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ABSTRACT
While multi-tenant cloud computing provides great benefits in
terms of resource sharing, it introduces a new security landscape
and requires strong network isolation guarantees between the ten-
ants. Such network isolation is typically implemented using network
virtualization: Virtual switches residing in the virtualization layer
enforce isolation, e.g., via tunnel protocols and per-tenant flow rules.
The design of such switches is a very active topic: Since 2009 alone,
at least 22 different designs have been introduced. Our systematic
analysis of 22 virtual switches uncovers 4 security weaknesses: Co-
location, single point of failure, privileged packet processing and
manual packet parsing. An attacker can easily undermine network
isolation by exploiting those weaknesses. Hence, we introduce 3
secure design principles to build a resilient virtual switch, thereby
offering strong virtual network isolation.

CCS CONCEPTS
• Security and privacy → Network security; Distributed sys-
tems security; • Networks → Network components; Network
architectures; • Hardware → Networking hardware;
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1 INTRODUCTION
Multi-tenant Infrastructure-as-a-Service (IaaS) cloud providers typ-
ically rely on virtualization techniques to isolate tenants from one
another. Virtual switches are popularly used by IaaS cloud providers
to isolate tenant networks. This is critical, as network traffic from
one tenant’s network must not interfere with another tenant’s
network.

Broadly speaking, virtual switch (vSwitch) functionality can
either be present in the server or the first-hop switch (e.g., ToR
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switch), the former is commonly known as a virtual switch, and is
the subject of this paper. In this setup, the vSwitch is present in the
virtualization layer of the (edge) server. It interconnects the virtual
machines (VMs) provisioned at the server and provides isolation
between tenants’ virtual networks. Connectivity across servers is
achieved by establishing an “overlay” network using a tunneling
protocol, e.g., VXLAN, on top of the underlying network.

Due to the relevance and wide deployment of virtualization, the
design of vSwitches is a very active topic, both in academia and
industry. Interestingly, however, we find that current research re-
volves mainly around performance and programmability. The secu-
rity requirements and implications of vSwitches are less understood.
This is worrisome as it has recently been shown that vSwitches
potentially open a large attack surface, which can be exploited by
low-resource adversaries to launch large-scale attacks [33, 34]. By
co-locating the vSwitch with the virtualization layer, and exploit-
ing packet parsing vulnerabilities, an attacker can easily propagate
a worm from a VM to compromise an entire cloud setup such as
OpenStack. Thereby violating network isolation among tenants.

Such attacks and the poorly charted security landscape in the
literature raise the concern on the security of existing vSwitches
and their designs. Clearly, while performance and flexibility are also
important dimensions, we in this paper, take the position that it is
time to make security a first class citizen in the design of vSwitches.

1.1 State-of-the-Art and Challenges
Let us quickly revisit the state-of-the-art designs and their short-
comings. A high-level illustration of an existing vSwitch design
(Open vSwitch) is shown on the left in Figure 1. The salient aspects
here are co-location, single vSwitch, privileged packet processing and
complex protocol processing. The vSwitch is usually co-located with
the virtualization layer. We argue that this increases the trusted
computing base (TCB) of the server, as vSwitches can be tens of
thousands of lines of code. Next, only one vSwitch for all the ten-
ants is a single point of failure. The problem is further exacerbated
as the virtual switch functionality is spread across the Host OS and
hardware, e.g., user-space and kernel-space, which rely on mul-
tiple manually implemented parsers for an increasing number of
network protocols [34].

The ongoing deployments of so-called smart NICs [10, 17, 21]–
NICs that run multi-core ARM processors with a Linux OS and
Open vSwitch–address the problem of co-location. Consolidating
the vSwitch functionality into the NIC improves the security of the
server as it reduces the trusted computing base (TCB) of the Host
OS. Yet, the motivation for such a NIC, is one of performance, by
running the vSwitch on the NIC’s CPUs, the server’s CPU cores
spend fewer cycles on network virtualization. However, the vSwitch
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Figure 1: A high-level comparison of existing vSwitch designs (left) and our design (right). Our design leverages hardware
virtualization such as SR-IOV, disaggregates the vSwitch from the virt. layer, isolates vSwitches for tenants, limits packet
processing to user-space and implements minimum protocol parsing (shown as different shaped sprockets).

in the smart NIC remains co-located with its OS and has the same
weaknesses described in the previous paragraph.

1.2 Vision and Position
Clearly, a key challenge in designing more secure vSwitches lies
in balancing the tension between high performance and strong
security. In particular, we in this paper advocate for designs that are
based on sound security principles [27] and offer high performance.
A high-level design that addresses the key weaknesses of existing
vSwitches (which we highlighted previously) is shown on the right
half of Figure 1. The design is based on the following secure design
principles and enables secure network virtualization:

• Disaggregation: By separating the vSwitch from the virtu-
alization layer and placing it into a guest VM (vSwitch VM),
we eliminate the issue of co-location and more importantly
reduce the TCB. Furthermore, by creating vSwitch VMs on
a per-tenant, network slice or class-of-service basis we can
strengthen isolation and avoid a single point of failure (single
vSwitch).

• User-space packet processing: By leveraging hardware
features, e.g., SR-IOV to deliver packets to a guest VM, with
user-space packet processing libraries, e.g., DPDK [26], to
process packets fast in user-space only, we adopt the princi-
ple of least privilege and reduce the impact of a compromise.

• Limited protocol parsing: By including the minimum re-
quired protocol parsing code we can reduce parsing vulner-
abilities, e.g., buffer-overflows, out-of-bounds reads, integer
underflows, etc. from occurring. This reduces the TCB and
the attack surface.

Such a design firstly reduces the impact of a compromised
vSwitch on the server, thereby maintaining system isolation. Sec-
ondly, multiple vSwitch VMsmaintain network isolation evenwhen
a particular tenant’s vSwitch VM is compromised. Third, process-
ing a minimum set of network protocols in user-space only, using
user-space packet processing libraries and hardware virtualization,
further reduces the attack surface on the vSwitch VM and offers

high performance. Additionally, the hardware and software require-
ments for our proposed design are affordably satisfied. Several
servers already support Single Root I/O Virtualization (SR-IOV),
Input Output Memory Management Unit (IOMMU) and Alternative
Routing ID Interpretation (ARI); OSes have drivers for SR-IOV NICs
and user-space packet processing (DPDK libraries).

By adopting our system, cloud providers can reap trust benefits.
Firstly, cloud providers can trust that their management vSwitch
will be isolated even when a tenant’s vSwitch is compromised.
Second, the cloud provider can offer tenants increased levels of
isolation for their networks at a premium rate or to comply with
regulations, e.g., HIPPA. Hospitals or health care providers can use
a cloud service where they can trust their networks to be isolated.

2 SECURITY LANDSCAPE OF TODAY’S
VSWITCHES

Research and development of vSwitches have advanced consider-
ably since 2009. A non-exhaustive list of commercial, open-source
and academic vSwitches is tabulated in Table 1. In total 22 vSwitches
are shown along with their emphasis, e.g., flexibility, performance
or control. The table also depicts whether the vSwitch is co-located
with the virtualization layer, processes packets in kernel and/or
user-space, and supports extended parsing via a unified packet
parser [34]. For example, OvS is co-located with the Host OS, uses
a kernel- and user-space packet processor and, supports extended
parsing via a unified packet parser.

From the emphasis column,we observe that performance, flexibil-
ity, programmability and centralized control are the key drivers for
vSwitch research and development. There exist only two vSwitches
with an emphasis on security, namely the research prototype by
Jin et al. [14] and sv3 [31] by Stecklina. The design by Jin et al. ad-
dresses the vulnerability of co-location by placing the vSwitch in a
vSwitch VM. However, the design has two shortcomings: First, once
the vSwitch VM is compromised, network isolation for all tenants
is compromised; Second, the prototype uses OvS with kernel and
user-space packet processing, as well as extended parsing, which



Table 1: Design characteristics of virtual switches.
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OvS [22] 2009 Flexibility Baseline
Cisco NexusV [36] 2009 Flexibility ✗ ? Commercial
VMware vSwitch [37] 2009 Centralized control ✗ ✗ Commercial
Vale [25] 2012 Performance ✗ ✗ Using HPFP to increase perfomance
Research prototype [14] 2012 Isolation ✗ Place OvS in a VM [14].
Hyper-Switch [24] 2013 Performance Fast path in the Xen hypervisor
MS HyperV-Switch [18] 2013 Centralized control ✗ ? Commercial
NetVM [13] 2014 Performance, NFV ✗ ? Using HPFP to increase performance.
sv3 [31] 2014 Security ✗ ? Can run multiple sv3 switches on the Host, isolation via processes.
fd.io [32] 2015 Performance ✗ ✗ Uses Vector Packet Processing, e.g., see Choi et al. [6].
mSwitch [12] 2015 Performance ✗ Using HPFP to increase performance.
BESS [4] 2015 Programmability, NFV ✗ ✗ Similar to the Click modular router [15].
PISCES [29] 2016 Programmability ✗ Uses a domain specific language to customize parsing.
OvS with DPDK [26] 2016 Performance ✗ Using HPFP for performance; sw. countermeasures, e.g., canaries and ASLR may

not be used.
ESwitch [19] 2016 Performance ✗ ✗ Proprietary.

Virtual
Switches

MS VFP [8] 2017 Performance, flexibility ✗ Commercial.
Mellanox BlueField [17] 2017 CPU offload ✗ Runs full fledged OvS on CPU in NIC. Server leased, but provider controls the

network.
Liquid IO [21] 2017 CPU offload ✗ Runs full fledged OvS on CPU in NIC.
Stingray [10] 2017 CPU offload ✗ Runs full fledged OvS on CPU in NIC.
GPU-based OvS [35] 2017 Acceleration Leverages the GPU for packet processing.
MS AccelNet [9] 2018 Performance, flexibility ✗ Packet processing and flow rules offloaded to an FPGA-based NIC.
Google Andromeda [7] 2018 Flexibility and perfor-

mance
✗ OvS-based software switch with hardware offloads.

still exposes a considerable attack surface. sv3 by Stecklina, is co-
located with the Host, however, it runs in user-space and enforces
process level isolation across multiple sv3 instances.

Since 2014 several vSwitches [4, 12, 13, 19, 32] eliminated kernel
packet processing, primarily for performance reasons. We note
here that those vSwitches are not based on OvS. Looking more
closely, we observe that the switches are still co-located with the
virtualization layer, however, only a few switches [4, 19, 29, 32]
address the issue of complex packet parsing by incorporating a
modular design for parsing network protocols; e.g., PISCES [29]
addressed the parsing issue by introducing support for P4 in OvS
and ESwitch programmatically constructs minimal packet parsers
dynamically using a trusted parser template library.

In the last year (2017), Smart NICs running a full Linux-based OS
and OvS have emerged. Indeed, these NICs eliminate the issue of co-
location and reduce the TCB of the Host OS by consolidating OvS
into the NIC OS. Furthermore, this approach has the advantage of
eliminating CPU cycles used by the vSwitch on the Host. However,
Smart NICs inherit the security issues that OvS has as these NICs
port OvS to the NIC OS and run them in kernel and user-space with
extended parsing.

In 2018, Google and Microsoft resp. presented their network
virtualization systems, Andromeda [7] and Azure Accelerated Net-
working (AccelNet) [9]. Andromeda uses OvS in the Host OS’s
user-space and so-called Co-processors for CPU intensive packet
processing in VMs. Overall, packet processing exists in multiple
components across the Host OS and Co-processors. AccelNet ex-
tends VFP [8] to support VFP functionality in the FPGA-based NIC.
As we can see in the last two rows in Table 1, both systems co-locate
the vSwitch and have complex packet processing and parsing.

We can discern the following from Table 1. Roughly 80% of
vSwitches co-locate with the virtualization layer, exceptions are
the 3 Smart NICs and the research prototype. Next, approximately
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Figure 2: Distribution of vSwitch design characteristics.

35% of vSwitches process packets in kernel and user-space and
30% process packets only in the kernel. Therefore, in total we have
nearly 65% of virtual switches processing packets in the kernel.
Finally, at least 50% of the vSwitches support extended parsing.

Key Weaknesses. Our security analyses sheds light on the fol-
lowing weaknesses:

• Co-location: Network isolation and system isolation can
easily be compromised by exploiting a simple packet pro-
cessing vulnerability, e.g., buffer-overflow, while the vSwitch
is co-located with the virtualization layer.

• Single vSwitch: A single vSwitch system cannot uphold
network isolation even when placed in a separate VM.

• Kernel packet processing: One of the key tenets in com-
puter security is the principle of least privilege. Handling
attacker controlled data with high privileges when it can be



done with lower privileges, e.g., in user-space, is not a secure
design.

• Complex protocol parsing: Implementing an increasing
number of network protocol parsers manually is known to
be error prone [28] and reduces performance [29]. Only a
handful of virtual switches limit packet parsing today.

Attacker Model. We consider the attacker model from the
vAMP attack [33, 34], which assumes that an attacker with lim-
ited resources can affordably and easily launch an attack in the
cloud to compromise network isolation by targeting the vSwitch
and its packet processing elements. However, using SR-IOV NICs
requires us to assume that the NIC is trusted hardware. We assume
it is more difficult to compromise the NIC as it has limited packet
parsing logic, e.g., layer 2 (Ethernet and VLAN) processing only.

3 TOWARDS A SECURE VSWITCH
Our findings on the security shortcomings of existing vSwitches
motivate us to reconsider vSwitches with security as a first class
citizen. In particular, we identify four requirements for a vSwitch
system to withstand a weak attacker in the cloud such as the vAMP
attack:

(1) Maintain network isolation even when compromised.
(2) Process packets with least privilege.
(3) Reduce the trusted computing base (TCB).
(4) Limited protocol parsing.
We can meet these requirements by following three secure de-

sign principles: Disaggregation, User-space packet processing and
Modular protocol parsing. As shown in the right half of Figure 1,
by disaggregating the vSwitch from the virtualization layer into
dedicated VMs, e.g., on a per-tenant basis, network isolation for
other tenants can be upheld even when one tenant’s vSwitch is
compromised. By processing a limited number of network proto-
cols in user-space only, we reduce the privilege and TCB of the
vSwitch, thereby limiting the impact and surface of an attack. In
the following we elaborate on the three design principles.

3.1 Disaggregation
To preserve network isolation even when the vSwitch is compro-
mised we must first address the issue of co-location. Second, we
must isolate tenant vSwitches from each other. A disaggregation
approach addresses the problem. We can disaggregate the vSwitch
from the virtualization layer, e.g., as described by Jin et al. [14], by
placing it in a dedicated vSwitch VM. Additionally, the vSwitch VM
can be disaggregated further by creating a vSwitch VM for every
tenant on the server. This way, compromising one tenant’s vSwitch
does not violate network isolation for other tenants on the Host.

Delivering packets to and from the vSwitch VM can be accom-
plished using hardware virtualization such as Single Root IO Virtu-
alization (SR-IOV) as specified by PCI-SIG [16]. SR-IOV is supported
by modern servers, NICs and OSes, as well as cloud providers such
as Amazon EC2 [1] and Microsoft Azure [2].

We note that there exist further potential approaches to disaggre-
gation beyond the SR-IOV-based scheme we describe in this paper;
e.g., NetBricks [20] uses a novel compiler-enforced separation be-
tween tenant’s datapaths, allowing virtual network functions to
explicitly pass ownership of certain resources, like packet buffers,

between themselves. We further note virtual machines are only
one possible form of isolation; extending our design to different
isolation schemes, like processes, containers, or unikernels, is left
for further study.

3.2 User-space Packet Processing
Applying secure design principles to vSwitches, we propose to pro-
cess packets with least privilege, i.e., in user-space only as opposed
to (an additional code path in) the kernel. This limits the impact
of a compromise: Compromising an unprivileged user-space appli-
cation does not give an attacker privileged access to the system,
e.g., the attacker cannot make changes to the NIC from the vSwitch
VM. Second, by eliminating the kernel path, the TCB of the system
can be reduced. For example, OvS processes packets across the
system: Kernel and user-space, and the packet processing logic in
the kernel is different from user-space. A smaller TCB increases the
security of the system as there are fewer lines of code to manifest
as a vulnerability.

Eliminating the kernel path for vSwitches has been proposed in
the literature [11, 23], and is currently available for Open vSwitch,
i.e., a user-space version of OvS using DPDK [26]. Hence, this
principle can also be readily adopted.

3.3 Modular Protocol Parsing
Our principle of modular packet parsing is also based on the security
principles of least privilege and having a small TCB. Similar to
Section 3.2, we can reduce the TCB of the system by implementing
the least number of protocols required in the parser. As much as
possible, we must limit the parsing to user-space, as the packet
parser directly processes attacker controlled data. By parsing in
user-space with low privileges, we can limit the consequences of
exploiting a protocol parsing vulnerability.

There are at least three approaches to reduce packet parsing
code in the literature. There is the classic “Click” modular router
approach [15] adopted by BESS [4], a domain specific language
approach, e.g., P4 adapted to OvS in PISCES [29], and a template
based approach adopted by ESwitch [19]. In all cases, the user has
the flexibility over the network protocols parsed, i.e., she can choose
to support only the necessary protocols.

4 DESIGN CHALLENGES
Having described secure design principles for a vSwitch in the
previous section, we now discuss some of the challenges we expect
in building such a system as illustrated in Figure 1 and described
in Section 1.2. In particular, we believe that this work opens up an
interesting line of inquiry, e.g., it forces us to revisit the trade-offs
between security and performance.

4.1 Delivering Packets to Correct vSwitch VMs
As per the PCI-SIG specification for SR-IOV, the OS that has the
so-called Physical Function (PF) driver can map the NIC’s resources,
e.g., Intel’s Virtual Machine Device queues (VMDq) and Base Ad-
dress Registers (BARs), as an individual PCI device to the resp.
vSwitch VMs. Each vSwitch VM will then have an Ethernet inter-
face configured with at least a unique MAC address and possibly an
IP address. Hence, each vSwitch VM can be uniquely identified. The



administrator can then configure the NIC to filter packets based
on the respective vSwitch VM’s MAC address. Packets from the
SR-IOV NIC can then be delivered to the respective vSwitch VM,
bypassing the virtualization layer. Note that SR-IOV NICs typically
defend against MAC address spoofing attacks, thereby preventing
a compromised vSwitch VM from violating network isolation by
intercepting another tenant’s packets.

4.2 Processing Packets in User-Space
Packets from the NIC can be delivered to the user-space vSwitch
using so-called kernel-bypass techniques. Such techniques are com-
monly supported by commodity NICs, e.g., most modern NICs
support Intel’s DPDK library. There are two ways to achieve kernel-
bypass: using Interrupts, or Polling. In an Interrupt mechanism, the
NIC sends an interrupt that traps the CPU. The CPU then services
the interrupt and delivers the data in the buffer to the user-space
application. In a Polling mechanism, the NIC and Host use shared
memory to read and write packets. The user-space application
constantly monitors the shared memory to check if packets have
arrived for it or not. The NIC can write to the shared memory region
using Direct Memory Access (DMA) and can be restricted to that
memory using the IO Memory Management Unit (IOMMU). Indeed
the two techniques have trade-offs, Polling requires dedicated CPU
cores whereas Interrupts do not. However, Polling reduces latency
whereas Interrupts do not. Depending on the use-case one or the
other can be chosen. BESS for example is a user-space only vSwitch,
and OvS has a user-space version available [26], both of which use
the DPDK library. mSwitch [12] is an example of an Interrupt-based
vSwitch that runs only in the kernel.

In some virtual switches, e.g., OvS, the kernel has a cache that
increases packet processing performance (latency and throughput)
considerably. One may be concerned that user-space packet pro-
cessing precludes a flow cache, however, that is not the case with
OvS. OvS with DPDK supports a user-space flow cache [5] that we
could leverage in our prototype.

4.3 NIC Drivers
The OS that has the Physical Function (PF) driver of the NIC has
full control over the NIC, whereas the OS that has the Virtual
Function (VF) driver of the NIC has limited control over the NIC.
For example, only the PF driver is allowed to configure the filter
on the NIC that is necessary to correctly deliver packets to the
respective vSwitch VMs. To use the drivers “out-of-the-box”, it
would appear reasonable to assign the VF driver to the vSwitch VM,
however, doing so introduces limitations. For example, a vSwitch
VM cannot dynamically connect a newly spun up tenant VM, the
administrator must do so. On the other hand, the administrator
must a priori allocate the PCIe device (queues and BARs) to vSwitch
VMs and their respective tenant VMs, which may be inefficient use
of resources or difficult to estimate. To avoid such limitations, one
could potentially introduce a special vSwitch VM driver that is a
subset of the PF driver.

4.4 Traffic between Tenants and their vSwitch
We discussed how packets arriving from the physical network (e.g.,
from the switch connected to the server) can be delivered to the

vSwitch VM previously. Now, we discuss two ways the packets
can be exchanged between tenant VMs that are co-located on the
same server: Bouncing packets off the NIC or using shared memory
between the vSwitch VM and its respective tenants. To bounce
packets off the NIC, the tenant VMs must also be assigned NIC
resources and have the VF driver installed. The advantage of this
approach is reduced latency and bypassing the virtualization layer.
However, this can introduce a lot of traffic along the PCI bus and
NIC resources are limited, and could prevent live migration of
tenant VMs (an SR-IOV implementation limitation). If polling via
shared memory (as huge pages) is used between the vSwitch VMs
and the respective tenants, then PCI bus contention is traded for
CPU cores and cycles. Naturally, each method has its pros and cons,
and hence, must be chosen depending on the use-case and available
resources.

4.5 Resource Allocation
From Figure 1 it is clear that our disaggregation approach calls for
dedicated vSwitch VMs, thereby reducing the number of available
VMs for compute tasks. Of course, when high levels of isolation are
necessary such an approach can be taken. An alternative minimalis-
tic solution would be to have at least 2 vSwitch VMs: Management
and Tenants. The cloud providers virtual network is then isolated
from the untrusted Tenants. Hence, we expect at least 2 extra VMs
per server to be the minimum resource overhead introduced. Ad-
ditionally, the vSwitch VMs will require at least 2 dedicated CPU
cores for packets to be delivered to the vSwitch VM. CPU cores for
packet processing will increase when polling is used. The mem-
ory consumed will also increase depending on the approach taken.
Allocating memory a priori reduces the dynamic memory manage-
ment capabilities of modern hypervisor, however, it is difficult to
know ahead of time how much memory to allocate for the vSwitch
VMs when polling is used. Again, depending on the resources at
hand and use-cases, specific design choices need to be made. It is
impossible to have a “one size fits all” solution.

4.6 Management
The administrator/orchestrator can spin up/down vSwitches and
assign VFs to the vSwitch VMs. Recall that each vSwitch VM is
configured with a unique MAC and IP address. Hence, we expect
address management to increase for every vSwitch VM introduced.
Furthermore, the number of connections to the centralized con-
troller will also increase. This can introduce (one-time) manage-
ment/operational overhead, e.g., integrating APIs into the cloud
managament system software, mapping vSwitch VMs to tenants.
On a different note, introducing vSwitches on a per-tenant basis
for example, could make it easier to manage the vSwitch flow con-
figuration. Changes to the vSwitch configuration are limited to the
specific tenant.

4.7 Reducing Protocol Parsing
Although there exist multiple approaches to reduce packet parsing
code in the literature, there are some challenges to overcome. For
example, PISCES appears to be inactive, ESwitch is proprietary,
we encountered an issue when trying to use BESS on our server
and OvS does not support modular packet parsing. At the time



of writing this paper BESS appears to be the most suited vSwitch,
however, we may have to first use OvS and then migrate to BESS
after fixing the problem.

4.8 Security of SR-IOV NICs
Our design involves hardware features, in particular SR-IOV NICs.
However, the specification for SR-IOV is currently closed, and se-
curity issues of using SR-IOV are yet to be well understood. For
example, a handful of researchers have uncovered denial of service
attacks [30, 38] and covert channels [3] when SR-IOV NICs are
used in IaaS clouds.

5 CONCLUSION AND FUTUREWORK
In this paper we systematically uncovered 4 key security weak-
nesses of existing virtual switches: Co-location, single vSwitch,
kernel packet processing and complex protocol parsing. Our find-
ings led us to identify 4 requirements for a secure vSwitch system.
We then outlined 3 secure design principles to meet the identified
requirements namely, disaggregation, user-space packet processing
and modular protocol parsing. Finally, we sketched a design based
on our principles and described some of the important challenges
we will face in building such a system.

We aim our analysis as a first step. As future work, we plan to
implement our design and conduct an extensive evaluation to shed
light on factors that influence the performance of our prototype.
In developing such a design, network virtualization via vSwitches
will be resilient to a compromise and have a reduced attack surface,
thereby preserving a critical virtualization requirement, isolation.
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