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Abstract—Computer networks such as the Internet or data-
center networks have become a crucial infrastructure for many
criticial services. Accordingly, it is important that such networks
preserve correctness criteria, even during transitions from one
correct configuration to a new correct configuration. This paper
initiates the study of how to simultaneously update, i.e., reroute
multiple policies (i.e., flows) in a Software-Defined Network (SDN)
in a transiently consistent and efficient manner. In particular, we
consider the problem of minimizing the number of controller-
switch interactions, henceforth called “touches”, while preserving
fundamental properties, in particular loop-freedom, at any time.
Indeed, we empirically show that the number of such interactions
affects the resource consumption at the switches. Our main result
is a negative one: we rigorously prove that jointly optimizing
multiple route updates in a consistent and efficient manner
is NP-hard, already for two routing policies. However, we also
present an efficient polynomial-time algorithm that, given a fixed
number of correct update schedules for independent policies,
computes an optimal global schedule with minimal touches.
This algorithm applies to any per-flow independent consistency
property, not only loop-freedom.

I. INTRODUCTION

The availability and protection of computer networks such
as the Internet or datacenter (cloud) networks, is becoming
a concern of high priority. Already today, many individuals
and organizations need to place great reliance on the services
of computer networks. At the same time, the Internet core
suffers from ossification, and has hardly evolved over the
last decades. Despite the huge success of the Internet in the
past, the increased dependability requirements raise concerns
whether today’s network protocols will be sufficient in the
future [4].

Software-defined networking is an interesting new paradigm
which promises to overcome some of the shortcomings of
today’s Internet architecture. A Software-Defined Network
(SDN) outsources and consolidates the control over multiple
data-plane elements to a centralized software program, en-
abling fast innovations while supporting formal verifiability
through a simple match-action paradigm. Especially the traffic
engineering flexibilities introduced by SDN [1, 21] as well
as the potentially more scalable network virtualization [9, 25]
have received much attention over the last years.

However, while a programmatic, logically centralized net-
work control is appealing, exploiting the introduced flexi-
bilities and operating an SDN in a consistent and efficient
manner is non-trivial. In particular, an SDN still needs to be

regarded as a distributed system [5, 23, 36], posing many
challenges [7, 15, 26, 32, 34, 41, 47, 48]. Several of these chal-
lenges are due to the asynchronous communication channel
between switches and controller, which exhibits non-negligible
and varying delays [47, 54].

A fundamental problem which has recently received much
attention regards the consistent update of network routes (also
called policies) [15, 31, 34, 47, 53]: how to reroute a set
of flows from their current paths to their respective new
paths, without transiently violating certain properties such
as loop-freedom or blackhole-freedom during the update? A
particularly interesting approach to solve the update problem
is to proceed in rounds [31, 34]: in each round, a “safe subset”
of switches is updated, such that, independently of the times
and order in which the updates of this round take effect, the
network is always consistent. The scheme can be implemented
as follows: after the switches of round t have confirmed
the successful update (e.g., using acknowledgments [26]), the
next subset of switches for round t + 1 is scheduled. The
appeal of this round-based approach is that it does not require
packet tagging (which comes with overheads in terms of
header space and also introduces challenges in the presence
of middleboxes [56] or multiple controllers [7]) or additional
TCAM entries [7, 47] (which is problematic given the fast table
growth both in the Internet as well as in the highly virtualized
datacenter [6]). Moreover, this approach also allows (parts of
the) paths to become available sooner [34].

However, so far most research focused on devising network
update schemes for a single flow (resp. single policy), that is,
for scenarios where a single route [31, 47], or all (destination-
based) routes to a single destination [34] need to be updated.
Such a single flow update problem can be described as an “up-
date pair” consisting of the old and the new path for that flow.
However, especially in large and dynamic networks, it is likely
that multiple routes have to be updated simultaneously [44].
For example, consider a Content Distribution Network where
traffic is reassigned to servers in batches [17]. It is well-known
that updating a switch and its datastructures comes at a certain
resource cost [37, 54], and it is useful to batch updates [27].

A. Our Contributions
This paper initiates the study of how to jointly optimize the

update schedule of, and reroute, multiple flows in a transiently
consistent yet efficient manner.

In particular, we consider a most fundamental consistency
requirement, loop-freedom [31, 34]: loops are known to harm
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the dependability of a network, due to packet drops, TCP
packet reorderings, etc. Accordingly, there exist several RFCs
and standards [49] on loop-free layer-2 spanning tree construc-
tions [46], on avoiding microloops in MPLS [42], on loop-free
IGP migration [14], etc.

Nevertheless, interestingly, today, we still do not have a a
good understanding of the fundamental underlying algorithmic
problem of how to update routes in a transiently loop-freedom
manner. In particular, we in this paper study how to reroute
multiple flows in a manner which minimizes the controller-
switch interactions, henceforth called touches. We empirically
show that such interactions consume precious computational
resources, and can hence become a bottleneck.

Our main result is a negative one: we prove that the problem
is computationally hard, already for three (by reduction from
shortest common supersequence problems) resp. even two
policies (by reduction from Max-2SAT), where each policy
taken alone, could be updated in two rounds.

We complement this negative result by presenting an optimal
polynomial-time algorithm to combine a fixed number of
consistent update schedules computed for individual policies
(e.g., using any existing algorithm, e.g., [31, 34]), into a global
schedule guaranteeing a minimal number of touches. This
algorithm is consistent and optimal not only for the loop-
free property, but any property to be satisfied already for a
single policy, as long as policies are independent (and e.g.,
do not compete for resources). However, we also point out
the limitations of such efficient schedule compositions: we
prove that for a non-constant number of policies, the problem
becomes NP-hard again.

B. Organization
The remainder of this paper is organized as follows. Sec-

tion II introduces preliminaries and presents our formal model.
Section III presents an empirical motivation. In Section IV,
we give proofs for the computational hardness. Section V de-
scribes optimal polynomial-time algorithms under the assump-
tion that only one switch is updated per round. After reviewing
related work in Section VI, we conclude in Section VII.

II. MODEL

We are given a network which is controlled by a (logically)
centralized software (the so-called controller) that commu-
nicates forwarding rule updates to the switches (the nodes),
over an asynchronous but reliable channel. The controller is
responsible to manage and update the routes taken by the
network flows.

Throughout this paper, we assume that each policy or flow
has its own set of forwarding rules stored at the different
nodes. In particular, we do not restrict routing to be shortest
path or destination based, but rather support the full routing
flexibilities introduced by SDN, allowing for arbitrary paths
as long as they are loop-free.

A. Multi-Round Update Scheduling
We consider the problem that the controller needs to si-

multaneously update k policies (i.e., the routes taken by the

flows), from their old to their respective new paths. The k
routing policies are independent in the sense that packets
of different flows are forwarded according to different (and
non-aggregated) rules; rules of different flows can hence be
changed independently. In the following, we denote the set of
to-be-updated nodes by U , and define n = ∣U ∣.

Each policy update is modelled as a pair (π
(i)
1 , π

(i)
2 ),

where π(i)
1 is the old route (resp. path) and π

(i)
2 is the new

route (resp. path) of the i-th policy, i ∈ [1, k]. Both π
(i)
1

and π(i)
2 are simple directed paths, for any i. In other words,

packets of policy i are initially forwarded, using the old rules,
henceforth also called old edges (often indicated with solid
edges in the figures), along π(i)

1 , and eventually they should be
forwarded according to the new rules of π(i)

2 (dashed edges).
W.l.o.g. [31], we will assume that both the old as well as the
new path of the i-th update have the same source si and the
same destination di.

We require that during the update, packets should not be
delayed or dropped at a node, nor redirected via the controller.
In other words, whenever a packet arrives at a node, a matching
forwarding rule should be present.

Let, for each node v ∈ V , out(i)1 (v) (resp. in(i)
1 (v)) denote

the outgoing (resp. incoming) edge according to policy π
(i)
1 ,

and out(i)2 (v) (resp. in(i)
2 (v)) denote the outgoing (resp. in-

coming) edge according to policy π(i)
2 . Moreover, let us extend

these definitions for entire node sets S, i.e., out(i)j (S) =

⋃v∈S out(i)j (v), for j ∈ {1,2}, and analogously, for in(i)
j .

Due to this asynchrony, of communication as well as of
the datastructures updates at the switch itself [54], we require
the controller to schedule and partition the updates in rounds,
and send out simultaneous updates in the same round only
to a “safe” subset of nodes: the correctness of the network
configuration is always preserved independently of the order
in which these updates take effect at the switches. Only after
these updates have been confirmed (acked), the next subset is
updated in the next round.

Let U (i) be the set of to-be-updated nodes for the i-th policy.
We want to assign each update in U (i) to a round, such that
the resulting schedule fulfills certain consistency properties.
That is, we want to find an update schedule U

(i)
1 , U

(i)
2 , . . .,

i.e., a sequence of subsets U (i)
t ⊆ U (i) where the subsets form

a partition of U (i) (i.e., U (i) = U
(i)
1 ⊍ U

(i)
2 ⊍ . . . ⊍ U

(i)
ri ), with

the property that for any round t, given that the updates U (i)
t′

for t′ < t have been made, all updates U (i)
t can be performed

“asynchronously” that is, in an arbitrary order, without violat-
ing some consistency property (mainly loop-freedom, but also
others, see below): consistent paths will be maintained for any
subset of updated nodes, independently of how long individual
updates may take. We will refer to ri as the number of update
rounds (of the update schedule of the specific policy).

When reasoning about legal update schedules, it is hence
useful to consider the following notion of temporary forward-
ing graph. For each policy update (π

(i)
1 , π

(i)
2 ), let U (i)

<t =

⋃j=1,...,t−1Uj denote the set of nodes affected by the i-
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Fig. 1: Example with two concurrent policy updates: at the top
update (π

(1)
1 , π

(1)
2 ) in black, at the bottom update (π

(2)
1 , π

(2)
2 )

in orange. The old policies (π(1)
1 and π

(2)
1 ) are drawn using

solid lines, the new policies (π(1)
2 and π(2)

2 ) using dashed lines.
At least one node cannot install both updates simultaneously
without creating a loop, and hence, needs two rounds of
interactions (touches).

th policy which have already been updated before round t,
and let U (i)

≤t , U (i)
>t etc. be defined analogously. Since updates

during round t occur asynchronously, an arbitrary subset of
nodes X ⊆ U

(i)
t may already have been updated while the

nodes X = U
(i)
t ∖ X still use the old rules, resulting in a

temporary forwarding graph Gt(U
(i),X,Et) over nodes U (i)

for this policy, where Et = out(i)1 (U
(i)
>t ∪X)∪out(i)2 (U

(i)
<t ∪X).

B. Transient Loop-Freedom

We require that the update schedule U
(i)
1 , U

(i)
2 , . . . , U

(i)
ri

fulfills the property that for all t, all policies i and for
any X ⊆ U

(i)
t , Gt(U

(i),X,Et) is loop-free. This property
is also known as strong loop-freedom [31] in the literature:
essentially, the temporary forwarding graph, at any point in
time, is topologically loop-free.

While we will focus on the above notion of loop-freedom
in this paper, we note that all our results also hold for the
alternative notion of relaxed loop-freedom [31]. Relaxed loop-
freedom only requires that the forwarding graph induced by the
source s is loop-free: traffic from s will never be forwarded
into a loop directly. There may however be some topological
loops in other parts of the forwarding graph, which however
are not connected to the source.

C. A First Example
Figure 1 shows an example of a concurrent route update of

two routes resp. policies: at the top, the update pair (π(1)
1 , π

(1)
2 )

is shown in black, at the bottom, the update pair (π
(2)
1 , π

(2)
2 ) in

orange; the old policies (π(1)
1 and π(2)

1 ) are drawn using solid
lines, the new policies (π(1)

2 and π(2)
2 ) using dashed lines. Let

us first just have a look at the black policy update. The old
policy traverses the nodes from v1 to v4 in numerical order,
whereas the new policy traverses them in the following or-
der: v1, v3, v2, v4. In order to guarantee a loop-free update, we
need to make sure that the update on v2 is installed before we
send out the update for v3; otherwise we risk a loop between
the two nodes. Let us now focus on the orange policy update, in

which the nodes are traversed in exactly the opposite order (in
the old and the new policy), and thus, for the orange policy
we need to update v3 before we update v2. In a concurrent
update of these two policies, we are forced to choose one
of the nodes (v2 or v3), and to send only one update (for a
single policy) to break the cycle. This means that we need an
extra interaction round (or touch) for this node, to install the
update for the second policy in a later round. This leads to a
possible update schedule of U (1)

1 = {v1, v2}, U
(1)
2 = {v3} for

the black policy and U (2)
1 = {v4}, U

(2)
2 = {v3}, U

(2)
3 = {v2} for

the orange policy. The overall update schedule therefore then
is: U1 = {v1, v2, v4}, U2 = {v3}, U3 = {v2} showing that v2 is
touched twice.

D. Goal: Minimum Number of Touches
Interactions with a node come at a certain resource cost (see

also our empirical motivation in Section III), and should be
minimized. Accordingly, we are interested in schedules which
jointly optimize the updates of multiple (namely k) policies,
in such a manner that the number of interactions with nodes,
henceforth also called touches, is minimized. That is, while
when reasoning about consistency, we focused on individual
update schedules, we now want to jointly optimize the possible
individual ri-round policy upate schedules U (i) = U

(i)
1 ⊍U

(i)
2 ⊍

. . . ⊍U
(i)
ri , to form a global schedule U = U1 ∪U2 ∪ . . . ∪UR,

where Ui is the set of nodes which are updated in round i.
The Ui sets do not have to be disjoint: switches may be touched
multiple times.

Our objective is to minimize the total number of touches
(summed over the entire update schedule), i.e., ∑i ∣Ui∣,
where Ui denotes the set of nodes which are updated in
round i. Observe that a solution to our problem always exists:
we can simply concatenate the individual policy schedules.
However, the resulting number of touches is high: each node
is touched k times, once for each policy. It is also easy to see
that it is not always possible to align the k policy updates in
such a manner that each node is only touched once: in order to
preserve consistency for the individual policy updates, in the
global schedule U , nodes may occur repeatedly, in multiple
rounds as seen in Figure 1.

E. A Second Example
Let us give an example. Figure 2 shows the construction

of a worst case scenario, henceforth called multi-touch lock,
requiring a maximal number of touches. Our example is for
four concurrent policy updates. Each policy update consists
of a source and a destination node on the outside, as well
as the four nodes in the center of the figure. The order in
which the nodes in the center are traversed in the new policy
is exactly the reversed order in which they are traversed in
the old policy. This leads to a chain of backward edges,
e.g., the policy from v1 to v11 traverses the nodes in the
order v4, v5, v9, v8 whereas the nodes in the new policy are
traversed as v8, v9, v5, v4. Hence, the nodes need to be updated
one by one in a given order. Since the other policy updates have
a similar structure, they also require a certain order of node



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, AUGUST 2017 4

Fig. 2: Construction of a multi-touch lock. Four concurrent
policy updates are shown in different colors, the old policies
are shown using solid lines, and the new policies are shown
using dashed lines of the same color.

updates. An update with a minimum number of touches always
needs as many extra touches as there are different policies:
thus, we need to touch four nodes twice.

F. Edge/Node Classification
We introduce the following useful edge (resp. node) classifi-

cation. For each edge or equivalently node, and with respect to
each policy update (π

(i)
1 , π

(i)
2 ), we define a direction forward

resp. backward with respect to a policy update (π
(i)
1 , π

(i)
2 ),

depending on whether the new edge (according to π(i)
2 ) points

in the same direction as the old policy (according to π(i)
1 ), or in

the opposite direction. That is, if for a given new edge (v1, v2)
of policy i, v1 also appeared before v2 in the old route of policy
i, then the edge (v1, v2) (and node v1) is called forward with
respect to policy i; otherwise edge (v1, v2) and node v1 are
called backward. As we will see, this distinction is useful as it
is often safe to update any number of forward-pointing edges
as they cannot introduce loops, while it can be harmful to
update backward edges.

It is also useful to classify edges not only for update
schedules from π

(i)
1 to π

(i)
2 , but also “in the reverse order’,

from π
(i)
2 to π(i)

1 . Given this perspective, we can classify the
old (solid) rules as backward or forward relative to the new
ones (dashed): we just need to draw the new route as a straight
path and see, if the old rule points forward or backward.
Again, if for a given old edge (v1, v2) of policy i, v1 also
appears before v2 in the new route of policy i, then the edge

(v1, v2) (and node v1) is called forward with respect to policy
i; otherwise edge (v1, v2) and node v1 are called backward.

Now observe that nodes and edges of a given policy i may
be forward (resp. backward) in the original update order (i.e.,
new relative to old policy) but backward (resp. forward) in
the reverse update order (i.e., old relative to new policy).
Accordingly, we propose two-letter codes to describe the edges
resp. nodes with respect to each policy update (π

(i)
1 , π

(i)
2 )—

the first letter will denote, whether the outgoing dashed edge
of π(i)

2 points forward (F) or backward (B) with respect to π(i)
1 .

Similarly, the second letter will describe the old edge relative
to the new path.

For example, consider the black policy in Figure 1. With
respect to this policy, v1 is an FF node: the dashed edge points
forward w.r.t. the solid policy (F⋅, where ⋅ is still unspecified,
either F or B), but also the solid edge points forward w.r.t. the
dashed policy (⋅F, where ⋅ is still unspecified, either F or B).
Similarly, v2 is FB and v3 is BF.

It is easy to see that in the first update round, we can
safely update any subset of rules which are either FF or FB: a
forwarding edge can never introduce a loop. By symmetry,
a similar observation holds for the last round: consider an
update (π

(i)
1 , π

(i)
2 ). The last round of updating (π

(i)
1 , π

(i)
2 )

can be seen as the first round of an update (π
(i)
2 , π

(i)
1 ).

Accordingly, in the last round, we can safely update any subset
of rules which are either BF or FF, just like in the first round
where we can update any FB or FF. (Nodes and edges which
are only part of either the old or the new policy but not both
can be updated trivially and are hence not considered explicitly
here.)

In summary, for each node resp. each link and each pol-
icy, we define a 2-letter code. As a node can be involved
in multiple policies, we can concatenate the 2-letter codes
of the different policies to fully characterize the node. For
example, in case of two policies, we will have nodes of the
form (F∣B)4= {FFFF,FFFB, . . .}. The first two letters denote
the orientation regarding the first policy and the last two
letters denote the orientation regarding the second policy. For
example, in Figure 1, v2 is FB in the black policy and BF in
the orange policy, so overall it is FBBF.

III. EMPIRICAL MOTIVATION

Before delving into the details of our flow rerouting al-
gorithm, we provide some empirical motivation for the need
to minimize the number of controller-switch interactions. In
particular, in a small experiment, we verified that minimizing
the number of touches might positively impact the performance
of SDN switches: not only is the total control traffic reduced,
but less touches also imply lower switch resource consumption
(in terms of CPU). This in turn improves switch performance
and throughput.

A. Methodology
We conduct measurements in a real SDN testbed. For this,

we use the OpenFlow benchmark tool perfbench to measure the
performance of an HP2920-24G hardware switch. perfbench is
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(a) Touches (per second) vs CPU consumption
for EchoRequest, FlowStats, PortStats.
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for FlowMod and PacketOut.
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(c) Touches (per second) vs latency for
EchoRequest, PortStats, FlowStats, PacketOut.

Fig. 3: Impact of touches (per second) on CPU consumption and latency for different OpenFlow message types.

OpenFlow Messages (per second)
EchoRequest FlowMod PortStats FlowStats PacketOut

Send Interval
1 [ms] 1240 1000 700 1230 3300
5 [ms] 1510 1200 980 1230 2900

1000 [ms] 1560 1200 1040 1560 3300

TABLE I: Switch OpenFlow message throughput for sending interval 1 ms, 5 ms, and 1000 ms.

designed to simultaneously benchmark the performance of the
control plane as well as data plane of SDN switches [45].
Furthermore, it is able to generate constant message rates of
the most relevant OpenFlow message types, e.g., FlowMod,
PacketOut or FlowStatsRequest messages. While the Open-
Flow control channel uses TCP, and hence the OpenFlow mes-
sage aggregation per network packet depends on the specific
TCP algorithm, perfbench can emulate different aggregation
levels. For this, perfbench makes use of the TCP NO DELAY
feature. While perfbench determines the number of OpenFlow
messages that are written simultaneously into TCP’s sending
buffer, TCP NO DELAY leads to an immediate flush of the
sending buffer. Of course, however, the sending behavior is
also controlled by the receiver side, according to the receive
window. Accordingly, by using the explained features, it is
difficult to precisely generate a specific amount of touches. In
order to indirectly generate varying touch rates, the sending
interval between writing actions towards TCP’s sending buffer
can be set. For our measurements, we varied the sending
interval between 1 ms and 1000 ms. This allows us to
generate a different number of touches per second for varying
OpenFlow messages, under a constant message rate (i.e., 500
messages per second). Note that a sending interval smaller
than 5 ms leads to short switch instabilities, e.g., high CPU
peaks, for long duration measurements. Although these switch
instabilities last only for a few seconds, we consider 5 ms as
the smallest send interval when we report on the improved
CPU utilization.

B. Improved CPU Utilization

Fig. 3a shows the touches versus the CPU utilization for
synchronous OpenFlow messages. For all message types, the
smallest send interval (5ms) produces the highest amount of

touches, namely 250. The CPU utilization is increasing with
the amount of touches from 40 % to nearly 70 %. This holds
generally for all synchronous message types. For OpenFlow
messages that do not request a response, i.e., asynchronous
messages, Fig. 3b shows that the CPU consumption also
increases with the amount of touches. For messages without a
switch response (FlowMod, PacketOut), the CPU consumption
is generally lower than for messages awaiting a response. This
is due to the fact that the switch does not need to create a
response for the messages. The CPU utilization over touches
also varies depending on the message types. We generally
note that the more touches we have, the higher the observed
CPU utilization of SDN switches. Accordingly, minimizing
the amount of touches can significantly save switch resources
under the same OpenFlow message workload. It has to be
noted however that, while a higher message aggregation, i.e.,
less touches, lowers the CPU consumption of switches, it leads
to additional waiting times, for the OpenFlow messages. The
latency values over touches is illustrated in Figure 3c. While
less touches have the lowest CPU, they lead to the highest
latency as aggregated messages have to wait longer to be
processed.

C. Impact on Throughput

In general, we conclude that less touches lower the CPU
consumption for SDN switches. This leaves room for switches
to process higher workloads. Thus, we conducted a further
measurement to study the switch throughput for sending inter-
vals of 1 ms, 5 ms and 1000 ms. We increase the OpenFlow
message rate until the system buffers overflow, i.e., the latency
per message steadily increases. Table I shows that a higher
send interval leads to higher amount of processable messages.
Only PacketOut did not show the same effect. Here, the switch
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was not able to handle the data plane bursts in case of the
1000 [ms] sending interval. Accordingly, mechanisms and
algorithms are needed that provide operators with the ability
to control those trade-offs.

IV. COMPUTATIONAL HARDNESS

In this section, we initiate the study of consistent flow
rerouting from an algorithmic perspective. In particular, we
present a negative result: optimizing the number of touches,
when the number of rounds is constrained, is NP-hard. We
first leverage a connection to Shortest Common Supersequence
(SCS) problems, to show that the problem is computationally
hard already for three policies (k = 3), which individually
(without optimizing the touches) could in principle be updated
in two rounds (ri = 2 ∀i). We then present our main technical
result, a theorem stating that the problem is even hard for two
policies (k = 2) which could be updated in two rounds each
(ri = 2 ∀i), by a reduction from Max-2SAT [28].

A. Hardness for 3 Policies
Interestingly, the problem of finding an update schedule

which minimizes the node interactions in an n-node network is
already computationally hard for k = 3 policies, which could in
principle be updated consistently in an R = 2-round schedule.
The remainder of this section is dedicated to the proof of the
following theorem:

Theorem 1. Computing an optimal update schedule which
minimizes the number of touches is NP-hard for k = 3
policies. This holds even if each policy individually could be
updated consistently in R = 2 rounds.

To prove the claim, we first establish a connection to the
SCS problem, limited to instances in which each sequence has
length 2 and each character appears in at most 3 sequences.
We will refer to this problem by SCS(2,3).

Generally, the SCS problem is defined as follows. Given
two sequences X = (x1, . . . , x`1) and Y = (y1, ..., y`2), a
sequence s = (u1, . . . , u`3) is a common supersequence of X
and Y if s is a supersequence of both X and Y : X and Y can
be derived from s by deleting some elements without changing
the order of the remaining elements. A shortest common
supersequence is a common supersequence of minimal length.
For example, for X = abcbdab and Y = bdcaba, s = abdcabdab
is the shortest supersequence. The SCS(2,3) problem variant
where each sequence has length two and each character
appears in at most 3 sequences was proven to be NP-hard
by Timkovskii [50].

In our reduction we want to encode sequences using only k =
3 policies, so that each policy will consist of sequentially
connected graphs, each representing one sequence. As we want
to optimize the number of touches, in the reduction, we can
focus on schedules where in each round only one node is
updated: while our model (and solution) is general in the sense
that it allows to update multiple nodes in the same round,
we can make this simplication for ease of presentation and
without loss of generality. To see this, recall that our goal is
to minimize the total number of touches, i.e., the sum over

all rounds. Accordingly, we aim to update as many policies
per node simultaneously as possible. However, we can easily
distribute the updates to different nodes over time, without
changing the total number of touches: if two nodes are updated
in the same round, we can update one node in a first round
and the second node in the next round without changing the
consistency properties and number of touches: whether there
are x touches in a 1-round schedule or 1 touch per round
over an x-round schedule does not change the total number of
touches.

As an example, and to show the relationship to super-
sequence problems, let us consider the policy presented on
Figure 4. In this instance, node w must be updated after node v:
otherwise it will violate loop-freedom. Thus, a valid schedule
is a supersequence of the sequence vw.

We will use this graph as a gadget representing sequences
in the reduction, that is, for each sequence vw, we will create
the graph in Figure 4 to force that v is updated before w. In
the policy, we will connect these gadgets sequentially in an
arbitrary order.

Because any node may appear at most once in each policy,
we need to partition sequences into 3 sets, such that no
character appears twice in one set. For some instances such a
partition does not exist, and we will need the following lemma.

Lemma 1. Let S be an instance of SCS(2,3) and let w =

ab be any sequence in S. Let x be a new character (i.e., no
sequence contains x) and let S′ = S ∖ {w} ∪ {ax, xb}. Then,
S has a supersequence of length k iff S′ has a supersequence
of length k + 1.

Proof: First, let us assume that s is a supersequence of S
of length k. Then, in s there is some character a, which is
before some character b (there may be many occurrences of a
and b, but there is at least one pair, such that a is before b).
We add x immediately after a, and hence, this new sequence
is a supersequence to all sequences in S and both ax and xb.

Now let us assume that s′ is a supersequence of S′ of
length `. We consider two cases:
● There is exactly one occurrence of x in s′. Then in s′

there is an a before this x and a b after it, so s′ is a
supersequence to w. Therefore, if we remove x from s′

we get a supersequence of S of length ` − 1.
● There are at least two occurrences of x in s′. Then, we

add a at the beginning of s′ and remove all occurences
of x. Such a sequence is a supersequence of ab, and in
consequence of S, and has length at most ` − 1.

We proceed to create the policies as follows. We will
consider sequences in arbitrary order. Let w = ab be any
sequence. Then, if there is a policy without a and b we create
a gadget for this sequence in this policy. Otherwise we create a
new character x and two new sequences ax and xb. According
to Lemma 1, after this change, we will be able to retrieve a
shortest supersequence for the original problem.

In this situation we need to find policies where we can
include the gadgets for ax and xb. We have created at most
two gadgets with letter a, because there are at most three
occurrences of a in total. Therefore there is at least one policy
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without a, and we create a gadget for ax in it. Similarly, there
is at least one policy without b, hence, we create a gadget
for xb in it. Since, there was no policy without both a and b
(as otherwise we would have created a gadget for ab in this
policy), there is no policy with two repetitions of x (since we
included the gadgets in two different policies). The length of
the schedule is equal to the number of touches, and hence, this
schedule is also a shortest supersequence.

v w

Fig. 4: Example configuration where node w must be updated
after node v to avoid loops. A valid schedule is a superse-
quence of the sequence vw.

B. Hardness for 2 Policies
We can strengthen our results further with a different re-

duction: we next provide a rigorous proof that the problem
is already NP-hard in n-node networks with k = 2 policies
which could be consistently updated in R = 2 rounds. The
remainder of this section is hence devoted to the proof of the
following theorem.

Theorem 2. Computing an optimal update schedule which
minimizes the number of touches is NP-hard for k = 2
policies. This holds even if each policy individually could be
updated consistently in R = 2 rounds.

1) Outline of Reduction: We prove the hardness by a reduc-
tion from Max-2SAT [28]. Recall that in Max-2SAT, the input
is a formula in conjunctive normal form with two literals per
clause, and the task is to determine the maximum number of
clauses that can be simultaneously satisfied by an assignment.
Unlike the decision problem 2SAT which is polynomial-time
solvable, Max-2SAT is NP-hard.

Let us first consider the problem of deciding whether the
policies can be updated in 3 rounds using only n touches
(so each node must be updated only once). An FB node
cannot be the last updated node (as it is symmetric to up-
dating a BF node in the first round, which violates loop-
freedom), so nodes FBFB, FBFF and FFFB cannot be
updated in the third round. They can always be updated in
first round and there is no benefit of updating them in the
second round (as they may be updated as first nodes during
the second round); hence, we can assume that they will be
updated in the first round. Similarly, we will assume that
nodes BFBF , BFFF and FFBF are always updated in
the third round. Because FB nodes cannot be updated in the
third round and BF nodes cannot be updated in the first round,
FBBF and BFFB nodes can only be updated in the second
round. Finally, nodes FFFF can be updated in any round,
but because, similarly as before, there is no benefit in updating
them in the second round, we will assume that they are updated
in the first or the third round. Note that we only consider
policies which are solvable within two rounds and hence, we

Round
1 2 3

FBFB FBBF BFBF
FBFF BFFB BFFF
FFFB FFBF
FFFF FFFF

TABLE II: Updateable nodes per round for a 3-round sched-
ule. FFFF nodes can be updated either in the first or in
the third round. No BB nodes are possible in policy updates
solvable within 2 rounds, and hence, we do not need to
consider them.

do not need to classify nodes of type BB. No 2-round solvable
policy update problem can include any BB nodes: such nodes
cannot be updated neither in the first nor in the last (second)
round.

Because we can always update FF and FB nodes in the
first round, and FF and BF nodes in the third round, so to
verify whether the schedule does not violate loop-freedom, it
is enough to check, whether FBBF and BFFB nodes can
be updated in the second round (that is that their update does
not violate loop-freedom). See Table II for an overview.

We will use this classification in our reduction. For each
variable, we will create an FFFF node, and its value in the
Max-2SAT formula will be decided based on whether the node
is updated in the first or the last round. For each clause, we
will create two nodes (one for each literal in the clause) and
each of them will be a BFFB node: they will always be
updated in the second round. In what follows we will use xi
to denote both a variable and node for this variable, and for
a clause Cj = l ∨ k we will use ylj and ykj to denote nodes
created for this variable.

Let us consider the (partial) graphs in Figure 5. Let us
assume that nodes v and w in both graphs are of type FFFF
and that the backward node in each graph is of type BFFB.
Then, in the graph on the top, v must be updated before the
backward edge (in the first round), and in the graph on the
bottom, w must be updated after the backward edge (in the
third round).

v

w

Fig. 5: Examples of FFFF nodes which must be updated in
either first or third round.

We will combine these two graphs to create a gadget
for each variable. Let us consider a variable xi, and two
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xi

yxi
j y¬xi

k

Fig. 6: Outline of a gadget for variables.

clauses: Cj , which contains the literal xi, and Ck, which
contains the literal ¬xi. Then, we will create a gadget as shown
in Figure 6. We will make xi an FFFF node, and both yxi

j

and y¬xi

k BFFB nodes. If we update the node for xi in the
first round, then we can update yxi

j , and if we update xi in
the third round, then we can update y¬xi

k .
For each variable, we will create such gadgets in both

policies, and the node corresponding to the variable will be
the same (physical switch) in both policies; therefore, either
it will be updated in the first round in both policies, or in the
third round.

We will use the version of Max-2SAT, in which each
variable occurs in at most three clauses. Therefore, we will
split the clauses, such that in a variable gadget in one policy
there will be two clauses, and in the other policy one clause.
Also, the nodes for each clause must be in different policies
(because of the clause gadget, which we will describe in
Section IV-B2). We will describe how to split clause nodes
into policies in Section IV-B7.

2) Clause gadget: Since in the Max-2SAT problem it is
enough that one literal in a clause is satisfied, we will need
to be able to update one of the clause nodes independently
of the variable nodes. To achieve this, we will use the gadget
presented in Figure 7, which will be a part of the variable
gadget. We will denote vertices created for clause Ci as d1i
and d2i . We will make them FFFF nodes, and hence, they
can be updated in either the first or the third round. If d1i gets
updated in the first round, then it enables the clause node in
the first policy to be updated, but then, even if d2i is updated, in
the second policy, the clause node has to be updated using the
variable gadget. Similarly if we update d2i in the first round,
and w in the third round, we can then update the clause node
in the second policy in the second round.

Because this gadget shares nodes between policies, clause
nodes must be in different policies.

3) Specifying node type: In order to introduce dependencies
leading to the combinatorial complexity of the update, we want
to assign certain types to the nodes in the gadget. For example,
we know that in order to preserve loop-freedom, backward
edges cannot be updated in the first round, and hence, first
forward edges need to take effect which break a loop: we
need forward nodes, when looking from the point of view of
the new policy (that is, we want to guarantee that its second
letter in the classification is F ). As an example, in Figure 8, v
is a backward node which we want to make a BF node. To
do this, we will add a new node just after v, which we will
denote as w, and create an edge from the end of the gadget
to w. Then, we will create a new node after the gadget and
create an edge from w to this new node. The construction

d2i

d1i

C

d1i

d2i

C

Fig. 7: Gadget for updating clauses in one of the policies.

is depicted in Figure 8. Node w is visited in the new policy
after the whole gadget has been visited (so also after v), and
therefore edge (v,w) is forward when looking from the point
of view of the new policy. Node w is now an FB node, so it
could possibly allow to update some BFFB nodes, if updated
in the first round, therefore we will make w a BF node in the
other policy to force it being updated in the second round.

v w

Fig. 8: Construction to make v a BF node.

4) Nodes of required type: For some nodes in one policy
there is a required type in the other policy (e.g. a clause node,
which has to serve as an FB node). To create such nodes
we will use the gadget shown in Figure 9. In this gadget v is
an FF node, w is a FB node and z is a BF node.

v w z

Fig. 9: Gadget for creating nodes of required type.

5) Complete gadget for variable: In Figure 10 we present
the gadget for variable xi, and its two clauses Cj , containing
literal xi, and Ck, containing literal ¬xi. In this gadget we
included gadgets for both clauses. The essential edges of the
gadget (presented in Figure 6) are drawn in loosely dashed
black, edges of clause gadgets are drawn in loosely dashed
grey, edges added to change the node type (described in
Section IV-B3) are drawn in densely dashed grey and the other
edges added to connect the graph are drawn in densely dashed
black. We will set the type of all densely dashed black and grey
edges to type BF in the other policy, so, unless 2 touches will
be used for them, they will be updated in the second or third
round, and therefore any update schedule must assume that
they will be updated after clause vertices.

6) Transforming a Max-2SAT formula: In this section we
will show how to transform a Max-2SAT formula, so that each
variable appears in at most three clauses. Let φ be a Max-2SAT
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d2
j d1

j xi

y
xi
j

d2
k

d1
k y

¬xi
k

Fig. 10: Complete gadget for a variable. The essential edges of the gadget (presented in Figure 6) are drawn in loosely dashed
black, edges of clause gadgets are drawn in loosely dashed grey, edges added to change the node type (described in Section IV-B3)
are drawn in densely dashed grey and the other edges added to connect the graph are drawn in densely dashed black.

formula with m clauses. Then for each variable x in φ, which
has px positive occurences and nx negative occurences, we
will create variables x1, x2, . . . , xpx , x1, x2, xnx . We will use
those variables to substitute occurences of x in φ (we will
substitute literal ¬x with variable xi, hence, we want xi to
be true iff x is false). For each i ∈ {1, . . . , px} we will create
variables ti1, t

i
2, . . . t

i
nx

. Similarly for each i ∈ {1, . . . , nx} we
will create variables t

i
1, t

i
2, . . . t

i
px

.
Now for each i ∈ {1, . . . , px} we will create clauses xi Ô⇒

ti1 Ô⇒ . . . Ô⇒ tipx
(p Ô⇒ q in 2SAT can be written

as ¬p ∨ q). We also create similar clauses for each xi. Then
for each i ∈ {1, . . . , px} and j ∈ {1, . . . , nx} we create a
clause ¬tij∨¬t

j
i . If all these clauses are satisfied, they guarantee

that for each i ∈ {1, . . . , px} and j ∈ {1, . . . , nx}, xi and xj
cannot be both true. However, note that these clauses do not
guarantee that all variables for x have the same value, that is,
there may be some i, j such that xi is true and xj is false.

For each variable in φ, we create px(2(px − 1) + nx) +
nx(2(nx−1)+px) variables; clearly, this reduction is polyno-
mial. We will denote the resulting formula by φ′ and we will
denote the number of clauses of φ′ by m′. Now to finish the
reduction we will prove the following theorem.

Lemma 2. There is an assignment satisfying m − k clauses
of φ if and only if there is an assignment satisfying m′ − k
clauses of φ′.

Proof: First, let us assume that there is an assignment that
satisfies m − k clauses of φ. Then, we will set xi = x, tij =

x, xi = 1−x and t
i
j = 1−x. Then, all new clauses added to φ′

are satisfied, so exactly k clauses are unsatisfied.
Now let us assume that there is an assignment that sat-

isfies m′ − k clauses of φ′. We will prove that there is an
assignment which satisfies at least m − k clauses of φ. For
each variable x let Px = {i ∈ {1, . . . , px} ∣ ∣xi = 1} and
Nx = {i ∈ {1, . . . , nx} ∣ ∣xi = 1}. Then we set x to be 1,
if ∣Px∣ > ∣Nx∣, and to 0 otherwise (thus we choose the value
of x based on the majority voting of variables xi and xi).

Obviously in such an assignment of variables in φ there may
be some clauses which are satisfied in φ′, but not in φ. Let Sx

be Nx, if ∣Px∣ > ∣Nx∣, and Px otherwise (so Sx is the set of
those literals of x, which were true in φ′, but are false in φ) and

let Qx be Px ∪Nx ∖ Sx. Let us assume w.l.o.g. that Qx = Px

and Sx = Nx. Each of the literals in Sx appears in exactly one
clause of φ, so there are at most ∣Sx∣ clauses in φ which were
satisfied by literals in Sx in φ′. But for each xj in Sx and xi
in Qx there is a clause ¬tij ∨ ¬t

j
i . Therefore there are three

possibilities:
1) Some implication in xi Ô⇒ ti1 Ô⇒ . . . Ô⇒ tij is

unsatisfied.
2) Some implication in xj Ô⇒ t

j
1 Ô⇒ . . . Ô⇒ t

j
i is

unsatisfied.
3) Clause ¬tij ∨ ¬t

j
i is unsatisfied.

If for all literals in Qx, Case 1 holds, then there are ∣Qx∣ >

∣Sx∣ unsatisfied clauses. Similarly if Case 2 holds for all literals
in Sx, then there are ∣Sx∣ unsatisfied clauses. Otherwise let l =
max{j ∣ xj ∈ Sx}. Then let xi ∈ Qi be such that xi = til . Let k
be number of literals in S(x) for which Case 2 holds. Then
for other ∣S(x)∣−k literals in S(x) and xi, Case 3 must hold.
Therefore there are at least k + ∣S(x)∣ − k = ∣S(x)∣ unsatisfied
clauses.

None of these clauses is in φ and the sets of these clauses
for different variables are disjoint, and hence, there are at
least ∑x ∣S(x)∣ clauses which are unsatisfied in φ′, but do not
appear in φ. On the other hand by assigning the value of x
based on majority voting we unsatisfy at most S(x) clauses,
so in total there are at most ∑x ∣S(x)∣ clauses which are
unsatisfied in φ, but are satisfied in φ′. Therefore the number
of unsatisfied clauses in φ is at most k.

7) Splitting clauses into policies: Recall that for each vari-
able in one gadget there may be at most two clause nodes, one
containing the positive literal and one containing the negative
literal. Also nodes for a clause must be in different policies, so
that we are able to construct the clause gadget. In this section
we will show how to split nodes for clauses into two policies
to satisfy those requirements.

We will assume that the Max-2SAT formula was created
using the reduction described in Section IV-B6. To split the
clauses we consider the variables of φ in any order. Then,
each variable xi is in two clauses, once as a positive literal in
the clause from φ, which we may be forced to put in one of
the policies, if the other variable from this clause has already
been processed. The other occurence is as a negative literal in
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implication x Ô⇒ ti1, which we put in any of the policies.
Then each tij appears in 3 clauses (except for j = px). As a
positive literal it appears only in the implication tij−1 Ô⇒ tij ,
which we assign to the other policy than tij . As a negative
literal, it appears in the clause ¬tij ∨ t

l
k, for some l, k; if tlk has

already been processed, we may be forced to put it in one of
the policies, and then to the other policy to which we assign
clause tij Ô⇒ tij+1: this is always possible, as tij+1 has not
been processed yet.

8) Proof of reduction: We will start by proving that if the
multiple policies instance can be updated using n + k touches
then at least m − k clauses of the Max-2SAT formula can be
satisfied. In what follows variable gadget nodes will be all
nodes in the gadget except for those that are in the clause
gadget (in terms of Figure 10 these are all nodes except those
with an outgoing loosely dashed grey edge). Then let X1 be
the set of those variables, such that all nodes in their variable
gadgets are updated using one touch. Also, let X2 be the set
of those variables for which there is a node in their variable
gadgets which were updated twice. Also let D be the set of
those clauses, such that there is some node in their gadgets,
which used two touches. Because clause gadget nodes and
variable gadget nodes are disjoint, ∣D∣ + ∣X2∣ ≤ k.

Then, we set each variable in X1 to be 1, if its node is
updated in the first round, or to 0, if its node is updated in
the third round. Each variable x in X2 appears in at most 3
clauses, therefore we can choose the assignment which does
not satisfy at most one of these clauses. In such an assignment
a clause C can be unsatisfied if:

1) C ∈D
2) One of the nodes of C was updated using the clause

gadget, and the other using an extra touch in some
variable gadget.

Now suppose that there is an unsatisfied clause C for which
none of those cases hold. Then, both variables of C are in X1.
One of the nodes of C can be updated in the second round
using the clause gadget. Then the other node, as we have seen
in Section IV-B2, cannot be updated using the clause gadget.
And because of our case assumption, it can also not be updated
using a variable node. Since all of the other edges are updated
in the same or a later round, such an update schedule would
violate loop-freedom.

Therefore in the Max-2SAT formula, there are at most ∣D∣

clauses for Case 1 and ∣X2∣ clauses for Case 2, so together
there are at most ∣D∣ + ∣X2∣ ≤ k unsatisfied clauses.

Now we will prove that if m − k clauses of the Max-2SAT
formula can be satisfied, then there exists a schedule that
uses n + k touches. For each variable we will update its node
in the first round, if it is set to 1, or in the third round, if
it set to 0. For each clause we will update one of its clause
gadget nodes, which will allow us to update a clause node
corresponding to the false literal (in case of satisfied clauses
there is at most one such node, and in case of unsatisfied
clauses we arbitrarily choose one of two nodes). Then, both
nodes of the satisfied clauses and one node of the unsatisfied
clauses can be updated in the second round. The nodes of
the unsatisfied clauses, which cannot be updated in the second

round, will be updated in the third round; we will need two
touches to achieve this. The remaining nodes will be updated
according to their type, using one touch.

All nodes of type FBBF in the variable gadget can be
updated in the second round, as the packets that traverse them
would be forwarded to the end of the variable gadget, and all
the other nodes can always be updated in the first or third
round respectively; therefore,the schedule is correct. Since we
use extra touches only for unsatisfied clauses (one extra touch
for each clause), we have n + k touches in our schedule.

V. COMPOSING INDIVIDUAL SCHEDULES

Most prior work on the network update problem, not only for
loop-freedom [31] but also for other transient properties such
as blackhole freedom [34], focused on the consistent update
of individual flows. In this section, we show how to efficiently
merge (or compose) correct update schedules of individual
flows, into a global schedule with minimal touches. Concretely,
the algorithm presented in the following, can serve as a generic
post-processor, combining the outputs of the existing single-
flow scheduling algorithms into an optimal global schedule for
multiple flows, while preserving any per-policy consistency
criterion (beyond loop-freedom, e.g., blackhole freedom or
waypoint enforcement).

The algorithm comes with two requirements: first, for our
algorithm to work, the different flows need to be independent
and should not interfere, e.g., on resources such as bandwidth.
Second, in order for our algorithm to complete in polynomial
time, the number of policies must be fixed (i.e., constant). We
will show later in this section that for non-constant number of
policies, the schedule composition problem becomes compu-
tationally hard.

A. Efficient Algorithm for a Fixed Number of Flows
Let us first assume that we are given the order of to be

updated nodes in their respective policies, and without loss of
generality, only one node is updated per round (but ideally
multiple policies on this node). As discussed above, updating
multiple nodes in the same round does not help reduce the
number of touches. Therefore we will assume that in the joint
schedule also only one node is updated in each round.

Our goal is to construct a joint schedule that minimizes
the number of touches without any constraints on number of
rounds. For instance, a simple way to compute these individual
correct update schedules in case of loop-freedom, is to update
switches one by one, from the destination to the source. This
creates a total order of the switches and guarantees loop-
freedom.

The problem of how to optimally merge correct schedules
is a special case of shortest common supersequence problem.
Here, each node corresponds to a letter in the alphabet, and
each policy order corresponds to an input sequence. Then
the requirement that in the joint schedule there is an update
of node v before an update of node u, is equivalent to the
requirement that in supersequence w there is an occurence
of character v before some occurence of character u. In
comparison to the general SCS problem, in our problem, in
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each policy order, each node appears at most once: in the SCS
input sequences each character is unique.

SCS is known to have a polynomial time algorithm if the
number of input sequences is constant, and to be NP-hard
if the number of input sequences is not constant [35, 50].
Jiang and Li proved that unless P = NP , SCS cannot be
approximated with a constant factor, and provided an algo-
rithm that on average returns a common supersequence of
length OPT + O(OPT 0.707) [22]. In the remainder of this
section we will present the polynomial time algorithm for SCS
with a constant number of input sequences and a proof of NP-
hardness of our problem.

The algorithm for solving SCS is dynamic. The idea
of the algorithm is to compute the shortest common su-
persequence for all prefixes of input sequences. Let T be
the m-dimensional matrix, one dimension per policy, and
where each dimension lists different prefix lengths. The
matrix stores the lengths of the shortest common superse-
quences of prefixes, i.e., T [v1, v2, . . . , vm] stores the length
of the shortest common supersequence of v1, v2, . . . , vm,
where each vi is a prefix of wi. For two sets of se-
quences A = {v1, . . . , vm} and B = {u1, . . . , uk}, we will
also use T [A] to denote T [v1, . . . , vm] and T [A,B] to de-
note T [v1, . . . , vm, u1, . . . , uk]. Let Sc(v1, . . . , vm) be a set
of those sequences from v1, . . . , vm that end with character c
and let Qc(v1, . . . , vm) be a set of those sequences that end
with a character other than c. For a sequence v, let v[−1]
denote its last element, let ṽ be v without its last element, and
let S̃ = {ṽ ∣ v ∈ S}.

To compute the shortest common supersequence
of v1, . . . , vm, we have to decide on the last letter in
the supersequence. Possible candidates are the last letters
of any v1, . . . , vm, hence, for each of them we compute
the set of sequences that end with the same letter and
remove it. All the other sequences remain the same.
Therefore the formula to compute the length of the shortest
common supersequence is as follows: T [v1, . . . , vm] =

1+mini∈{1,...,m} T [S̃vi[−1](v1, . . . , vm), Qvi[−1](v1, . . . , vm)]

Each sequence has a length of at most n, so we have to
compute nm values in the array and to compute each of
them, we need O(m) time. Therefore the space complexity
is O(nm) and the time complexity is O(mnm), which, as
long as number of sequences (i.e., policies) is constant, is
polynomial.

To clarify the algorithm, we provide a simple example on
its procedure. Assume v1 = ab, v2 = bc. Obviously the shortest
common supersequence is abc and has length 3.

T [ab, bc] = 1 +min{
T [S̃b,Qb] = T [a, bc]

T [S̃c,Qc] = T [b, ab]
(1)

T [b, ab] = 1 +min{
T [S̃b,Qb] = T [a]

T [S̃b,Qb] = T [a]
(2)

T [a] = 1 (3)

In Eq. (1), we look for the minimum value of remaining vs
after fixing the last character (b and c). We omit the details for
T [a, bc] (fixing b) which has a length of 4, and only show the

path to the minimum solution. In Eq. (2) both sequences end
with b, hence we do only have one character remaining. This
leads to the correct solution of abc with length 3.

In summary:

Theorem 3. A fixed number of feasible individual update
schedules can be merged optimally, minimizing the number
of touches, in polynomial time.

To achieve a global order (as an input to our algorithm),
we could for example define a canonic order on the nodes
updated in the same round. As a heuristic, one could also
generate a small number of random (but correct) schedules,
and test with our algorithm, which one provides the overall best
performance, before issuing the update requests to the nodes.
Moreover, in order to minimize the number of rounds, the
result of the optimal algorithm can in turn be post-processed by
greedily grouping individual switch updates into rounds. Note
that this however is only a heuristic: minimizing the number
of rounds is NP-hard even for a given number of touches [31].

B. NP-Hardness for Many Policies
While the merging scheme is interesting, we can only

achieve a polynomial runtime for a constant number of poli-
cies: the computational tractability does not extend to scenarios
with arbitrarily many policies, even in settings where one
node is updated per round. We will adapt the proof by
Timkovskii [50] and present a polynomial-time reduction from
the Directed Feedback Vertex Set Problem (DFVS). The DFVS
problem is defined over a directed graph G = (V,E), and
asks for a minimum size set of vertices whose removal leaves
a graph without cycles: each feedback vertex set contains at
least one vertex of any cycle in the graph. In a nutshell, the
idea of the reduction is the following: Given the input graph
G = (V,E) to DFVS, for each edge (u, v), we create a policy
enforcing an order u ≺ v, i.e., ∣E∣ policies in total. We will
show that the nodes in a feedback set need to be touched twice,
to guarantee that any order of nodes u, v can be updated.
Any nodes not in the feedback set can be ordered, since they
will not form a loop, and thus, updated one by one with a
single touch. Minimizing the cardinality of the feedback set
will therefore minimize the number of touches.

Theorem 4. The problem of finding a consistent update
schedule minimizing the number of touches is NP-hard in
general.

Proof: Given the DFVS graph G = (V,E), we create for
each edge e = (u, v) ∈ E a policy enforcing an order u ≺ v,
and prove the following: There is a directed feedback vertex
set in G of size k, if and only if there is a joint schedule for
a network update instance using ∣V ∣ + k touches: each node
in the feedback set needs to be touched exactly twice, and all
other nodes once.

Firstly let us assume that there is a directed feedback vertex
set S of size k in G. Given the directed and loop-free resulting
graph, the vertices in V ∖S can be ordered topologically. Let
us consider a schedule σ in which we first update nodes in S,
then those in V ∖S in the topological order, and finally those
in S again. Obviously σ has length ∣V ∣ + k.
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We claim that σ is a correct solution for the network update
problem. Having created one policy for each edge (u, v), we
need to show that for each edge there is a corresponding
subsequence u ≺ v in the correct schedule. There are 3 sub-
cases:

1) If u, v ∈ S then u is updated the first time when nodes
in S are updated, and v when nodes in S are updated
for the second time. They cannot be updated both in
the first round, since we created a policy which forces
an order u ≺ v.

2) One of u, v is in S, and the other one in V ∖S. If u is
in S, then it is updated when nodes in S are updated
for the first time, and therefore it is updated before v.
If v is in S, then it is updated when nodes in S are
updated for the second time, and therefore it is updated
after u.

3) If u, v ∈ V ∖S, then u is updated before v, because we
ordered the vertices of V ∖ S topologically.

This proves that we created a correct joint schedule. Now
let σ be a joint schedule for a network update problem
that uses ∣V ∣ + k touches. Then, let S be the set of those
nodes, which are updated at least twice. As each node has
to be updated at least once, the size of S is at most k. We
claim that S is a directed feedback vertex set of G. For the
sake of contradiction, let us assume that S is not a directed
feedback vertex set of G. Then there is a cycle (v1, v2, . . . , v`)
in G∖S. For each i ∈ {1, . . . , `− 1}, we created a policy with
order vi, vi+1. In σ each of them appears only once (since every
node which is touched more than once, is part of S), therefore,
by transitivity, v1 must be updated before v`. But in G there
is an edge (v`, v1) (since there is a cycle), so in σ, vk must
be updated before v1. Therefore σ is not a correct schedule.

VI. RELATED WORK

The problem of updating [7, 29, 32, 34, 47, 54], synthe-
sizing [19] and checking [43] SDN policies [40] as well as
routes [33] has been studied intensively already. What is more,
route update problems of course predate SDN, and we refer
the reader to a recent survey by Foerster et al. [11] for an
overview of research on update problems in both SDN and
non-SDN contexts.

In their seminal work, Reitblatt et al. [47] initiated the study
of network updates providing strong, per-packet consistency
guarantees, and the authors also presented a 2-phase commit
protocol. This protocol also forms the basis of the distributed
control plane implementation in [7]. Per-packet consistency
is a relatively strong requirement that fulfills many other
properties (including loop-freedom), but it comes at the cost of
requiring a two-phase update mechanism that incurs substantial
delay between the two phases and doubles flow entries tem-
porarily [53]. Mahajan and Wattenhofer [34] started investigat-
ing a hierarchy of weaker transient consistency properties, also
introducing node-reordering algorithms for loop-freedom, for a
single policy update. In their paper, Mahajan and Wattenhofer
proposed an algorithm to “greedily” select a maximum number
of edges which can be used early during the policy installation

process. This study was recently refined in [2, 12, 13], where
several hardness results and approximation algorithms are
presented; these papers however focus on the objective of
maximizing the number of simultaneous updates. There also
exist first results on consistent update schedules minimizing
the number of update rounds [3, 8, 24, 31, 52, 55]. The mea-
surement studies in [27] and [54] provide empirical evidence
for the non-negligible time and high variance of node updates,
motivating their and our work.

Our work builds upon [34], in the sense that we extend
the study of loop-free network updates to multiple concurrent
policy updates. The goal of minimizing the number of switch
interactions renders the underlying algorithmic problem differ-
ent in nature. To the best of our knowledge, we are the first
to consider this extension.

More recently, researchers have also started investigating
consistent updates for networks which include middleboxes
and network functions [18]. Ludwig et al. [30] presented
update protocols which maintain security critical properties
such as waypointing, via a firewall, in a transiently consistent
manner. Ghorbani and Godfrey [15] argue that in the context of
network function virtualization, stronger consistency properties
are required, and Zhou et al. [53] presented a general approach
to enforce customizable consistency properties in SDNs.

Finally, we note that from a technical perspective, our work
is also related to Middendorfs “supersequence runs” [38]:
However, if in each input sequence each letter from the
alphabet appears at most once (and that is the only case we
are interested in this paper), the minimal run supersesequence
is equivalent to shortest common supersequence, and hence
the model does not provide us with additional insights. Also
the polynomial-time algorithms presented in [38] for scenarios
where the alphabet size is 2, does not have relevant implica-
tions for our work as it would concern networks of size two.
Bibliographic Note. An early version of this paper was
presented at the IFIP DSN 2016 conference [10].

VII. CONCLUSION

Over the last years, even tech-savvy companies such as
GitHub, Amazon, GoDaddy, etc. have reported major issues
with their network, due to misconfigurations and including
loops [16, 20, 39, 51]. Given the increasing importance com-
puter networks play today, this is worrying.

While software-defined networking promises a formally ver-
ifiable network operation, the paradigm still poses fundamental
challenges. In particular, correctly operating a network from a
logically centralized perspective is non-trivial, because of the
asynchronous and unreliable communication between switches
and controller. With the advent of more adaptive SDNs, where
routes can be changed more frequently and flexibly [11], as
we have shown in this paper, it becomes algorithmically chal-
lenging to operate networks and dynamically change routes
in a consistent and efficient manner. As these networks are
currently moving into production (in data centers, but also in
the wide-area Internet), this is problematic.

We understand our paper as a first step toward more efficient
yet consistent multi-policy SDN updates, and believe that our
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work opens many interesting questions for future research. In
particular, further work is required to fully chart the compu-
tational complexity landscape of loop-free network updates.
More generally, it will be interesting to extend our work toward
more sophisticated dependability properties, such as blackhole
freedom or waypoint enforcement. Finally, it will be interesting
to study approximation algorithms: do there exist fast schedul-
ing algorithms which guarantee an “almost optimal” number
of touches? Especially in large networks where there can be
many switches along a path and where multiple policies need
to be updated simultaneously, our hardness result may inhibit
fast exact solutions.
Acknowledgments. We thank Anja Feldmann for useful in-
puts. This research was partly supported by the Danish Villum
foundation project ReNet.
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