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ABSTRACT
As emerging network technologies and softwareization ren-

der networks more and more flexible, the question arises

of how to exploit these flexibilities for optimization. Given

the complexity of the involved network protocols as well as

the context in which the network is operating in, such opti-

mizations are increasingly difficult to perform. A particularly

interesting vision in this regard are “self-driving” networks:

networks which measure, analyze and control themselves in

an automated manner, reacting to changes in the environ-

ment (e.g., demand), while exploiting existing flexibilities to

adjust and optimize themselves as needed.

A fundamental challenge faced by any (self-)optimizing

network concerns the limited knowledge about future

changes in the demand and environment in which the net-

work is operating. Indeed, given that reconfigurations entail

resource costs and may take time, an “optimal” network con-

figuration for the current demand and environment may not

necessarily be optimal also in the near future. Thus, it is

desirable that (self-)optimizations also prepare the network
for possibly unexpected events in the near future.

This paper makes the case for empowering self-driving

networks: empowerment is an information-centric measure

which allows to account for how “prepared” a network is and

how much flexibility is preserved over time. While empow-

erment has been successfully employed in other domains

such as robotics, we are not aware of any applications in

networking. As a case study for the use of empowerment in

networks, we consider self-driving networks offering topo-

logical flexibilities, i.e., reconfigurable edges.
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Figure 1: Approach comparison.

1 INTRODUCTION
The increasing complexity of communication networks, their

continuously changing requirements (e.g., in terms of de-

mands and workloads), and their complex objective func-

tions, render their management in real time almost impos-

sible for human operators with today’s tools. Indeed, there

is an increasing consensus that network operations should

be supported by data-driven, machine-learning-based mod-

els revolving around more high-level goals and a holistic

view of the underlying network [4]. An increased automa-

tion bears the potential to not only simplify network opera-

tions but also enable more fine-grained optimizations, fully

leveraging the available network data rather than relying

on predefined models. A vision emerges of fully self-driving

networks which measure, analyze and control themselves

continuously.

Anothermajormotivation for self-driving networks comes

from the increasing flexibilities offered in modern commu-

nication networks. Indeed, over the last years, networks

have become more and more software-defined and reconfig-

urable. However, exploiting such flexibilities is non-trivial.

Even with state-of-the-art machine learning algorithms and

exploiting all the available information about the current

network state and demands, any algorithm optimizing the

network is faced with the challenge that there is an inherent

uncertainty regarding the future: theremay be an unexpected

spike in the demand, an edge failure or any other unexpected

behavior of a component internal or external to the network.

Moreover, given that even in the most flexible and highly

reconfigurable self-driving network, configuration changes
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typically come at a cost, e.g., in terms of resource consump-

tion or time (and hence service disruption). Accordingly, in

addition to adjusting optimally to the current situation, a
self-driving network should also be prepared for the require-

ments that may come up in the near future. That is, networks

should be optimized robustly, accounting both for the present
and possible future demands.

This paper initiates the discussion of how to rigorously

optimize (self-driving) communication networks while keep-

ing them flexible in the near future. Indeed, while the need

for this additional “preparedness” may seem intuitive and

known on an anecdotal level, little is known on how to actu-

ally prepare a self-driving network and enhance it with the

intelligence it will need to perform well also in the future.

Worse, today, we even lack good definitions and models to

capture such properties.

In order to fill this gap, we in this paper establish a connec-

tion to an intriguing notion of preparedness, so far only used

and successfully applied in other domains, such as robotics.

In particular, we make the case for applying the framework

of empowerment [11] to communication networks. Empow-

erment is an information-theoretic measure to quantify the

influence of an “agent” (or actor) on its environment.

Our Contributions. In this position paper, we make the

case for introducing concepts of empowerment in future

self-driving networks: networks for which specifying com-

plex objective functions is undesirable and cumbersome and

which should not only optimize for the current demand but

also be prepared for upcoming changes. We describe the chal-

lenges involved in enhancing communication networks with

empowerment and present a concrete proposal based on a

basic case study revolving around emerging reconfigurable

network designs. Our preliminary experiments demonstrate

that using empowerment as a driver for action selection, high

reconfiguration costs and potentially harmful situations may

be avoided.

Novelty and Related Work. Our approach radically dif-

fers from classical approaches which use utility functions to

guide optimizations and suffer from the drawback of having

to design and tweak the functions on a case by case basis.

The concept of empowerment itself was introduced in [11],

and studied by many authors subsequently, e.g., [1, 14, 16].

empowerment can be used as a task-independent, intrinsic

motivation to restructure the environment: in our case the
network. In general, the need and benefits of being “flexi-

ble” [9] or “prepared” is an ever-green topic in networking

research, and e.g., studied intensively in the context of obliv-

ious routing [2] (where routes need to be defined without

full knowledge of the traffic matrix) or resilient routing [17].

However, to the best of our knowledge, we are the first to

consider empowerment in the context of communication

networks, motivated by the advent of self-driving networks.

2 EMPOWERMENT IN NETWORKS
In this section, we introduce the concept of empowerment,
discuss its application in communication networks, and initi-

ate the discussion of a case study of a reconfigurable network

which needs to serve routing requests.

2.1 General Concepts
empowerment is a concept from agent (game) theory. It is

motivated by the observation that living organisms strive

for states that give them maximum control or impact over

their environment: Everything else being equal, states are

preferable which (1) keep as many options as possible open,

or (2) whose actions have the greatest influence on the direct

environment [11, 15]. The concept of empowerment is an

attempt to formalize and quantify the influence an agent

has on its environment. This is in stark contrast to current

approaches in communication systems. Fig. 1 illustrates this

difference abstractly as a state transition diagram. The mid-

dle layer in each subfigure corresponds to a system state

associated with one objective value. The bottom layer corre-

sponds to future system states. Fig. 1a shows a traditional

optimization. Traditional systems usually only consider the

imminent objective value. But multiple solutions with the

same objective value can exist, which one a traditional sys-

tem chooses is undefined. All solutions are equally good.

Thus, the traditional approach might select a solution that

moves the system into states with few future options. Fig. 1b

shows a possible state transition that is guided by empower-

ment. A system that additionally considers empowerment

for selecting a solution transitions into states, from which

more future states can be reached. The system has thus more

options and may be in a better shape to react. Fig. 1c shows

a system that not only considers empowerment for the se-

lection of equivalent solutions, but additionally maximizes

empowerment. That is, arranges free resources, or restructure
the environment, in such a way, that it is prepared for the

future, further maximizing the number of reachable states.

A key aspect of empowerment is the agent’s embodiment:
The sensor and motor capacities of an agent in an envi-

ronment [14]. The interplay of the agent with the environ-

ment can be represented as a perception-action loop, where

the agent influences the environment through its actuators,

and receives a perception of the resulting environment state

through its sensor [14].

An agent, situated in a time-discrete model, chooses an ac-

tion for the next time step based on the sensory information

of the current time step. The action influences the state of the

environment, which in turn influences the sensor input of

the agent in the next time step. The cycle then repeats itself.

This perception-action loop can also be modeled formally:

• the sensor S taking values s ∈ S,
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• the actuator A taking values a ∈ A,

• the rest of the environment R taking values r ∈ R.

Note that both the sensor variables can be random (e.g.,

due to measurements) as well as the actuators (enabling

randomized agents). The relationship between the random

variables can be expressed as a time-unrolledCausal Bayesian
Network (CBN) . The perception-action loop can be under-

stood as a probabilistic channel, and empowerment is defined

as the channel capacity between the agent’s own actuator A
and sensor S at a later time step:

E := C(At → St+1) = max

p(at )
I (St+1,At ), (1)

where I (St+1,At ) is the mutual information between two

random variables [15]:

I (St+1,A) :=
∑
s ∈S

p(s)
∑
a∈A

p(a | s) logp(a | s)−
∑
s ∈S

p(s) logp(s).

(2)

Eq. (2) is called mutual information, the first term corre-

sponds to the conditional entropy, and the second term to

the standard Shannon entropy. The Shannon entropy mea-

sures the uncertainty of a random variable. The conditional

entropy measures the uncertainty in St+1 once A is known.

Mutual information then measures the average information

one can gain about St+1 by observing A [15].

For a general setting with noise present in the channel,

e.g., random node and link failures, empowerment is calcu-

lated using the Blahut-Arimoto Algorithm, which is, how-

ever, computationally expensive [15]. More efficient tech-

niques exist, but are not straight forward to analyze [8].

It is important to note that empowerment represents only

the potential information flow. The agent calculates how

it could affect the environment, and does not materialize

its potential [16]. The use of channel capacity provides a

number of desirable properties [14]:

• It is agent centric: Only information accessible to the

agent is used, i.e., (samples) from the perception action

loop (sensi-motoric data).

• It features locality: No global knowledge of the world
is necessary.

• It is well-defined and computable: Due to the chan-
nel formulation, standard information-theoretic quan-

tities and established methods can be used for its cal-

culation

• It is semantically unbiased: No external value sys-

tem is introduced.

Especially the last point sets empowerment apart from

usual reinforcement learning approaches such as [12, 13]. In

reinforcement learning, the designer has to define a specific

reward signal (e.g., related to Quality of Service or Quality of

Experience parameters). Defining a specific objective func-

tion is, however, often non-trivial, as it is multi-dimensional

and depends on potentially many aspects (e.g., on routing

latency, resilience, etc.). In contrast, empowerment depends

only on the agent embodiment and the environment. This

does not only radically simplify the design of self-driving

networks but also renders it more flexible (e.g., the same

agent can be used in different contexts) and “prepared”.

2.2 Application: Reconfigurable Networks
We are concerned with the question of how to leverage the

ideas of empowerment in the context of (self-driving) com-

munication networks. To this end, we specify the different

components, that is, the environment, actions and sensors,

for a specific application in networking: routing in recon-
figurable networks. We choose this case study because it is

rather general (allowing not only to select and adapt routing

requests but also edges) and challenging; hence, it shows the

potential and limitations of empowerment. Moreover, recon-

figurable networks are an emerging and not well-understood

paradigm [3, 5, 6].

The Context.We model the network as a capacitated graph

G = (N , E) and are given a set of routing requests (to be

served on the graph). The function b : E → N gives the

capacity of an edge and the function c : E → R the cost of

using an edge. We model a request as a source-destination

pair given by the triple (s, t ,d), where s ∈ N is the source,

t ∈ N the destination and d ∈ N the demand (in routing

units). A set of requests (or demand) is denoted byD. We con-

sider reconfigurable networks whose edges can be adjusted,

e.g., leveraging emerging technologies in datacenters [5, 6]

or inWide-Area Networks [3]. Reconfigurable topologies are

helpful in the face of changing traffic patterns, since they al-

low the network to adapt to a new pattern, and thus mitigate

e.g., congestion.

The Problem. The problem is to design a topology that

can serve as many requests with as few reconfigurations as

possible. To achieve this, the topology needs a measure of

preparedness with respect to the traffic in the near future. In

particular, we argue that a self-driving network should be

capable of using available reconfigurable edges in such a way

that the perceived average latency of flows is minimized, or

the number of successfully routed flows is maximized, given

a limited number of reconfigurations.

The Solution. Empowerment presents itself naturally as a

principled solution to this problem, where an agent restruc-

tures the network, consequently actions correspond to the

configuration of edges, and the sensor relates to routed flows

or packets. Intuitively, an agent has high empowerment if

the edges it can reconfigure result in, say, many routed flows.

The Challenge. The actuators and sensors for the agent

need to be formulated with care. If, for example, the changes
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made in the environment are not perceivable with the sen-

sor, then the agent has empowerment 0 (by Eq. (2) ) and the

approach is bound to fail. If, on the other hand, the actuators

and sensors are too complex, then calculation of empower-

ment can be computationally expensive since the perception-

action loop needs to be sampled many times, which can be

costly itself. The calculation of empowerment must also be

fast to allow the agent to react quickly.

The Environment includes the graph G as well as the

routed requests. Thus, for a given demand D, the environ-

ment is defined as R := {(Dr , E
′) | Dr ∈ 2

D , E ′ ∈ 2
N×N},

where Dr is the set of routed requests and E ′
the set of

realized edges.

TheAgent is equippedwith a set of actuators and one sensor,
which together form its embodiment.

The Actuators: To achieve a large empowerment, the

agent’s actuators must be able to actually have an impact of

the environment. We define multiple ones:

• EdgePlacer (EP) establishes an arbitrary edge in the

network, taking values AEP := N ×N . If an existing

edge is chosen, the placement of the edge corresponds

to an increase of the capacity on that edge.

• EdgeRemover (ER) removes an arbitrary existing edge.

It takes values AER := {e | e ∈ Et }.

• RequestPlacer (RP) chooses an arbitrary request

from D that is not yet routed at time t , ARP :=

Dt
r /
(
Dt

r ∩ D
)
and tries to find a shortest path in the

graph. On success, the demanded resources are allo-

cated.

• RequestRemover (RR) chooses an arbitrary request

routed, and removes it from the graph, ARR := Dt
r .

• Idler correspond to “do nothing”; this actuator does not
change the environment.

The Sensors: Similar to the actuators, if empowerment is

to be meaningful, the sensors must relate to the environ-

ment. We define the following two sensors as functions of

an environment state r and a positive number l ∈ R+:

• ExactReqests (ER): ER(r , l) := Dr if | Dr |>
l else ∅ returns the set of currently realized requests,

if the number of realized requests is larger than a spe-

cific value. Else, the empty set is returned.

• NumReqests (NR): NR(r , l) :=| Dr | if | Dr |>
l else 0, returns the number of currently realized re-

quests, if that number is larger than l . Else zero is

returned.

In addition, we vary the sensor threshold l . In one set of

experiments we keep l = 0 constant, in another set of ex-

periments the agent dynamically adapts the threshold based

on the perceived routed requests. Threshold adaptation is

abbreviated with a F . Agents can achieve high empower-

ment by accepting at each sequence only a small number of

requests that vary between sequences. Given two states r1, r2
that result in the same number of different sensor readings,

an agent has no incentive to choose r1 over the r2, even if

the number of accepted requests is higher in r1. By adapting

the threshold the agent himself discovers without external

influence states with high empowerment in which different

large request sets are accepted. It is important to note that

we did not introduce any external value or signal.

We examine four embodiments in our evalua-

tion: ExactBuilder (EB), SimpleBuilder (SB),
ExactController (EC), SimpleController (SC)
with the following actions/sensor:

• EB := ({EP, ER, Idler},ER)
• SB := ({EP, ER, Idler},NR)
• EC := ({EP, ER, Idler,RP,RR},ER)
• SC := ({EP, ER, Idler,RP,RR},NR)

Exact indicates that the embodiment uses the ER sensor and

Simple the NR one. Builder indicates that the agent has only

control over the graph of the network, i.e., can place and

remove edges. In contrast, the Controller embodiment has

additionally control over the routed requests.

As a consequence, the builders can influence their cor-

responding sensor only indirectly by placing or removing

edges and thus enabling or disabling requests. A sensor read-

ing is obtained by sequentially performing shortest path

routing for all requests or a subset of requests of demand D.

To mitigate the effect of request ordering, we take the sen-

sor reading corresponding to the largest amount of routed

requests out of ten random permutations or subsets of D.

The controllers, in contrast, have direct influence on their

sensor due to their ability of adding/removing requests.

3 PRELIMINARY EXPERIMENTS
In order to shed some first light on the potential benefits but

also limitations of using empowerment in networks, we con-

ducted a case study of a self-driving network which adjusts

to the routing requests it has to serve. We consider a simple

discrete system where an agent chooses, at each time step,

the action maximizing the empowerment.

3.1 Algorithms
The main objective considered in literature is to maximize

the number of accepted and routed requests in the net-

work [5, 7]. Thus, for comparison, we introduce an Integer-

Linear-Program (ILP) that serves as an optimal baseline.

Since ILPs are computationally expensive to compute, we

introduce a simulated annealing heuristic. Both, the ILP and

the heuristic are prototypical: they optimize for point es-

timates of demand, and do not actively prepare for future

demand. In particular, they do not take uncertainty in the re-

quest distribution into account, or prepare the network with
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respect to possible future changes in demand. Due to space

we keep the algorithm descriptions short, but will release

our source code to aid reproducibility.

Exact Baseline (ILP). A canonical goal is to compute a net-

work which maximizes the number of routed requests, while

minimizing the bandwidth cost as a secondary objective:

min

∑
d ∈D

∑
e ∈E

c(e) · xd (e) − γ
∑
d ∈D

r (d), (3)

where r (d) and xd (e) are binary variables representing if de-

mandd is routed and its flow value along edge e , respectively;
while γ is a large positive constant, e.g., γ >

∑
c(e).

For the sake of modelling, we extendG with unit cost and

zero capacity (b(e) = 0) edges to a full-mesh graph. In this

graph every edge is replaced by two anti-parallel arcs with

identical cost and capacity values with its corresponding

(undirected) edge. The following constraints are required:

∀d ∈ D,∀i ∈ N :∑
(i, j)∈E

xd (i, j) −
∑

(j,i)∈E

xd (j, i) =


r (d) , if i = s

−r (d) , if i = t
0 , otherwise

,

(4)

∀(i, j) ∈ E :

∑
d ∈D

xd (i, j) + xd (j, i) ≤ p(i, j), (5)

∀(i, j) ∈ E : p(i, j) = p(j, i), (6)

∀i ∈ N :

∑
j ∈V :(i, j)∈E

[p(i, j) − b(i, j)] ≤ 3, (7)∑
e ∈E

[p(e) − b(e)] ≤ 2I , (8)∑
e ∈E

|p(e) − b(e)| ≤ 2B. (9)

Eq. (4) formulates the flow conservation for every routed

demand (i.e., r (d) = 1). The empowered capacity p(e) is set in
Eq. (5)-(6) for every undirected edge by summing up the flow

values on its corresponding directed arcs. The total number

of reconfigurable edges per node is bounded in Eq. (7). In

Eq. (8)-(9) the capacity increase (I ) and reconfigurations (B)
are bounded (multiplied by two because we have to perform

them on both bi-directional arcs), respectively.

Heuristic Baseline (HEU). Simulated Annealing is

a heuristic approximation method motivated by the

Metropolis-Hastings algorithm [10]. We use it to place and

move edges in an initial topology in such a way that the

number of routed flows is maximized.

The algorithm works as follows: Starting from an initial

solution, it randomly decides to place or remove an edge.

The probability of the two events depends on the current

inventory. If the inventory is empty an edge is taken with

high probability and vice verca. In case of an edge placement

the algorithm filters out all those nodes in the network that

already have a maximum degree. The starting node of the

edge is sampled with probability proportional to the number

of request sources and destinations located at each node.

Only nodes with a degree smaller than the limit are consid-

ered. A target node is then drawn uniformly at random from

all requests that have the source node of the edge as source.

In case of an edge removal any existing edge is removed

uniformly at random.

Empowerment Algorithm.We will focus on a determinis-

tic setting and algorithm in our case study: for every action

the agent performs in a given state, always only one sen-

sor reading is perceived. In this case Eq. (2) reduces to the

logarithm of all perceivable sensor readings given an initial

state [16]. This greatly simplifies computation and analysis.

We also note that the characteristics of the agent-

environment interaction, that is, the effect of placing or re-

moving an edge, might become distinguishable only after

several steps. Accordingly, we consider n-step empowerment:

We consider not a single action At but a sequence of vari-

ables for the n next time-steps, (At , . . . ,At+n), and consider

only the sensor reading St+n+1 [15].
With increasing sequence length calculation, computing

exact empowerment values becomes quickly intractable,

since the evaluation of | A |n action sequences would be

required. Therefore we use sparse sampling [16] to approxi-

mate n-step empowerment.

3.2 Evaluation
In our scenario, we consider an undirected graph with 30

nodes. Each node can have at most three reconfigurable

edges, resulting in a maximum number of 45 edges. Edges

have unit capacity in this scenario, and we consider all simple

s-t pairs with unit demand as requests, i.e., D := {(s, t , 1) |
(s, t) ∈ N ×N ∧ s , t}. Starting from an empty network, we

let agents maximize their empowerment for at least 500 time

steps, or if no new best empowerment value was observed

for 100 time steps. The agent chooses that action resulting

in the state with highest empowerment, and breaks ties by

randomly sampling an action. ILP and SA maximize the

number of accepted requests out of D. We give the ILP an

infinite action budget for this purpose.

Comparing Preparedness. To evaluate preparedness, we

draw 100 demands D ′
1
, . . . ,D ′

100
having 45 requests without

replacement from Ds . We then use the ILP with action bud-

gets of B ∈ {5, 15} to get the maximum number of routable

requests for eachD ′
i for the topologies previously generated

by ILP, SA and empowerment. The action budget B and se-

quence length n coincide, e.g., for B = 5 we consider for the

agents topologies created with n = 5.

Fig. 2 shows the difference in the accepted requests in

percent relative to the ILP as bar plot with standard error.

Greedy maximization of empowerment can indeed result
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Figure 2: Accepted requests in percent relative to the
ILP for sequence length n = 5 and n = 15. A Posi-
tive value indicates an improvement, a negative value
a degradation compared to the ILP.
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Figure 3: Chosen actions and empowerment for the EB
with sequence length n = 10.

in topologies, which are flexible with respect to varying

demands. Fig.2a shows that for B = 5 the topology designed

by the EB is able to accept 2.5% more requests on average

than the ILP, and for n = 15 even 5% more. Embodiments

with the ER sensor always outperform the ILP. In contrast,

Fig. 2a shows that embodiments with the NR sensor always

perform worse than the ILP for n = 5, while for n = 15

(Fig. 2b) SB and SC outperform the ILP. All embodiments

always perform at least as good as SA.

This analysis shows that depending on the embodiment

empowerment-driven agents are indeed able to structure a

network towards the specific purpose of accepting varying

future demands.

Chosen Actions. Now one may wonder whether the agent

simply stumbled over a good state, or whether it chose its

actions with purpose? Fig. 3 shows how often the EB with-
and without sensor adaptation chose an action as cumulative

sum over time, averaged across ten executions. The shaded

area corresponds to one standard deviation. The results are

exemplary and similar for the respective actuators across all

embodiments. The agent chose actions with purpose. Fig. 3a,

and Fig. 3b show that the corresponding agent placed edges

during the beginning of each run. This behavior is more

pronounced for the EB with sensor adaptation. After about

100 time steps, the curve for the Idler actuator increases,
indicating that the EB actively chooses to do nothing. The
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Figure 4: Number of routed requests and average path
length for EC with and without filtering, with n = 10.
curves for EP and ER become parallel, indicating that they

are sampled in equal measure due to random tie breaks.

Thus, the agent displays purpose behind the choice of

actions. In the beginning placing edges increases the em-

powerment, since this allows routing of requests for the first

time. The EB with sensor adaptation has a stronger incentive

to place edges, since a network with more edges can host

more requests. After a certain time empowerment cannot be

improved any further by placing edges, and the agents stay

where they are or take actions at random due to tie breaks.

Sensor Adaptation and Request Selection. To understand

how threshold adaptation impacts selection of routed re-

quests and topology design, we investigate the average path

length and number of paths in the graph for the EC and ECF
with sequence length n = 10. Fig. 4a plots the average path

length against the number of routed requests, and shows that

threshold adaptation leads to an increase in routed requests,

and a decrease in the path length. Thus the ECF successfully

learned to place edges and choose requests such that requests

are routed with low resource footprint.

The increased acceptance ratio comes at a cost. Fig. 4b

shows the average empowerment across ten runs for the

EC and ECF. The empowerment for the ECF is significantly

less than for the EC, and decreases as the filtering threshold

increases. Comparing the maximum values relativizes this

gap. The EC achieves Empowerment of 9.88, and the ECF of
7.54. Thus, the ECF is able to find states with relative high

empowerment, allowing the routing of different large request

sets.

4 CONCLUSION
We understand our work as a first step and believe that

network empowerment opens many interesting directions

for future research. So far, we have focused on a single and

simple case study only, and it would also be interesting to

consider to study the use of empowerment to deal with faulty

networks where, e.g., links may fail.
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