sp
or

t A
rr

iv
al

 F
or

m

«R
eq

ue
st

in
gB

us
in

es
sA

ct
iv

ity
»

N
ot

ify
 T

ra
ns

po
rt

Ar
ri

va
l

R
es

po
nd

er
 :N

ot
ifi

ee

«B
us

in
es

sT
ra

ns
ac

tio
nS

w
im

la
ne

»
Re

qu
es

to
r :

N
ot

ifi
er

«B
us

in
es

sT
ra

ns
ac

tio
nS

w
im

la
ne

»

[S
uc

ce
ss

]
[F

ai
lu

re
]

7 8

Figure 1. UMM Waste Management Model

2. A Guide to UMM

UN/CEFACTs Modeling Methodology (UMM) is de-

fined as a UML profile - i.e. a set of stereotypes, tagged

values and constraints - in order to customize the UML meta

model for the special purpose of modeling global chore-

ographies [17]. In this section we briefly describe the steps

of UMM and the resulting artifacts. For a better understand-

ing we explain UMM by the means of a very simple, but

realistic example in the European waste management do-

main. The cross border transport of waste - even within the

EU - is subject to regulations involving the exporter, the im-

porter, and competent authorities in their countries as well

as in transit countries. In order to keep the example simple

we do not consider the transit countries here.

The relevant artifacts of our example are depicted in fig-

ure 1. On the left hand side of this figure we see the struc-

ture of our waste management model. A UMM business
collaboration model comprises three main views: the busi-
ness domain view (BDV), the business requirements view
(BRV), and the business transaction view (BTV). The three

top level packages of any UMM model - each highlighted

with a star in the structure of figure 1 - are always stereo-

typed in accordance to these views.

The BDV is used to gather existing knowledge. The

business process analyst will interview domain experts and

stakeholders to get a basic understanding of the business

processes relevant in the domain. Due to space limitations

we will not elaborate on the business domain view of our

example. Those business processes from the BDV that pro-

vide a chance for collaboration will be further detailed by

the business process analyst in the BRV.

The BRV consists of a number of different subviews.

The business process view (1) and the business entity view
(2) are both very project specific. The business process
view gives an overview about the business processes, their

activities and resulting effects, and the business partners

executing them. The activity graph of a business pro-

cess may describe a single partners process, but may also

detail a multi-party choreography. The business process

analyst tries to discover interface tasks creating/changing

business entities that are shared between business partners

and, thus, require communication with a business partner.

In our example we detail a multi-party business process

for a waste transport. The exporter pre-informs the

export authority about a waste transport. The export

authority then pre-informs the import authority,

and the import authority pre-informs the importer.

Once, the waste is received the information goes the oppo-

site direction along the chain. The importer informs the

import authority, the import authority informs

the export authority, and the export authority in-

forms the exporter. In reality, there is also information

sent about the waste disposal - which we do not consider

here to keep the example as small as possible.

The information exchanged between business part-
ners is about the business entity waste transport.

Firstly, a waste transport object is created with state

announced. Later it is set to the state arrived. These so-

called shared business entity states must be in accordance

with the business entity lifecycle of waste transport.

This lifecycle is defined in the state chart of the business
entity view (2).

It is easy to recognize from the requirements captured

so far that the same two tasks always take place between

a different pair of business partners. Thus, it is not ap-

propriate to describe these tasks for each pair again and

again. Instead, these tasks are defined between authorized
roles. A transaction requirements view defines the busi-
ness transaction use case for a certain task and binds the

two authorized roles involved. The authorized roles are de-

fined in the exact context of the business transaction use
case. In our example we have two transaction requirement
views: announce waste transport (3) and announce

transport arrival (4). The authorized roles are in

both cases a notifier who makes the corresponding an-

nouncement and the notifee. However, the authorized
role notifier in announce waste transport is not

the same as the one in announce transport arrival.

This means, we have two authorized roles notifier, each

defined in the namespace of its transaction requirements
view. On the left hand side of figure 1 we see that both

transaction requirements views (3,4) include a notifier.

Of course the same is valid for the notifee.

The collaboration requirements view includes a business
collaboration use case. The business collaboration use case
aggregates business transaction use cases or nested busi-
ness collaboration use cases. This is manifested by include
associations. In our example the business collaboration use
case manage waste transport (5) includes the business
transaction use cases announce waste transport (3)

and announce transport arrival (4). Furthermore,

the authorized roles participating in the business collabora-
tion use case must be defined within the context and names-

pace of the collaboration requirements view. Sometimes it

is hard to find a good name for an authorized role, like in our

example. We call the roles again notifier and notifiee.

The notifier is the one who initiates the management

of a waste transport and the notifiee is the one who re-

acts on it. Maps to dependencies are used to define which

authorized role of a business collaboration use case plays

which role in an included business transaction use case (or

nested business collaboration use case). In our example the

notifier of manage waste transport (5) plays also

the notifier of announce waste transport (3), but

plays the notifiee in announce transport arrival

(4) since the information flows the other way round. For

the notifiee of manage waste transport it is just the

opposite.

A collaboration realization view covers a business col-
laboration realization - which is a kind of use case that

does not elaborate any new requirements. A business col-
laboration realization realizes a business collaboration use
case between a specific set of business partners. This is

indicated by a realize association. The business collabo-
ration realization manage waste transport (6) realizes

the business collaboration use case with the same name

(5). The business partners participating in the business
collaboration realization are the ones already defined in

the BDV and, thus, are not re-defined in the namespace

of the collaboration realization view. A maps to depen-

dency defines which participant of a business collabora-
tion realization plays which role of the business collabo-
ration use case. In the first manage waste transport

realization (6) the exporter plays the notifier and

the export authority acts as notifiee. The two ad-

ditional manage waste transport realizations between

export authority and import authority and be-

tween import authority and importer are not de-

picted in figure 1. This concludes all the subpackages of

the BRV.

The BTV builds upon the BRV and defines a global

choreography of information exchanges and the document

structure of these exchanges. In this paper we concentrate

on the choreography aspect and do not consider the docu-

ment structures any further.

The choreography described in the requirements of a

business transaction use case is represented in exactly

one activity graph of a business transaction. A maps to
dependency between them allow traceability between the

requirements and the business transaction, which is de-

fined in a business interaction view. In our example,

the announce waste transport requirements (3) are

mapped to a corresponding choreography (7). The same

mapping is made for the announce transport arrival

requirements (4+8).

A business transaction is characterized as follows: If an

authorized role recognizes an event that changes the state of

a business entity, it initiates a business transaction to syn-

chronize with the collaborating authorized role. A business
transaction is an atomic unit that leads to a synchronized

state in both information systems. We distinguish one-way

and two-way business transactions: In the former case, the

initiating authorized role reports an already effective and ir-

reversible state change that the reacting authorized role has

to accept. In the other case, the initiating partner sets the

business entity/ies into an interim state and the final state is

decided by the reacting authorized role. It is a two-way

transaction, because business information flows from the

initiator to the responder to set the interim state and back-

wards to set the final and irreversible state change. Irre-

versible means that returning to an original state requires

compensation by another business transaction.

Owing to this strict definition, a UMM business trans-
action follows always the same pattern: A business trans-
action is performed between two authorized roles that are

already known from the business transaction use case and

that are assigned to exactly one swimlane each. Each au-
thorized role performs exactly one activity. An object flow
between the requesting and the responding business activ-
ity is mandatory. An object flow in the reverse direction

is optional. Both business transactions announce waste

transport (7) and announce transport arrival (8)

are one-way transactions which do not return any informa-

tion.

The requirements described in a business collaboration
use case are choreographed in the activity graph of a busi-
ness collaboration protocol, which is defined in a busi-
ness choreography view. This one-to-one relationship is

denoted by another maps to dependency. In our exam-

ple, the manage waste transport requirements (5) are

mapped to the homonymous business collaboration proto-
col (9). A business collaboration protocol choreographs a

set of business transaction activities and/or business collab-
oration activities. A business transaction activity is refined

by the activity graph of a business transaction. In our exam-

ple, the business collaboration protocol of manage waste

transport (9) is a simple sequence of two business
transaction activities: announce waste transport and

announce transport arrival. Each of them is refined

by its own business transaction (7,8). Maps to dependen-

cies keep track of this refinement. Business collaboration
activities - which are not used in our example - are refined

by a nested business collaboration protocol. We do not fur-

ther concentrate on the business information views which

are used to define the structure of business documents ex-

changed in business transactions.

So far we have described all UMM artifacts as they

would have been created in the scope of a particular project.

We already took advantage of reusing a choreography.

The manage waste transport collaboration is realized

between different pairs of business partners. This kind

of reuse is defined within a model. However, one may

want to reuse artifacts that were created in another project.

Consider, the announce transport arrival transac-

tion was already defined in some project in the logistics do-

main. Instead of redefining the transaction in each project

again, the corresponding transaction requirements view (4)

and the business interaction view (8) are imported into the

model. In order to guarantee such a scenario all the stereo-

types of packages introduced before inherit the following

list of tagged values from an abstract stereotype business

library package: baseURN, status, version, description,

owner and copyright.

3. Requirements on a Business Collaboration
Registry Model

A registry information model must support the registra-

tion of UMM models and parts thereof as well as keeping

these parts in consistency. In this section we outline the re-

quirements on such a registry information model - which

we call business collaboration registry model.
First, we have to address the UMM artifacts that may be

reused in different models/projects. The BDV as well as

the business process view (1) and the business entity view
(2) of the BRV provide project specific information. Candi-

dates for reuse are the elements of the transaction require-
ments view (3,4) and the collaboration requirements view
(5), because both provide generic concepts. These generic

concepts are bound to specific projects by the concept of

business collaboration realizations. It follows, that business
collaboration realizations are project specific and hence the

collaboration realization view (6) is not subject for reuse.

All packages of the business transaction view - the business
interaction view (7,8), the business choreography view (9)

and the business information view (not detailed in this pa-

per) - are candidates for reuse.

Taking a closer look on the business transaction use case
announce waste transport we recognize that the ar-

tifact is not only built by the use case itself but also by

the associated authorized roles. Accordingly, a transaction
requirements view package (3,4) consisting of a business
transaction use case and the two participating authorized
roles must not be split during registration. Similarly, the

activity graph of a business transaction is composed of par-

titions, activities, object flow states, etc. This information

sitting in a business interaction view package (7,8) must be

kept together during registration. Furthermore it is neces-

sary to keep together the content of a collaboration require-
ments view package (5). Also the content of business chore-
ography view package (9) is an indivisible unit. It follows

that we always register complete packages.

Another aspect is that the requirements and the resulting

choreography build a logical unit. Due to the UMM meta

model they are always split into two different packages.

Nevertheless, a registration makes only sense if both pack-

ages are submitted. This means, a transaction requirements
view and the corresponding business interaction view will

be two registry objects intrinsically tied together (3+7,4+8).

The same is true for a collaboration requirements view and

a business choreography view (5+9). As outlined in section

2, a business collaboration is built by business transactions

and/or nested business collaborations. As a consequence,

registration of a business collaboration (5+9) will only be

successful if its constituents (3+7 and 4+8) are already reg-

istered or contained in the same submission request.

In order to realize the dependencies described in the

paragraph above, UMM has well-defined relationships be-

tween its stereotypes. As outlined in figure 1 include and

maps to relationships connect model elements crossing dif-

ferent packages. On the one hand side these dependencies

exist on model level and must be expressed in a model in-

terchange format. On the other hand side it is necessary

to interlink the registry objects representing the packages

containing the corresponding model elements for reasons

of consistent registry management. As a result we identify

the following dependencies between registry objects repre-

senting UMM packages:

• Transaction Requirements View : Business Interaction

View (1 : 1)

• Collaboration Requirements View : Business Chore-

ography View (1 : 1)

• Collaboration Requirements View : Transaction Re-

quirements View (1..n : 0..m)

• Business Choreography View : Business Interaction

View (1..n : 0..m)

• Collaboration Requirements View : Collaboration Re-

quirements View (0..n : 0..m)

• Business Choreography View : Business Choreogra-

phy View (0..n : 0..m)

4. Business Collaboration Registry Model

4.1. UMM Registry Object Format

Since UMM is defined as a UML profile [17] we pro-

pose the XML Metadata Interchange (XMI) [11] format

for exchanging and storing artifacts. XMI is defined as a

generic interchange format applicable for exchanging any

MOF-based meta model [10]. In the past XMI became pop-

ular as an exchange format for UML models. In this paper

we do not concentrate on the XMI representation of a UMM

model. The interested reader is refered to our previous work

[6].

Each business library package results in a seperate XMI

fragment. The machine-readable XMI representation al-

lows navigating easily between the model elements within

one package. We learned that UMM requires dependencies

between model elements in different packages. This means

that the source and the target of a dependency are repre-

sented in different XMI fragments. In XMI navigation be-

tween model elements of different packages is realized by

specifying the ID of the target element within an attribute of

the source element. Since these IDs are unique across pack-

age boundaries, navigating the cross package depedencies

is possible. However, it is required that the XMI fragments

of inter-linked packages are accessible within the registry

as well as within a UMM modeling tool after retrival and

import. The underlying registry management is described

in section 5.1.

4.2. Mapping UMM to ebRIM

In order to foster reuse of UMM artifacts storing the

model or parts thereof as opaque units of XML streams is

insufficient. Rather, there is a need for a meaningful meta

model that facilitates the search for artifacts and the main-

tenance of connections between dependent artifacts. Thus,

we introduce the business collaboration registry model on

top of ebRIM [9]. It defines a mapping from relevant UMM

information to ebRIM concepts. A conceptual overview of

the business collaboration registry model is shown in figure

2. Figure 3 shows an instance of the business collaboration
registry model of our waste management example.

Each XMI fragment representing a business library
package is stored as an extrinsic object as defined in

ebRIM [9]. In case of the waste management example

this results in seven extrinsic objects: the entire waste

management model (0), the transaction requirements view
and the business interaction view for announce waste

transport (3,7) as well as for the announce transport

arrival (4,8), and the collaboration requirements view
togehter with the business choreography view of manage

waste transport (5,9). The extension mechanism of

ebRIM allows us to create subtypes of extrinsic object - one

for each above mentioned stereotype. Figure 2 shows meta

classes for these stereotypes flagged as extrinsic objects.

In section 3 we learned that dependencies between these

package stereotypes must be realized in the business col-
laboration registry model. These dependencies are summa-

rized in the bullet list at the end of section 3. This list results

in ebRIM associations between the relevant meta classes

in figure 2. Each association is further required to specify

an association type. The ebRIM classification scheme for

association types provides a set of basic types for associa-
tions. The standard association types contains and imple-
ments are sufficient for our business collaboration registry
model.

Each business transaction is stored as an extrinsic object
of type business interaction view (7,8). The corresponding

business transaction use case and the participating roles are

stored in the extrinsic object of type transaction require-
ments view (3,4). The relationship between the transaction
requirements view and the business interaction view is de-

noted in the registry meta data as an association of type

implements. The requirements captured within the transac-

tion requirements view are extracted as meta data using two

slots. The first slot named actions is used to describe the

activities within the business transaction. The second slot
definition captures the transaction’s purpose. The transac-
tion requirements view has further two classifications asso-

ciated that specify the participating authorized roles defined

within a classification scheme called role.

A business collaboration and its requirements are regis-

tered in the extrinsic objects of the packages collaboration
requirements view and business choreography view (5,9). A

collaboration requirements view has the same two types of

slots - actions and definitons - associated. Similar to trans-

actions, we denote the participants in a business collabora-

tion using the classification schema named role. A classifi-
cation object is created for each of its participants. How-

ever, a business collaboration might have more than two

participants.

Zero or null business transactions might be part of a

business collaboration protocol. Thus, we create contains
associations leading from the business choreography view
to each included business interaction view. In the waste

management example the business collaboration protocol
is composed of two business transactions. This is shown

by the two associations leading from 9 to 7 and from 9 to

8. Similarly, the corresponding collaboration requirements
view has zero or more transaction requirements views asso-

ciated (5 to 3 and 5 to 4). The contains associations between

collaboration requirements views and transaction require-
ments views correspond to the include associations between

business collaboration use cases and business transaction
use cases. The concept of nested business collaborations -

which is not used in our waste management example - is

denoted via the self-directed contains associations attached

to the business choreography view as well as to the collab-
oration requirements view.

If an entire model is registered, the registry will cre-

ate contains associations to business choreography views,

collaboration requirements views, business interaction
views, and transaction requirements views. In the waste

management case six contains associations from 0 to 3, 4,

5, 7, 8, and 9 are established. Registering an entire model

requires extraction of artifacts as further discussed in sec-

tion 5.

Having discussed the relationships between the different

types of extrinsic objects, we have to elaborate on the map-

ping of tagged values defined for UMM business library
packages to the business collaboration registry model. The

UMM stereotype business libary package provides a set of

tagged values realizing a namespace concept. In ebRIM

the base class registry object defines attributes for a similar

purpose. Extrinsic object inherits these attributes from reg-
istry object. Table 1 gives a brief overview of this mapping.

Name, description and status are mapped one-to-one. The

«ExtrinsicObject»
BusinessInteractionView

«Classification»
ParticipatingRoles

«ClassificationScheme»
Role

«ClassificationNode»
RoleName

«ExtrinsicObject»
TransactionRequirementsView

«ExtrinsicObject»
BusinessChoreographyView

«ExtrinsicObject»
CollaborationRequirementsView

«Slot»
Definition

«Slot»
Actions

«ExtrinsicObject»
BusinessCollaborationModel

+source

«Association» Contains

+target
0..*

2

classifications

+classificationScheme

+classificationNode

+source

contains
«Association»

+target 0..*

+source

«Association» Contains

+target
0..*

+source

Implements
«Association»

+target

+source Implements
«Association»

+target

+source

contains
«Association»

+target 0..*

+source
contains

«Association»

+target 1..*

+source
contains

«Association»

+target 1..*+source

contains
«Association»

+target 1..*

+source

contains

«Association»

+target 1..*

classifications

2...*

Figure 2. Business Collaboration Registry Model

«ExtrinsicObject»
Manage Waste Transport :

BusinessChoreographyView

«ExtrinsicObject»
Announce Transport Arrival :

TransactionRequirementsView

::TransactionRequirementsView
+ actions: = notify arrival,...
+ definition: = ...
+ roles: = Notifier, Notifiee

«ExtrinsicObject»
Announce Transport Arrival :

BusinessInteractionView

«ExtrinsicObject»
Announce Waste Transport :

BusinessInteractionView

«ExtrinsicObject»
Manage Waste Transport :

CollaborationRequirementsView

::CollaborationRequirementsView
+ actions: = announce transp...
+ definition: = ...
+ roles: = Notifier, Notifiee

«ExtrinsicObject»
WasteManagement :

BusinessCollaborationModel

«ExtrinsicObject»
Announce Waste Transport :

TransactionRequirementsView

::TransactionRequirementsView
+ actions: = notify transpor...
+ definition: = ...
+ roles: = Notifier, Notifiee

+source

contains
«Association»

+target

+source Implements
«Association»

+target

+source

contains
«Association»

+target

+source

contains
«Association»

+target

+source

contains
«Association»

+target

+source

contains
«Association»

+target

+source Implements
«Association»

+target

+source

contains
«Association» +target

+source

contains
«Association»

+target

+source

Implements
«Association» +target

+sourcecontains
«Association»

+target

+source
contains

«Association»

+target

+source

contains
«Association»

+target

Figure 3. Waste Management Example mapped to the Business Collaboration Information Model

baseURN concatenated with the local name of the business
libary package is mapped to the logical ID of the extrinsic
object. The logical ID refers to a logical registry object in-

dependent of its version. This construct plus version results

in the unique ID of a registry object. The version of a busi-
ness library package corresponds to the version name that

is part of the version info associated with a registry object.

tagged values attributes

description description

name name

BaseURN + name LogicalID

BaseURN + name + version ID

version versionInfo.versionName

status status

Table 1. Namespaces in UMM and ebRIM

5. UMM Registry Management

5.1. Keeping Consistency

As outlined in section 3 some packages build a logical

unit. The package capturing the requirements and the one

capturing the flow must always go together (3 and 7, 4 and

8, 5 and 9). Furthermore, a business collaboration requires

the existance of the included business transactions and/or

business collaborations (5 requires 3 and 4; 9 requires 7 and

8).

The registry has to ensure that these depedencies are sat-

isfied when artifacts are submitted or retrieved. In case of a

submission it must check if all required packages are known

- either within the same submission or already within the

registry. If this is not the case the UMM registry will re-

ject the registration. On retrieval a registry is likewise re-

quired to maintain consistency. A response on a retrieval

request must contain the requested artifact plus all depen-

dent parts. These requirements avoid abandoned references

across XMI fragments on retrieval.

5.2. Managing Meta Data

The mapping of tagged values defined for UMM busi-
ness library packages to the business collaboration registry
model - as described in the end of the previous section -

should not be a user’s task. Thus, a UMM registry must

set and map these data on the packages. The registry is re-

quired to keep the information in the XMI fragments and

its registry meta data in consistence. This involves also the

version control of the XMI fragments. If a new version is

detected the registry is expected to synchronize the tagged

values with the meta data. This means that a registry must

also manipulate the corresponding information within the

XMI fragments and report the results back to the submitter.

Furthermore, a UMM registry has to manage additional

meta data describing the extrinsic objects: actions, defini-
tions, and participating roles (see figure 3). This meta in-

formation must be extracted from the tagged values and/or

model elements of the submitted XMI. Actions and defini-
tion correspond to the equally named tagged values of the

particular use case. Participating roles are known since they

are associated with the use case.

5.3. Submission of Models as a Whole

An entire model is submitted in a single XMI file. This

XMI file covers - amongst other information - also infor-

mation about packages that are themselves registrable ar-

tifacts. These parts should be extracted and registered in

seperate XMI fragments in order to enable the reuse of busi-

ness transactions and business collaborations. In principle

there are two options. The extracted information remains in

the XMI fragment of the overall model or it is cutted. For

performance reasons, we selected the first option even if in-

formation is duplicated within the registry. No matter which

option is realized, the registry must create contains asso-

ciations leading from the model to the extracted artifacts.

Hence, one can follow in which model a certain transaction

or collaboration is used.

6. Related Work

In our approach we use UMM to describe business

choreographies. UMM follows the ideas of ISO’s Open-

edi [7] that provides a reference model for defining business

processes crossing organizational boundaries. In addition to

UMM there exist other approaches that are based on UML

to model inter-organizational business processes: The de-

velopment of RosettaNet Partner Interface Processes (PIPs)

[12] is based on global choreographies described by UML.

This approach was merged into UMM during the ebXML

initiative in 2000. Other approaches use UML in order to

describe a choreography specific to Web Services [8][13].

In the world of Web Services a lot of different languages

exist to capture business processes like the Business Pro-

cess Modeling Language (BPML) [1] and the Business Pro-

cess Execution Language (BPEL) [2]. These languages are

limited to orchestrations and local choreographies. UMM

models may be transformed to local choreographies de-

scribed in BPML or BPEL. In [3] we describe such a map-

ping from UMM to BPEL. The release of the Web Services

Choreography Description Language (WS-CDL) draft [18]

adds a specification for global choreographies to the fam-

ily of Web Services which did not exist before. Within

the ebXML framework, the Business Process Specification

Schema (BPSS) [15] always describes the choreography of

a business collaboration from a global perspective. We de-

scribe a mapping from UMM models to BPSS in [4].

In our approach the extrinsic objects maintained in the

registry are XMI files representing entire models, business

transactions, or business collaborations. In [6] we describe

in detail how to transform a UMM model into an XMI

file keeping consistent relationships beween the UMM el-

ements. Furthermore, we show how to classify the XMI

files for various business environments. In this paper we

did neither concentrate on the XMI transformation, nor on

the business environment-specific classification. In other

words, whereas our work in [6] concentrated on the storage

and/or interchange format of UMM models, this paper deals

with the meta data description of the stored models. Ac-

cordingly, this paper adds a business collaboration registry
model maintaining relationships between different extrinsic
objects (i.e. XMI fragments) that logically belong together.

Currently, UN/CEFACT develops a registry profile [16]

to manage Core Components [14] - the basic building

blocks for business documents. An approach for register-

ing business collaborations has not been developed so far.

Thus, our business collaboration registry model is supposed

to fill this gap.

7. Summary

This paper is about managing UMM business collabora-
tion models in an ebXML registry. It is evident that an en-

tire UMM model will become a registry object. However,

we started from the assumption that parts of a model may be

reused in another model. Therefore, these parts of a model

must become registry objects as well. We gave a brief intro-

duction into the artifacts that together build a UMM busi-
ness collaboration model. This helped us in identifying

those kind of packages and their contents that are subject

to reuse. These packages are the transaction requirements
view together with the business interaction view as well as

the collaboration requirements view together with the busi-
ness choreography view.

We further elaborated on relationships between UMM

elements in different packages. If a directed association

from a model element in one package refers to a model ele-

ment in another package, it is essential that the latter pack-

age always comes with the first package. It follows that a

registry model has to maintain the relationships between the

registry objects representing different kinds of packages.

For this purpose we defined our business collaboration
registry model. This model extends the general ebXML reg-

istry information model (ebRIM) in order to maintain dif-

ferent UMM artifacts and to automatically provide a basic

classification of these artifacts. Furthermore, we defined a

clear registry management process for keeping consistency

between dependent artifacts, keeping consistency between

an artifacts content and its meta-data maintained in the reg-

istry and extracting information from models submitted as

a whole. We are currently implementing these features in

a prototype connecting our UMM modeling tool [5] and an

ebXML registry.

References

[1] A. Arkin. Business Process Modeling Language (BPML).

Technical report, June 2002.
[2] BEA, IBM, Microsoft, SAP AG and Siebel Systems. Busi-

ness Process Execution Language for Web Services, May

2003. Version 1.1.
[3] B. Hofreiter and C. Huemer. Transforming UMM Business

Collaboration Models to BPEL. In Proceedings of OTM
Workshops 2004, volume 3292. Springer LNCS, 2004.

[4] B. Hofreiter, C. Huemer, and J.-H. Kim. Choreography of

ebXML business collaborations. Information Systems and
e-Business Management (ISeB), June 2006.

[5] B. Hofreiter, C. Huemer, P. Liegl, R. Schus-

ter, and M. Zapletal. UMM Add-In, Mar. 2006.

http://www.ifs.univie.ac.at/ummaddin/.
[6] B. Hofreiter, C. Huemer, and M. Zapletal. Registering UMM

Business Collaboration Models in an ebXML Registry. In

Proceedings of the IEEE Conference on E-Commerce Tech-
nology (CEC ’06). IEEE Computer Society, June 2006.

[7] ISO. Open-edi Reference Model, 1997. ISO/IEC JTC

1/SC30 ISO Standard 14662.
[8] G. Kramler, E. Kapsammer, G. Kappel, and W. Retschitzeg-

ger. Towards Using UML 2 for Modelling Web Service Col-

laboration Protocols. In Proceedings of the First Interna-
tional Conference on Interoperability of Enterprise Software
and Applications (INTEROP-ESA’05), Feb. 2005.

[9] OASIS. ebXML Registry Information Model, May 2005.

Version 3.0.
[10] Object Management Group (OMG). Meta Object Facility

(MOF) Specification, May 2005. Version 1.4.1.
[11] Object Management Group (OMG). XML Metadata Inter-

change Specification, June 2005. Version 2.0.1.
[12] RosettaNet. RosettaNet Implementation Framework: Core

Specification, Dec. 2002. V02.00.01.
[13] S. Thöne, R. Depke, and G. Engels. Process-oriented, flex-

ible composition of web services with uml. In Conceptual
Modeling - ER 2002, 21st International Conference on Con-
ceptual Modeling, Proceedings, LNCS. Springer, 2002.

[14] UN/CEFACT. Core Components Technical Specification -
Part 8 of the ebXML Framework, Nov. 2003. Version 2.01.

[15] UN/CEFACT. UN/CEFACT - ebXML Business Process
Specification Schema, Nov. 2003. Version 1.11.

[16] UN/CEFACT. UN/CEFACT Registry Implementation Spec-
ification, Feb. 2006. Version 0.9.

[17] UN/CEFACT. UN/CEFACT’s Modeling Methodology
(UMM), UMM Meta Model - Foundation Module, Mar.

2006. Candidate for 1.0, Final Working Draft,

http://www.unece.org/cefact/umm/

UMM Foundation Module.pdf.
[18] World Wide Web Consortium (W3C). Web Services Chore-

ography Description Language, Nov. 2005. Version 1.0.

