
1

Unified Programmability of Virtualized
Network Functions and Software-Defined Wireless Networks

Julius Schulz-Zander1, Carlos Mayer2, Bogdan Ciobotaru2, Stefan Schmid3, Anja Feldmann2,
1Fraunhofer HHI, Einsteinufer 37, 10587 Berlin, Germany

2TU Berlin, Marchstr. 23, 10587 Berlin, Germany
3Aalborg University, Selma Lagerlofs Vej 300, 9220 Aalborg, Denmark

The quickly growing demand for wireless networks and the
numerous application-specific requirements stand in stark con-
trast to today’s inflexible management and operation of wireless
networks. While most research focuses on mobile networks, WiFi
is often left out of the purview.

In this paper, we present and evaluate OPENSDWN, a
novel WiFi architecture based on a joint SDN and NFV ap-
proach. OPENSDWN exploits virtualizaton across the wired
and wireless network and introduces datapath programmability
to enable service differentiation and fine-grained transmission
control, facilitating the prioritization of critical applications.
OPENSDWN implements per-client virtual access points and per-
client virtual middleboxes, to render network functions more
flexible and support mobility and seamless migration. Moreover,
OPENSDWN also increases the security of upcoming WiFi
HotSpot architectures by following a functional split approach.
Finally, OPENSDWN can also be used to out-source the control
over the home network to a participatory interface or to an
Internet Service Provider.

Index Terms—Software-defined networks, network function
virtualization, middleboxes, WiFi, IEEE 802.11 wireless networks
and cellular networks, virtual networks, access networks, home
networks, enterprise networks and campus networks

I. INTRODUCTION

The popularity of WiFi networks is increasing at a fast
pace, with more and more mobile end-devices becoming
WiFi enabled. Today, many hotels and cafés—and sometimes
also entire cities—offer free WiFi services. Several mobile
operators also plan massive WiFi HotSpot as well as HotSpot
2.0 deployments for traffic offloading from cellular and future
Internet-of-Things networks [1], [2].

The increasing demand for WiFi networks imposes new
requirements, e.g., on security, optimized medium utilization,
and mobility support. The (last) wireless hop is often critical
for network performance, as it can contribute a non-negligible
delay and may constitute a bandwidth bottleneck.

These requirements stand in stark contrast to the state-
of-the-art: The management and operation of off-the-shelf
WiFi networks is often very inflexible, and today’s networks
largely ignore the specific needs of users and/or applications.
Moreover, WiFi networks are often deployed in an unplanned
and uncoordinated manner: different parties in a house or
neighborhood typically deploy and run their own dedicated
infrastructure; neighboring access points as well as public ac-
cess points cannot be leveraged—but rather interfere with each

other, introducing unnecessary transmission delays, and reduc-
ing network capacity. Mobility support is often very limited,
depriving users from essential services. Some deployments
(e.g., public WiFi hotspots) in untrusted environments also
come with security issues such as eavesdropping, requiring
new and more flexible deployments.

Software-Defined Networking is an interesting new
paradigm which allows overcoming network ossification by
introducing programmability. In a nutshell, Software-Defined
Networks (SDNs) consolidate and outsource the control over
a set of network devices to a logically centralized software
controller. The decoupling of the data plane and control plane
allows the control plane to evolve independently of the data
plane, enabling faster innovations. Moreover, OpenFlow, the
standard SDN protocol today, introduces interesting general-
izations. Openflow is based on a match-action paradigm, where
switches can match not only the Layer-2 header fields of pack-
ets, but also Layer-3 and Layer-4 fields. These flexibilities can
be used, e.g., to implement fine-grained traffic engineering [3],
enforce complex network policies [4], [5], improve resource
utilization in wide-area networks [6], [7], or enable network
virtualization in datacenters [8].

SDN is also an enabler for a second paradigm shift in
the Internet: Network Functions Virtualization (NFV). Modern
networks include many middleboxes to provide a wide range
of network functions (NFs) to improve performance as well as
security. For example, middleboxes are used for caching and
load-balancing, as well as for intrusion detection. NFV aims
to virtualize these network functions, and replace dedicated
network function hardware with software applications running
on generic compute resources. The resulting orchestration
flexibilities can be exploited for a faster and cheaper service
deployment. SDN can be exploited to steer flows through
the appropriate network functions [9], [10], [11], [5]. Thus,
SDN and NFV together, recently also called SDNv2 in the
context of carrier WAN networks, support fine grained service
level agreements, as well as an accurate monitoring and
manipulation of network traffic.

In this paper, we argue that there is a major potential
of introducing programmability and virtualization in wire-
less networks, i.e., following a Software-Defined Wireless
Networking (SDWN) approach. Wireless networks are very
different from wired networks—the domain where SDN/NFV
has been studied most intensively so far. In wireless networks,
communication happens over a shared medium whose charac-

2

SDN NFV SDWN

Home

Enterprise

OpenSDWN Control Plane

Figure 1: OPENSDWN introduces programmability in home and
enterprise WiFi networks using an SDN and NFV approach.

teristics can change quickly over time and in an unpredictable
manner, as users are often mobile and associations dynamic.
WiFi networks offer several unique knobs to influence the
probability of successful transmissions, such as transmission
rate and power, as well as retry chains. This introduces oppor-
tunities for a fine-grained and application specific transmission
control, e.g., for service differentiation.

Today’s OpenFlow protocol is not well suited for WiFi: it is
mainly restricted to programming flow table rules on Ethernet-
based switches, and it is not possible to match on wireless
frames, nor can measurements of the wireless medium be
accommodated or per-frame receiver side statistics reported; it
is also not possible to set per-frame or per-flow transmission
settings for the WiFi datapath. In general, SDN+NFV have not
received as much attention yet in the context of wireless

A. Our Contribution

This paper shows how to reap the benefits of SDN and
NFV in home and enterprise WiFi networks. In particular,
we present the design, implementation, and evaluation of
OPENSDWN, a flexible WiFi architecture based on a uni-
fied, programmable control plane as illustrated in Figure 1.
OPENSDWN allows to manage both the virtualized middle-
boxes as well as the wired and wireless datapath, e.g., to
apply per-flow PHY and MAC layer transmission settings. In
particular, OPENSDWN brings typical enterprise features to
off-the-shelf WiFi APs and like most of today’s state-of-the-art
enterprise systems also works in congested environments, i.e.,
it introduces typical enterprise features such as band steering,
client-based load-balancing, infrastructure-driven handovers,
and prioritization of traffic to cheap off-the-shelf WiFi APs
which are typically found in the user’s premises. However,
OPENSDWN only brings the following benefits to WiFi APs
which are under its control.

OPENSDWN comes with interesting use cases: (1) It
enables service differentiation, and allows administrators or
users to specify application and flow priorities on their wired
and wireless network. These priorities are implemented us-
ing a fine-grained wireless transmission control. (2) Using
its per-client virtual access points and virtual middleboxes,
OPENSDWN supports seamless user mobility, as well as
flexible function allocation (e.g., function collocation at night

LVAP
WDTX

vMB

OpenSDWN

Participatory
Figure 2: OPENSDWN builds upon the four building blocks: a
fine-grained WiFi datapath programmability (WDTX) module, a
abstraction for virtualized middleboxes (vMB), a light virtual access
points (LVAPs) abstraction, and a participatory interface.

to save energy). (3) OPENSDWN enables deploying secure
and efficient WiFi hotspot services via virtual access points
hosted in the Cloud, where all user traffic is en/decrypted.
By splitting the control and the data plane related traffic,
overheads can be minimized. (4) Network functions such as
firewalls and NATs can be deployed flexibly, e.g., outside user
premises. (5) OPENSDWN introduces flexibilities in terms of
network control: the system exposes a participatory interface
à la [12], which allows users to indicate application specific
priorities. The control can also be outsourced to an Internet
Service Provider (ISP), e.g., for troubleshooting.

OPENSDWN builds upon four building blocks (see Fig-
ure 2): (1) The Light Virtual Access Point (LVAP) [13] ab-
straction that allows us to address the specific requirements of
WiFi networks, whilst allowing for unified management of the
wired and wireless portions of the network. (2) WiFi datapath
programmability, e.g., for fine-grained wireless datapath trans-
mission control (WDTX): settings include transmission power,
transmission rate as well as tailored retry chains. (3) A unified
SDN and NFV abstraction through virtualized middleboxes
(vMB) and access points, e.g., to facilitate an easy handling
and migration of per-client state. (4) A participatory interface
which allows to share network control.

Indeed, middleboxes are an integral part of OPENSDWN.
First, to abstract and decouple user-specific state,
OPENSDWN introduces the notion of per-client virtual
middleboxes (MBs). Second, to identify and classify flows,
and hence enable service-differentiation, OPENSDWN relies
on a Bro Intrusion Detection System (IDS) [14]. Once flows
have been detected, per-flow transmission rules are installed
according to specific requirements such as policies specified
by the users. Bro may also be used to tag packets, e.g., for
a live streaming application where key frames should be
transmitted in a prioritized way, as these frames are more
critical for service quality.

We demonstrate the feasibility and usefulness of our sys-
tem by reporting on different case studies and experiments
conducted using two deployments: one at our university and
one in a large home network.

B. Paper Organization

The remainder of this paper is organized as follows.
Section II gives an overview of the goals and benefits
of OPENSDWN. Section III presents the architecture of
OPENSDWN, and Section IV reports on our deployments
and experiments. Section V discusses the prototype imple-
mentation. After reviewing related literature in Section VI, we
conclude our work in Section VII.

3

HotSpot

Add
 C

lie
nt

 S
tat

e

Controller
Add LVAP

802.11 M
gm

t.

802.11 Data

Add Keys

(a) Secure scalable HotSpots:
LVAPs can be placed into the Cloud
and allows separation of encrypted
management as well as data traffic
through separate programmable
network equipment.

vMB
vMB Clone

Migrate

Controller
Middlebox

C
lie

nt
 M

ob
ilit

y

vMB

LVAP  
Migration

Client’s LVAP

(b) Mobility support: Virtual mid-
dleboxes (e.g., encapsulating firewall
connection state) can be migrated in
the presence of mobility and cloned
for redundancy.

Set Match Rule

Traffic  
Manager

Set Wireless  

Transmission Rule
Controller

(c) Transmission control: The con-
troller sets specific wireless transmis-
sion and OpenFlow rules for per-flow
wireless transmission control.

DPI 
Middlebox

Service N
otification

Participatory  
Interface

Controller

Service Notification

(d) Participatory interface: A partic-
ipatory application provides an inter-
face to the user. Service detection is
achieved through DPI.

Figure 3: Three basic operations supported by OPENSDWN.

II. USE CASES AND OVERVIEW

OPENSDWN is based on programmable network devices
in the spirit of SDN and NFV. Before we give an overview of
the architecture, we discuss some use cases for the envisioned
system. See also Figure 3 for some illustrations.

A. Use Cases

1) Service differentiation: OPENSDWN offers visibility
into the network’s state and supports a fine-grained
transmission control, by allowing administrators and
users to set per-flow and per-packet specific transmission
settings (such as transmission rate and power, frame
retransmissions, and flow control, i.e., by leveraging
Request and Clear to Send (RTS/CTS)). For instance, as
we will demonstrate, OPENSDWN can protect latency-
sensitive flows (e.g., live media streams) from competing
with background traffic (e.g., Dropbox synchronization).
OPENSDWN allows to prioritize traffic belonging to
a particular service such as Spotify or Netflix at the
wireless access. Today, however, decisions are usually
made on a traffic class (e.g., based on the ToS or DSCP
field) and thus, for all packets belonging to that class.
This provides only coarse-grained traffic prioritization.

2) Mobility and migration: By virtualizing not only the
per-client access points, but also the middleboxes,
OPENSDWN supports both seamless user mobility and
dynamic resource allocation. This enabled a more dy-
namic resource management which allows the adjust-
ment and migration of resources and functionality with
the user, e.g., for flexibly scaling up or down resources
depending on the demand. By collocating network func-
tions, e.g., at night, also energy may be saved.

3) Secure virtual WiFi AP: Public WiFi hotspots are often
deployed in untrusted environment which raises security
concerns with regards to eavesdropping. OPENSDWN
enables deploying WiFi hotspot services via virtual
access points hosted in the Cloud, where all user traffic
is en/decrypted. This prevents eavesdropping attacks
on a client’s traffic, since all encrypted IEEE 802.11
traffic is forwarded to the Cloud. Moreover, to minimize
overheads, OPENSDWN allows to split control and the
data plane related traffic, i.e., all data traffic is handled
independently of the management traffic. For instance,

the data traffic is decrypted in the datapath by specific
network devices or middleboxes, e.g., an ISP could
deploy the decryption key in a BRAS or DSLAM.
Alternatively, in the case of Fibre To The Building, the
key could be deployed in an aggregation box in the
basement of a building.

4) Flexible deployment:: Network functions (firewalls,
NATs, functionality for service differentiation) can be
allocated and deployed flexibly. For instance, the dif-
ferent users of a house may use a shared box, outside
their individual user premises, to run a middlebox or
controller . The specific deployment requirements will
depend on the scenario (fiber-to-the-home, endpoints of
encryption tunnels, etc.).

5) Flexible control and participatory networking:
OPENSDWN provides unified programmability and
control over the network devices and middleboxes.
It also offers customization flexibilities through a
participatory interface à la [12]: the interface can be
used by the users to specify priorities over different
applications (e.g., Youtube over Dropbox), and the
control may also be handed over to an Internet
Service Provider (ISP) for troubleshooting, for defining
requirements, and updating transmission rules. A local
controller can also maintain connectivity between users
in a neighborhood when Internet uplink failures occur.

B. Overview
OPENSDWN is based on an SDN+NFV (a.k.a. SDNv2)
approach and consists of the following components:

1) Unified Programmability and Abstractions: The
logically centralized control plane unifies SDN and
NFV through programmatic abstractions. That is,
OPENSDWN virtualizes both access points and virtu-
alized middleboxes (see Figure 3(b)), which facilitates
an easy handling and migration of per-client state, also
beyond CPE boundaries. The former is realized through
our LVAP abstraction, which is a virtualized per-client
AP which simplifies the handling of client associations,
authentication, handovers, and unified slicing of both the
wired and wireless portions of the network. Specifically,
the LVAP concept abstracts the complexities of the IEEE
802.11 protocol stack (e.g., client associations, authen-
tication, and handovers) and encapsulates the client’s

4

Openflow state to achieve network slicing and client mo-
bility. Moreover, OPENSDWN additionally introduces
per-client virtual middleboxes, short vMBs, which can
be transferred seamlessly across the network. Specif-
ically, a vMB encapsulates the client’s MB state as a
virtual MB object. Thus, OPENSDWN achieves control
logic isolation as SDN/NFV applications running on top
the controller can only operate on their respective LVAPs
and vMBs. OPENSDWN, as shown in Figure 3(a), also
enables to outsource the en/decryption of the 802.11
traffic to separate network equipment and middleboxes.

2) Programmable Datapath: The programmable datapath
gives the possibility to set per-flow specific transmission
settings as shown in Figure 3(c). The settings include
transmission power, transmission rate as well as tailored
retry chains. It is even possible to differentiate between
different packets of the same flow (5-tuple): e.g., giving
key frames of a live stream a higher priority. This is
achieved by using an Intrusion Detection System (IDS,
in our case: Bro) for packet classification and tagging:
transmission settings are chosen depending on the tag.

3) Participatory Interface: OPENSDWN’s participatory
interface allows us to define flow priorities as well
as priorities over customers. The chosen priorities are
translated by the controller into meaningful network
policies. Priorities can be adjusted anytime. Figure 3(d)
depicts the participatory interface.

III. THE OPENSDWN SYSTEM

We first describe the wireless SDN component of
OPENSDWN, then the virtual middlebox, and finally the
participatory interface.

A. Wireless SDN

WiFi networks have several unique properties which do
not exist in wired networks. For instance, WiFi networks
offer several knobs to influence the probability of successful
transmissions, such as transmission power or rate. This intro-
duces opportunities for a fine-grained and application specific
transmission control.

The wireless subcomponent of OPENSDWN inherits
from [13]: (1) The Light Virtual Access Point (LVAP) ab-
straction: essentially the client’s association state (the BSSID,
SSIDs, client IP address, and OpenFlow rules). (2) Mobility
support: by migrating a client’s LVAP between physical APs,
the infrastructure can control the client’s attachment point to
the network, without triggering a re-association at the client.
(3) Slicing: the accommodation of multiple logical networks
on top of the same physical infrastructure with different
policies and control applications. A network slice is a virtual
network with a specific set of SSIDs, where for example,
the traffic may be VLAN tagged or directed to a specific
destination port.

OPENSDWN introduces service differentiation through per-
flow WiFi datapath transmission rules, organized into per-
flow transmission rule tables. Rules are bound to one or
more OpenFlow rules and assign meta or direct transmission

properties to one or more OpenFlow entries. Specifically, fine-
grained wireless transmission control is achieved by combin-
ing Openflow match-action rules with wireless transmission
rules (WDTX) within the wireless access points. Regarding
actions, assigning fixed and/or meta transmission settings is
possible. Meta transmission settings include: best probability
rate, best throughput rate, second best throughput rate, com-
mon maximum rate or fixed rates (e.g., a basic rate or a specific
modulation and coding scheme rate). Based on the capabilities
of the WiFi NIC, the transmission settings can be set for the
device multirate retry chains. We demonstrate the benefit of
WDTX rules over per-packet decisions in Section IV-B, e.g.,
by reducing latency when transmitting low latency UDP traffic
with the best probability rate which effectively reduces the
number of Layer 2 retransmissions.

Furthermore, in order to account for the dynamic nature of
the wireless network and in order to support client mobility,
agents in OPENSDWN implement a publish/subscribe inter-
face, allowing the controller to subscribe to network events
(see Section V for more details).

B. Virtual Middleboxes

Middleboxes are an integral part of OPENSDWN. First,
our service differentiation mechanism relies on a deep-packet
inspection middlebox, to identify and classify flows. Moreover,
OPENSDWN integrates MBs in the virtual network, and
allows us to set and migrate state to support client mobility
and to scale dynamically.

At the core of our system lies the concept of virtual MBs,
short vMBs. vMBs are used to fully reap the virtualization
benefits: the handling of vMBs is important to guarantee the
decoupling of the per-client middlebox state and the inner
workings of the middlebox from the physical instance.

The vMB keeps solely the user-specific state information
which can be transferred from one MB instance to another.
On top of a MB (e.g., a virtual machine or docker container
running on a physical host) runs a MB agent which needs to
accomplish three primary tasks: (i) interface with the resources
of the MB, (ii) handle vMBs and (iii) expose the control of the
MB to a remote entity (the controller). In a nutshell, the vMB
basically abstracts the client state from the inner workings of a
specific MB such as a Linux or BSD firewall. The middlebox
agent also provides the necessary hooks for the controller (and
thus applications) to instantiate, destroy, monitor and manage
its functionality.

In OPENSDWN, a stateful vMB is characterized by a
configuration file (a MB-specific list of tunable parameters),
state of the active connections, statistics (counters), and a list
of subscribed events in order to completely define its behavior.
When a vMB is moved from one MB Agent to another, the
new MB is able to handle the user’s traffic in exactly the same
way as the old one. vMBs were designed to give applications
the possibility to manage user related MB state across physical
MBs, without any awareness of the user’s traffic.

In order to support e.g., scale-out upon certain network
events, or to monitor the middlebox, OPENSDWN implements
a publish/subscribe interface (see Section V).

5

C. Participatory Interface

OPENSDWN’s participatory interface allows the WiFi
users, the network provider or even the content provider,
to express their preferences in terms of flow differentiation.
Specifically, we allow external entities to rank—by assigning
priorities—their transmissions. The rational behind this pri-
oritization approach is simplicity: the participatory interface
hides network complexity from end-users. Concretely, a user
could express his or her preference to prioritize Netflix over
Dropbox, by assigning a higher priority to the former. This
preference will then be taken into account by the controller,
which installs transmission rules which favor flows tagged as
Netflix over flow tagged as Dropbox. This could be done, for
example, by assigning different AC Queues or setting distinct
rate chains.

As a static service mapping based on, e.g., content server IPs
is cumbersome and unreliable, OPENSDWN uses a signature-
based Intrusion Detection System (IDS) which also considers
packet payload. Once the IDS detects a service of interest,
it immediately informs the OPENSDWN controller, which
applies the necessary policies accordingly.

In order to keep the system evolvable, and to account for
the advent of new services, our participatory API also supports
the installation of new signatures by external applications. This
for example also enables content providers to install their own
signatures, ensuring a better probability of correctness.

Technically, the participatory interface can be implemented
based on a URI included in a HTTP GET request, or a domain
name within a certificate.

IV. EVALUATION

The key benefit of OPENSDWN is its flexibility and the
potential use cases it enables. How to optimally exploit the
resulting flexibilities (e.g., in order to provide QoS guarantees)
or how to fine-tune performance (e.g., of function migration),
are orthogonal questions, and also depend on the context.

Nevertheless, in order to show the potential of
OPENSDWN, we implemented and evaluated different
applications using our proof-of-concept prototype. The first
case study focuses on the system’s service differentiation
capabilities, and in particular, we consider the optimization
of a video-on-demand application. In the second case
study, we consider an optimized multicast service based
on direct multicasting. The third focuses on the middlebox
virtualization, and we discuss the migration of a personalized
stateful firewall.

Deployments and Methodology

Our proof-of-concept implementation of OPENSDWN has
been deployed in two real networks:
• Our research group’s indoor WiFi network. This deploy-

ment consists of more than 25 IEEE 802.11n enabled
APs, distributed across one floor of an office building.

• A centrally administrated home network which covers an
entire building of ~21500 square feet. It provides internet
connectivity for roughly 30 households with more than
70 active devices per day, using Ethernet and 10 WiFi
APs (indoor and outdoor).

All APs run OpenWrt/LEDE with the ath9k Linux driver,
user-level Click modular router [15], and Open vSwitch (OvS)
version 2.3.90 supporting OpenFlow (OF) version 1.3 and
conntrack table management. The off-the-shelf WiFi access
points are either based on ARM, MIPS or x86. The variety of
WiFi AP hardware ranges from IEEE 802.11g only to IEEE
802.11abgn boards equipped with one or more WiFi NICs
based on Atheros chipsets.

Our controller and MBs are evaluated on non-virtualized
servers with 4 CPU cores supporting hyper-threading and at
least 8 GB RAM. We leverage an identical server for the
datapath encryption. All servers run a Debian-based OS with
OvS 2.0.2 or 2.3.90. We monitor data through a dedicated port
for the IDS at the core switch. We did not hit CPU or memory
limitations in any of our experiments. Furthermore, for the
performance evaluation of the controller and middleboxes, we
use three dedicated servers: 1) an OpenFlow controller, 2) a
middlebox, and 3) a traffic generator which either generates
artificial traffic using iperf3 or replays traffic through tcpre-
play, e.g., previously captured packet traces of a live video
streaming or on demand service.

A. Secure virtual WiFi AP

In the first case study (see Figure 3(a)), we present
OPENSDWN’s ability of hosting virtualized public WiFi
hotspot APs in the control plane to prevent eavesdropping
attacks. Specifically, public WiFi hotspots are often deployed
in untrusted environment where the device is physically acces-
sible. This raises security concerns with regards to eavesdrop-
ping. OPENSDWN enables deploying WiFi hotspot services
via virtual access points hosted in the Cloud, where all user
traffic is en/decrypted. This prevents eavesdropping attacks on
a client’s traffic, since all encrypted IEEE 802.11 traffic is
forwarded to the Cloud. Furthermore, OPENSDWN allows
splitting the control and the data plane related traffic, i.e.,
all data traffic is handled independently of the management
traffic. This allows reduce the load on the control plane, since
all data traffic can be en/decrypted by programmable network
equipment/middleboxes in the datapath. For instance, an ISP
could deploy the decryption key in a BRAS or DSLAM.
Alternatively, in the case of Fibre To The Building, the key
could be also deployed in an aggregation box in the basement
of a building.
Benchmarking of Cloud-assisted Virtual WiFi: First, we
evaluate the base-line performance of running the virtual
access points in the Cloud, managed by the control plane.
Here, all 802.11 management and data frames are encapsulated
and forwarded to the Cloud. In order to prevent fragmentation
on the lower networking layers, we set the MTU of the link
and signal the TCP MSS accordingly. We compare our results
against the base-line Standard case, where all functions are
performed directly on the AP.

Figure 4(a) shows the throughput performance on the down-
link. We observe, that in the full Cloud case, one can achieve
almost as much throughput as in the Standard case. However,
the maximum throughput is slightly lower when moving all
802.11 frames to the Cloud or middlebox in the datapath, i.e.,

6

●

●

●
●

●

●

●

●

●

●
●
●
●

Cloud (full) Split Crypto Standard

65
70

75
80

Network Scenario

T
hr

ou
gh

pu
t [

M
bi

t/s
]

(a) Downlink performance of an en-
crypted 802.11n link. Moving en/de-
cryption to the Cloud has little perfor-
mance implications.

Cloud (full) Split Crypto Standard

55
60

65
70

75
80

Network Scenario

T
hr

ou
gh

pu
t [

M
bi

t/s
]

(b) Uplink performance of an 802.11n
link with cryptography enabled. Mov-
ing en/decryption to the Cloud has
little performance implications.

Time [s]

P
kt

s/
s

● ●
●

● ● ● ●

0 5 10 15 20 25 30

90
10

0
11

0

● Downlink
Uplink
Handoff

(c) Impact of virtual AP migration on a voice
call. Compared to legacy WiFi, we observe no
severe performance impact during handovers, i.e.,
a handover equals a virtual AP migrations.

Figure 4: Evaluation of the secure virtual WiFi AP in the Cloud

Different WDTX Rules

R
ou

nd
 T

rip
 T

im
e

(R
T

T
)

[m
s]

Default BPR AC:VO BPR+AC:VO

4
5

6
7

8

(a) Latency when assigning different
wireless transmission settings to a flow.

●

Different WDTX Rules

M
A

C
 L

ay
er

 R
et

ra
ns

m
is

si
on

s

Default BPR AC:VO BPR+AC:VO

20
30

40
50

(b) MAC layer retransmissions when as-
signing different wireless transmission
settings to a flow.

0.0

0.2

0.4

0.6

dropbox mp4 soundcloud spotify youtube
Service

T
im

e
(s

ec
)

Service detection time

0.01

0.10

1.00

1 10 50 100 500 1000
Number of parallel flows

T
im

e
(s

ec
)

Load latency analysis

(c) Service detection time until rule
installation and latency under different
workloads.

Figure 5: Evaluation of OPENSDWN’s fine grained transmission control through WDTX rules and vMB handling.

the bandwidth decreases due to the limitation of the uplink
to 100 Mbit/s and the additional tunneling overhead. This
is also the case on the uplink as indicated in Figure 4(b).
However, we observe no significant performance impact with
our solution.
Benchmarking of Crypto in the Datapath: Next, we evaluate
the separation of the 802.11 management and data frames.
Here, all management traffic is sent to a remote authenticator
and all data traffic is handled by a crypto box in the datapath.
We observe that the throughput is nearly the same compared
to the previous case. Figure 4(a) and Figure 4(b) show that
the throughput is close to 70 Mbit/s and again close to the
Standard case. The advantage of this case is to handle func-
tions such as traffic en/decryption, en/decapsulation, and de-
duplication directly in data plane instead of moving everything
to operator’s data center.

For instance, today’s general purpose computing hardware
deployed in the datapath can easily handle the traffic of
hundreds of access points. Specifically, Intel’s DPDK greatly
boosts packet processing performance and throughput. More-
over, recent CPUs can easily handle several hundreds of
gigabit of AES (block chain) traffic per second. Figure 4(c)
shows the impact of a LVAP migration on a WiFi link.
Compared to legacy WiFi, we observe no severe performance
impact during handovers, i.e., a handover equals a virtual AP
migrations.

B. User-Defined Service Differentiation

The first case study concerns OPENSDWN’s service differ-
entiation capabilities. Before presenting our video-on-demand

optimizer in more detail, we will discuss some more general
aspects of our system.

Today, most public internet downlink traffic is sent as best
effort, also due to network neutrality requirements. But also
in small offices, home offices or home networks, traffic is
often treated equally, although this is legally not required. We
believe that there is a high potential benefit of differentiating
services in home networks, e.g., by prioritizing voice traffic
over regular web traffic. Especially given today’s trend to
deploy more and more wireless devices in the user’s premises,
traffic can significantly interfere, e.g., an unimportant system
update for a device can easily interfere with requested on
demand services such as Spotify or Netflix, resulting in poor
performance.

Benchmarking the Transmission Rule Extension: There
are several ways to prioritize traffic through specific WDTX
rules, bound to a particular flow entry. We investigate, as a
benchmark, the effect of assigning a meta transmission rate
and a medium access priority, on the latency and MAC layer
retransmissions of a single flow. To this end, we first study the
effect on MAC layer retransmissions (cf. Figure 5(b)) when
assigning a per-flow transmission rule to a latency sensitive
UDP flow. In our experiment, we use two OPENSDWN APs
and two clients. Each client is connected to one of the APs in
our indoor testbed. We start generating best effort TCP traffic
on the link between one AP and client, and start a latency
sensitive flow on the link between the other client and the AP.
In the beginning, the latency sensitive flow and the background
traffic are treated equally, which results in a round trip time

7

● ●

●●
●

●

Different per−flow WDTX rules

R
et

ra
ns

m
is

si
on

s

AC:BE AC:BE+VO+VI AC:BE+VO

0
50

10
0

15
0

20
0

(a) Flows sent as BE do not experience signif-
icantly more retransmissions in the presence of
higher prioritized traffic.

Multicast Unicast

50
0

60
0

70
0

80
0

Transmission Mode

F
ra

m
es

 p
er

 s
ec

on
d

(b) HD IPTV stream exceeds capacity of multi-
cast bandwidth. Switching to unicast mitigates this
problem.

Time [s]

T
hr

ou
gh

pu
t [

kB
yt

es
/s

]

0 10 20 30 40 50 60

20
0

60
0

10
00 ● Throughput

Frames

(c) OPENSDWN’s multicast Application switches
to unicast for a single subscriber.

Figure 6: Evaluation of the service differentiation and smart multicast OPENSDWN applications

Table I: Service Detection Delay

Frequency (ms) 2us 5us 10us 50us 100us 500us 1ms 5ms 10ms 50ms 100ms 1s

Same host Bro - MB Agent 0.060651 0.058026 0.05992 0.058391 0.064939 0.049412 0.030326 0.009835 0.003022 0.000381 0.000371 0.000421
Bro - Rule Installation 0.06167 0.0589 0.060837 0.059249 0.065867 0.050346 0.031277 0.011736 0.005432 0.002918 0.002871 0.003129

Different hosts Bro - MB Agent 0.057146 0.063181 0.062309 0.064495 0.055805 0.031668 0.021651 0.001527 0.000388 0.000389 0.000394 0.000425
Bro - Rule Installation 0.058662 0.064439 0.069839 0.06587 0.058102 0.033013 0.023731 0.003773 0.003733 0.003183 0.00362 0.003861

(RTT) of roughly 8 ms. Next we assign the best probability
rate (BPR) to the flow; this leaves the RTT unchanged. When
changing the medium access to the highest priority (AC:VO),
i.e., the voice access category, the RTT drops by half to
less than 4 ms as depicted in Figure Figure 5(a). This is as
expected since a higher medium access probability constitutes
a change in the RTT. Note, in today’s home network traffic
is typically sent as best effort and rarely differentiated as
in OPENSDWN. However, only looking at the RTT of an
UDP flow is not sufficient as it does not take the MAC-layer
(L2) packet loss into account; this however has a significant
effect on the jitter and performance of transport protocols (L4)
such as TCP. Thus, we next study the effect of the meta
transmission rates on the packet loss. We assign a WDTX
entry to the OF flow rule that matches the flow, and assign
the best probability rate and highest medium access priority
(AC:VO) which increases the transmission probability on the
L2. Figure 5(b) shows that this significantly reduces the MAC
layer retransmissions compared to default flow properties. We
conclude that combining the medium access strategy by a meta
transmission rate within OPENSDWN significantly reduces
the number of MAC layer retransmissions, and the the RTT by
roughly 50%. That said, OPENSDWN can achieve a per-flow
resource utilization which is better suited for the diversity of
traffic requirements in today’s home networks.

Benchmarking the DPI Interface: In order to understand
latency and induced load of service discovery, we replay
traces of typical streaming services collected at a university
campus network in our testbed. Concretely, we replay the
traces 100 times per service at first and then vary the number
of simultaneous youtube flows: 1, 10, 50, 100, 500, 1000 to
identify eventual bottlenecks on the service detection engine.
The traffic is injected on one server and tapped on a second
server running a Bro MB instance handled by our agent. The
controller is hosted on a third server with a dedicated out-of-
band control channel running a service discovery SDN/NFV
application. Figure 5(c) depicts the measured service detection

time and the load latency analysis, i.e., the latency added
during high workload pattern.

In order to estimate possible performance bottlenecks of
the service detection chain, we measure the delay added by
the different components involved in the detection, in bursty
scenarios. We are interested in how our system reacts to
different rates of events. We mock the detection of a service by
triggering an event from Bro at different intervals. Specifically,
we schedule events sequentially, from a Bro script, adding
a determined delay between 2 consecutive events. We send
300 events in total over multiple runs for each delay, starting
from 2 µs up to 1 second. We run this procedure in two
different scenarios: First, we keep both the controller and the
MB Agent on the same host to eliminate the network delay. In
the second scenario, we run the MB Agent and controller on
a different host. Table I presents the results. They include, for
each scenario, two distinct measurements: First, we measure
the mean of the delay between the instant Bro sends the
event and the MB Agent processes it (basically, the delay
caused by the queue of events). Second, we measure the time
between the instant Bro fires the event and the moment that
our controller installs the required rules for this flow. This
delay includes therefore the MB Agent processing time, the
delay caused by the MB Protocol and the controller handling
time of this event. As expected, our system presents a lower
response time for smaller event rates (bigger delays). The
worst performance, for the highest rate, indicates a total delay
of around 60 ms. However, the detection delay could be
mitigated by proactively installing coarse-grained flow rules
based on DNS response messages. However, this might lead
to side issues with today’s CDNs which provide a wide range
of different services through the same front servers.

Case Study: Medium Access Optimizer. Given these bench-
marks, we now consider a simple case study: the optimization
of a video-on-demand transmission. Our setup consists of a
single AP and three clients. One client performs a system
update, one requests a Video-on-Demand (VoD) stream and

8

●

●● ●

●
● ●●

●
●●● ●●

0.0

0.5

1.0

1.5

2.0

25 50 100 200 400 800 1600 3200 640012800
Entry Count

T
im

e(
m

s)

(a) Per entry write latency.

●

●

●●
●●●

●

●
●●●
●

●●
●

● ●●

0.0

0.5

1.0

1.5

2.0

25 50 100 200 400 800 1600 3200 640012800
Entry Count

T
im

e(
m

s)

(b) Per entry read latency.

●
●

●●
●

● ● ●● ●●● ●0.0

0.5

1.0

1.5

2.0

25 50 100 200 400 800 1600 3200 640012800
Entry Count

T
im

e(
m

s)

(c) Per entry delete latency.

Figure 7: Latency for a stateful firewall vMB object read, write and delete operation. Latency in milliseconds (time) is normalized to a
per-entry time. vMB object size is increased from 25 entries to 12,800 entries.

the third client does a UDP-based VoIP call. In the beginning,
all flows are treated equally as best effort traffic. Next we put
the voice flow into the highest priority queue. As expected, the
prioritized traffic now achieves a slightly higher throughput
than the best effort traffic. However, in mac80211, the voice
queue does not perform aggregation and hence, can easily
suffer from too many competing stations. Specifically, even
if the medium access probability is high, the performance
without 802.11 frame aggregation is significantly lower. That
said, if a flow suffers from background traffic, e.g., caused by a
neighboring WiFi network, switching to the highest queue with
aggregation can significantly increase the throughput. Due to
the bursty nature of Dynamic Adaptive Streaming over HTTP
(DASH) [16] based VoD traffic, the BE traffic is just slightly
decreased while VoD services benefit from a more aggressive
medium access, which in turn leads to a faster switching of the
video quality. BE flows do not experience significantly more
retransmissions in the presence of higher prioritized traffic.
In other words, using prioritization reduces the achievable
throughput of BE flows without a big impact on the the MAC
layer retransmissions (see Figure 6(a)).

C. Smart Direct Multicast Service

OPENSDWN can also be used in conjunction with group
communication abstractions such as multicast. Especially with
the advent of IPv6, the fraction of multicast traffic is likely
to grow in the future: IPv6 realizes broadcast over multicast,
and mDNS to broadcast features to neighboring stations.

In IEEE 802.11, multicast packets are typically sent at basic
rate. However, wireless networks may benefit from a Direct
Multicast Service (DMS): DMS has the potential of reduc-
ing the transmission time over regular multicast, by sending
802.11 packets as unicast. Unfortunately, DMS requires a
client to signal its DMS capabilities to the AP, which is the
reason why DMS is rarely used in 802.11 networks today.

With OPENSDWN, a controller can detect the number of
subscriptions for a particular multicast service, and control the
transmission accordingly. Specifically, a controller can install
an OpenFlow rule to switch from multicast to unicast for
the transmission. Moreover, OPENSDWN allows to assign a
WDTX transmission rule to a particular stream of multicast
data, to send the data at the maximum common transmission
rate for a group of wireless devices.

We evaluate OPENSDWN’s smart multicast application
with a single access point and a IPTV set-top-box from a

major European ISP. First, we transmit a IPTV continuous
stream of multicast data to the box. With a single station,
our application installs a rule to send the multicast stream
as unicast on the wireless medium. With multiple stations,
the application switches back to multicast at the maximum
common rate for the transmission. Figure 6(c) shows that the
throughput and frame count increase after 28 seconds, when
the application switches from multicast to unicast. Figure 6(b)
indicates that an HD IPTV stream easily exceeds the basic
rate of IEEE 802.11g networks. Note, switching to unicast or
to a higher datarate mitigates this issue.

D. User Mobility

As a second case study, we consider OPENSDWN’s sup-
port for user mobility, where also middlebox functionality is
migrated. Supporting client mobility is a crucial feature in
WiFi deployments with multiple physical APs. The application
migrates a stateful firewall vMB object between MBs, i.e.,
installs the client’s flow state at the new AP before or during
the handoff.
Benchmarking the Stateful Firewall vMB Interface: We
study the performance of the vMB stateful firewall module of
OPENSDWN for different workloads in more detail. Specifi-
cally, we measure the read, write and delete performance of a
stateful FW vMB extension that utilizes the netlink interface
of the Linux Kernel conntrack module for connection tracking,
which is typically part of a stateful firewall. We repeat each
experiment 12 times for each workload. The vMB object
workloads vary from 25 to up to 12,800 entries. As shown
in Figure 7(a), we first measure the performance of the per-
entry execution time of the write (setState). The write duration
for a single entry decreases constantly with the workload, and
stabilizes at around 130 µs for a single entry in a vMB object.
Next, we evaluate the read time (getState) which decreases
constantly. The average value stabilizes at around 270µs (see
Figure 7(b)). Finally, we evaluate the delete operation in order
to fully understand the required time for the migrate operation,
which requires a read, write and a delete of the old vMB
object. The average value of a delState stabilizes at around
40µs (see Figure 7(c)). That said, a migrate operation takes at
least the time of a combined read and write, times the number
of entries. Thus, the time can be estimated by the measured
results. Specifically, the delete of the old vMB state can be
called after the object was correctly fetched and while it is
installed into the new MB.

9

Algorithm 1: Mobility Service

begin
if handoverEvent = True then

oldMBid← AP2MBmap.get(oldAPid) ;
newMBid← AP2MBmap.get(newAPid) ;
vMB ← createvMB(clientIP, oldMBid) ;
if vMB.migrate(newMBid) = True then

signalOpenSDWN(migrationComplete) ;

Entry count Mean execution time (ms)
Write Read Delete Migrate

1 11.6 38.4 6.4 45.0
10 12.3 48.6 6.8 60.9
100 20.3 121.6 10.7 141.9
1000 115.9 778.0 43.0 893.9
10000 1119.3 5201.2 385.3 6320.5

Table II: Average execution time of the setState, getState and
delState operations for different workloads.

Case Study: Firewall State Migration The firewall state
migration service is a reactive application triggered through
external events to move state between MB instances. The
algorithm in form of pseudo-code is shown in Algorithm 1.
For example, when OPENSDWN detects a client with a higher
RSSI at a new AP, a handover event is triggered and the client’s
firewall state (connection tracking state) migrated to the new
AP before the handover. In case the firewall is realized outside
of the AP, e.g., in several middleboxes throughout the network,
the client’s firewall state would be migrated to the middlebox
associated with the new AP. Accordingly, the firewall state
migration service keeps a mapping between APs and firewalls.
Furthermore, it decides whether the state associated with the
mobile user needs to be migrated and executes the operation.

During the state migration operation, the controller uses
the three operations that were evaluated previously. The
getState call on the serving middlebox is followed by a
setState operation with the target MB identifier as argu-
ment. Finally, the state is removed through a delState call.
The last two operations happen simultaneously since RPC calls
are asynchronous, and called at different agents. Table II shows
the average migration time for different vMB object sizes.
The total time of a migrate() call on a vMB object with
100 entries averages at around 140 ms. This underlines the
power that the simplicity of the vMB abstraction exposes to a
network programmer. The RPC interface and entry processing
from the Linux Kernel netlink interface contribute to most of
the processing time. Note, the agent to kernel communication
for a single rule is below one millisecond.

V. PROTOTYPE IMPLEMENTATION

This section presents more details about our prototype
implementation. We first describe the different radio and mid-
dlebox interfaces implemented by OPENSDWN, then present
the control plane, and finally discuss the support for reactive
and proactive applications. The Radio Agent is implemented in
C/C++ while the controller is based on the Java-based ONOS
OpenFlow controller. The MB agent is realized in python and
implements a newly defined MB protocol.

OpenSDWN Controller
Radio Driver

Radio Agent

mac80211 subsystem

wireless NIC drivers

Wireless Access Point

cfg80211

Kernel Space
netlink interface debugfs

mark1 TX Rule

mark2 TX Rule

markn TX Rule

…

User Space

Wireless data-path transmission settings

WDTX 
Table

LVAP

LVAP WDTX

WDTX

Figure 8: Wireless Radio Interface: Packets matching an OpenFlow
rule are annotated with a mark and then matched by a WDTX rule
to control wireless transmission settings on a per-flow level.

Table III: Subset of South-bound APIs provided by the framework

Radio API: (Controller to agent) Description

{add/remove/set}-lvap Add/remove/update an LVAP on an agent
read-lvap-table Obtain the list of LVAPs on an agent
read-rx-stats Query per-station rx-stats at the agent
{read/set}-key Query/set per-client crypto keys + state
{read/set}-wdtx Query/set per-flow transmission rules on an agent
{read/set}-subscriptions Query/set the list of subscriptions at the agent
{read/set}-channel Query/set the channel the agent listens and transmits on
{read/set}-beacon-interval Query/set the beacon interval on the agent

Middlebox API: (Controller to Agent) Description

{get/set}-config Get/Set configuration of parameters a virtual middlebox
{get/set}-state Get/Set the state of a virtual middlebox
{get/set}-stats Get/Set statistics (e.g. packet counter) of a vMBs
getAvailableEvents Get a list of available events supported by a middlebox.
subscribe/unsubscribe Un-/subscribe from receiving notifications)

A. Interfaces

Interfaces to the physical WiFi and middlebox resources
are provided by agents. We describe the radio and middlebox
interfaces in turn. Moreover, Table III depicts the south-bound
interface between the agents and the controller.
Radio Interface: OPENSDWN’s wireless APs run a radio
agent which exposes the necessary hooks for the controller
(and thus applications) to orchestrate the WiFi network and re-
port measurements. All time-critical aspects of the WiFi MAC
protocol (such as IEEE 802.11 acknowledgments) continue to
be performed by the WiFi NIC’s hardware. On the other hand,
non time-critical functionality including management of client
associations, is implemented in software on the controller and
the agents. Specifically, this realizes a distributed WiFi split-
MAC architecture. In addition, matching on incoming frames
is performed to support a publish-subscribe system wherein
network applications can subscribe to per-frame events.

In order to realize the fine grained wireless transmission rule
interface, we have extended the mac80211 subsystem of the
Linux Kernel. Thus, OPENSDWN benefits from its driver ab-
straction and Minstrel, the de facto standard transmission rate
control algorithm of the Linux Kernel mac80211 subsystem.
Note, this algorithm fills a per-station rate table which defines
the transmission settings on a per-link basis for a 100ms
time interval. WDTX rules control per-flow physical layer
settings. Assigning fixed and/or meta transmission settings is
possible, e.g., assigning fixed MCS transmission rates or best
throughput rate. Based on the capabilities of the WiFi NIC, the
transmission settings can be set for the device’s multirate retry

10

chains. With Atheros cards such as the AR9280, there are four
segments for the transmission rate, power and retry count. We
are currently investigating the possibility to assign functions
such as a maximum common transmission rate for a given
set of LVAPs or maximum transmission time to WDTX rules.
WDTX rules are bound to OF rules trough a newly defined
action that attaches a tag to all packets that match an OF flow
entry at the ingress port. The defined tags are passed through
the Linux kernel down to the WiFi driver. Figure 8 depicts
OPENSDWN’s WDTX interface.

Moreover, for effective control decisions, wireless network
applications need access to statistics not only at a per-frame
granularity, but also measurements of the medium itself (for
instance, to infer interference from non-WiFi devices operating
in the same spectrum). Thus, applications can access mea-
surements (e.g., RSSI, OF statistics or spectral measurements)
from multiple layers, and work either reactively (e.g., trigger-
driven) or proactively (e.g., timer-driven).
Middlebox Interface: A middlebox agent (MB Agent) runs
either on a server or WiFi AP and accomplishes three primary
tasks: interface the physical resources of the middlebox, handle
virtual middleboxes (vMB) and expose the control of the
middlebox to the control plane. In OPENSDWN, each agent
handles exactly one MB functionality through the middlebox
interface. Figure 9 depicts the agent’s structure with its inter-
faces and abstractions.

We have implemented two interfaces for different types
of middleboxes in OPENSDWN: 1) a stateful firewall and
2) an interface for deep packet inspection. The former tar-
gets firewall handling within the Linux Kernel. Moreover,
we have implemented two versions of the stateful firewall
vMB: 1) the first one uses wrappers of the iptables
and conntrack user-space tools and 2) the other one uses
the python-iptables and pynetfilter_conntrack
libraries to communicate with the Linux kernel netfilter mod-
ules. For the latter, we had to extend the libraries to support
insertion of new entries to the connection tracking table, and
to monitor changes inside the connection tracking table for
event generation. Specifically, the latter brings a significant
performance improvement: e.g., a state insertion call of 10000
entries is almost 70 times faster over the former interface.
However, the former brings advantages for simpler extensi-
bility for non-time critical parts of the firewall handling. The
connection tracking table inside the kernel keeps track of all
traffic passing the firewall in both directions, and represents
the internal traffic-dependent state. For each connection or
flow, the number of bytes and packets sent in each direction is
recorded. This serves as the statistics state of the middlebox.

Moreover, the SDN control plane needs to react to events
such as threats like DoS attacks or load changes within the
network. To this end, the MB agent implements a publish/sub-
scribe system together with the controller. Our Bro IDS and
stateful firewall abstraction implement an interface to receive
events at the controller, e.g., if someone scans the network.
In the case of the stateful firewall, events must be generated
whenever something changes in the connection tracking table.
The agent leverages the pynetfilter_conntrack API
to filter events that match a subscription from the controller.

Middlebox Driver

OpenSDWN Controller

Kernel Space

User Space

Middlebox Host

conntrack 
tools

conntrack

vMB

network interfaces

Statefull FW

netlink interface

middlebox  
abstraction

xtables

nl_driver
Bro

vMBBro driver

middlebox
abstraction

middlebox  
abstraction

vMB

IDS
Agent Agent

VNF
Agent

Virtual  
Network  
Function

Figure 9: Middlebox Interface and vMB agent structure: vMB
protocol interpreter and state machine; MB interface with specific
handlers for different types of middleboxes.

Table IV: Subset of APIs provided by the framework

North-bound API for Radio Description

getClients() Get slice-specific-view of associated clients
getAgents() Get a view of agents in the application’s slice
handoffClientToAp() Perform an LVAP migration of a client to an AP
getRxStatsFromAgent() Query agent for per-station rx-statistics
{register/unregister}Subscription() Subscribe to a per-frame event of interest at agents
{add/remove}Network() Add or remove an SSID to the application’s slice

Northbound API specific for DPIs Description

{start/stop}DPI() Start or stop the DPI daemon running on the agent
{get/set}InterfaceToMonitor() Get/Set the network interface the DPI should monitor
{unsub/sub}scribeForService() Un/Subscribe for services
{uninstall/install}Service() Un/Install the capability of detecting a service
availableInterfaces() Get the network interfaces available at MB
getServicesInstalled() Get the list of services installed on a DPI instance
isRunning() Check whether the service is currently running
getEventTypes() Get event types that DPI supports
getFieldsToSearch() Get a list of header fields that DPI is able to inspect

Virtual Middlebox Northbound API Description

migrate_vMB() Move a vMB from one physical MB to another
add_vMB() Add a vMB to a physical MB
remove_vMB() Remove a vMB from a physical MB
clone_vMB() Clones a vMB from a physical MB to another

Specifically, the agent offers a list of parameters that can be
used to create an event mask. The controller can request this
information through the Event_List_Req message. For
each event mask, the agent creates a filter and an event ID. In
this way, the controller can deactivate outdated notifications,
according to the ID. An Event message is sent every time a
change occurs in the internal state of the MB.

B. Control Plane

The OPENSDWN controller exposes a set of interfaces to
the applications (the northbound API shown in Table IV) and
then translates these calls into a set of commands on the
network devices (the southbound API). The controller also
maintains a view of the network including clients, APs, MBs,
and OF switches, which the applications can then control.

Reactive applications can leverage a publish-subscribe sys-
tem of the radio and MB agent which invokes a handler at
the application, whenever an event of interest occurs at the
agents. Our current implementation supports applications to
register thresholds for events to reduce the amount of events,
e.g., receive link-based (PHY and MAC layer) rx-statistics
like the received signal strength indicator (RSSI), the bit-rate,
and the timestamp of the last received packet, only when
necessary. That said, an application can ask to be notified
whenever a frame is received at a radio agent at an RSSI

11

greater than −70dBm. Moreover, applications can leverage
multiple measurement sources outside the framework, too.
Participatory Interface:

The participatory interface is implemented as a RESTful
API exposed by an SDN application, that we call Service
Ranking. The Service Ranking is implemented as a simple
Web service, written in NodeJS. It receives priorities as input
and feeds the controller with requests through the Northbound
API. Figure 10 depicts the components associated with the
participatory interface.

A dedicated Traffic Manager module within the
OPENSDWN Controller, is responsible for compiling
requests into meaningful transmission rules, namely assigning
a QoS class or WDTX rule on a matched flow. Concretely,
the Traffic Manager is responsible applying network policies
to flows, taking into consideration the service being carried
by the flow. We define flows as a group of packets that share
a 5 header tuple, composed by source and destination IPs,
source and destination ports and the transport protocol, i.e.,
according to Bro’s connection concept.

The algorithm is shown in Algorithm 2. During its ini-
tialization (not shown by the algorithm), the Traffic Manager
subscribes to all DPI events (by sending subscriptions to MB
Agents associated to middleboxes whose type is DPI), passing
as parameter the callback to handle the upcoming events. If an
event occurs, the message is translated into flow rules and a
corresponding tag, which is determined by Bro and indicates
the service being carried in the flow’s payload. It then installs
the Openflow match rules after checking the existence of pre-
installed policies for the client’s IP and the specific service
(tag) at the corresponding switch.

The retrieved policies, which are defined in terms of Open-
flow actions, are installed in the OF switch which handles the
client traffic. In case of a WiFi AP, the OF switch is the AP
currently hosting the client’s LVAP. After installation of the
proper OF actions, the Traffic Manager installs flow rules on
the OF switch hosting the Bro IDS, to prevent unnecessary
load on the IDS. In other words, this prevents Bro from
spending resources on already identified traffic flows.

Furthermore, an application developer can interact with the
Service Ranking interface by defining: 1) a Service Name, 2)
a Device ID or IP address and 3) a Priority. The former iden-
tifies a content provider (e.g., Youtube, Spotify) or a generic
application layer service which the OPENSDWN framework
system detects through deep packet inspection, e.g., by looking
at the SSL certificate, URI or IP address space.

New services can be added by the network operator or
public database through the Service Ranking interface. With
the user participatory interface, the controller exposes a list of
detectable services through the northbound API along with
a list of IPs of devices connected to a particular network
slice. Moreover, the Service Ranking interface can also be
configured to only expose the list of services to a specific
(e.g., connecting) client.
Reactive and Proactive Applications

Network applications written on top of OPENSDWN can
function both reactively and/or proactively. Proactive appli-
cations are timer-driven whereas reactive applications use

Device ManagerService Manager

!
Service Interface

!
Priority Interface

!
 Device Information

Participatory Interface

Middlebox Driver Radio DriverOpenFlow Driver

Service DB

Traffic Manager

Devices

Controller
Figure 10: The Participatory Interface allows users to assign priorities
to a particular service on a per-device basis.

Algorithm 2: Service Differentiation through DPI

begin
if ServiceDetectEvent = True then

(5 tuple, service) ← parsevMB(vMBMessage);
match ← toOFMatch(5 tuple);
policy ← getNetworkPolicy(ipClient,service);
action ← buildOFAction(ipClient,markPkt,setTOS);
lvap ← getLV AP (ipClient);
if lvap exists then

physicalAP ← getPhysicalAP (lvap);
switchAP ← getOFSwitch(physicalAP);
if physicalAP and switchAP then

Install rules at last hop;
addOpenFlowRule(switchAP, match, action);
addWDTXRule(lvap, policy);
Install Selective Tap at DPI;
addOpenFlowRule(switchDPI, match, action:drop);

triggers and callbacks to handle events. The latter mode of
operation is particularly interesting in the context of WiFi
networks where channel quality can change quickly. To this
end, in our current implementation, an application can utilize
multiple measurement sources.
Radio agent interface: Reactive applications can make use
of a publish-subscribe system which is exposed by the radio
agent. The former can register a handler to receive notifications
on a per-frame granularity. In our current implementation,
applications register thresholds for link-based (PHY and MAC
layer) rx-statistics like signal strength (e.g., RSSI), bit-rate,
and timestamp of the last received packet. For instance, an
application can ask to be notified whenever a frame is received
at an agent at an RSSI greater than -70dBm. In addition,
applications can make use of measurements such as spectral
scans or the channel busy time of the wireless environment.
Middlebox agent interface: Communication over the south-
bound interface is realized through the exchange of messages
according to the vMB protocol. It functions based on two
mechanisms:

• Request-response model: A controller can control a
middlebox’s state through a Create Read Update Delete
(CRUD) API exposed by the MB’s agent. This invokes
the following action: the internal state can be read, mod-
ified or deleted, or new state installed. This is necessary
for proactive remote control over the behavior of a
middlebox by a controller.

• Publish-subscribe model: The role of the publisher is

12

taken by the agent, where the controller acts as the
subscriber. The agent offers a set of events and event
parameters to which the controller can subscribe. Since a
controller is usually not interested in all event messages
that can be sent by the publishing agent, a filter is used
for selecting the content or the type of event messages.

OpenFlow statistics: OpenFlow provides per-flow and port-
based statistics for entries in the flow tables of a switch.
Applications can query these statistics through the controller
to make traffic-aware routing decisions.

VI. RELATED WORK

While software-defined networking and network virtual-
ization principles have been studied intensively for wired
environments, not much is known today about how to reap
the corresponding benefits in the wireless and home network
context. In general, it is difficult to port systems such as
FlowVisor [17] to WiFi networks, and provide, e.g., bandwidth
and CPU isolation on the access point.

While there exist a plethora of commercial enterprise WiFi
solutions, which typically manage APs centrally via a con-
troller (hosted either in the local network [18], or remotely in
the cloud [19]), these solutions do not extend into the purview
of cheap low-cost commodity AP hardware that is used by
provider networks, nor do they support common, open and
programmable interfaces.

OPENSDWN exploits the LVAP abstraction and builds upon
Odin [20], [13] and Aeroflux [21], by introducing datapath
programmability, network function virtualization, and a par-
ticipatory interface. Over the last years, several interesting ar-
chitectures have been proposed towards a more programmable
WiFi, for example Dyson [22], an architecture for extensible
wireless LANs which also defines a set of APIs for clients
and APs to be managed by a controller. Flashback [23]
proposes a control channel technique for WiFi networks, by
allowing stations to send short control messages concurrently
with data transmissions, without affecting throughput. This
ensures a low overhead control plane for WiFi networks that is
decoupled from the data plane. BeHop [24] is a programmable
wireless testbed for dense WiFi networks as they occur in in
residential and enterprise settings. Atomix [25] is a modular
software framework for building applications on wireless
infrastructure which achieves hardware-like performance by
building an 802.11a receiver that operates at high bandwidth
and low latency. FlexRadio [26] aims to unify RF chain
techniques (MIMO, full-duplex and interference alignment),
into a single wireless node, and enables a flexible RF resource
allocation. DIRAC [27] proposes a split-architecture wherein
link-layer information is relayed by agents running on the
APs to a central controller to improve network management
decisions. However, the requirement for special software or
hardware on the client side, violates the design requirements
of OPENSDWN. There are also systems that do not modify
the client in order to deliver services. In DenseAP [28],
channel assignment and association related decisions are made
centrally by taking advantage of a global view of the network.
However, slicing is not supported and also client association
management is limited. Also Centaur [29] seeks to improve the

datapath in enterprise WiFi networks by using centralization
to mitigate hidden terminals and to exploit exposed terminals.

Picasso [30] enables virtualization across the MAC/PHY
and uses spectrum slicing. It allows a single radio to re-
ceive and transmit on different frequencies simultaneously.
MAClets [31] allows multiple MAC/PHY protocols to share
a single RF frontend. These advances can be used by
OPENSDWN (and already Odin) to operate multiple LVAPs
with different characteristics on top of the same AP. Alter-
native approaches, such as [32] and [33], are incompatible
with today’s WiFi MAC/PHY and thus do not fit our design
requirements. FICA [32] introduces a new PHY layer, that
splits the channel into separate subchannels which stations
can simultaneously use according to their traffic demands.
Jello [33], a MAC overlay where devices sense and occupy
unused spectrum without central coordination or dedicated
radio for control. Enabling per-flow transmission settings will
allow applications to centrally implement rate and power
control. With OpenRadio [34], our system could also benefit
from a clean-slate programmable network dataplane.

There is also a number of interesting works in the context
of programmable cellular networks. C-RAN [35] (i.e., Cloud-
RAN), is a new cellular network architecture for the future
mobile network infrastructure. It combines centralized pro-
cessing, cooperative radio and cloud, to render the radio access
network more flexible. SoftCell [36] simplifies the operation
of cellular networks and supports high-level service policies to
direct traffic through sequences of MBs. Fine-grained packet
classifications are pushed to the access switches, and to
ensure control-plane scalability, a local agent at the base
station caches the service policy. Openflow-based SDN also
offers a number of benefits for mobile networks, including
wireless access segments, mobile backhaul networks, and core
networks. SoftRAN [37] uses SDN principles to redesign
the radio access network, and seeks to provide the “big-base
station abstraction”: it coordinates radio resource management
through its logically centralized control plane, managing in-
terference, load, QoS, etc. through plug and play algorithms.

OPENSDWN promotes a unified programmable control
over network and middleboxes. Middleboxes are ubiquitous
in today’s computer networks [38]. Besides virtualization,
middleboxes [39], [40], [41] also play an important role in
OPENSDWN for the fine-grained transmission control, which
is based in deep-packet inspection [42], [43], [44]. Sekar
et al. were one of the first to emphasize the importance
of middleboxes, and in their middlebox manifesto [45], the
authors argued for software-centric middlebox implementa-
tions running on general-purpose hardware platforms that are
managed via open and extensible management APIs. Also
Gember-Jacobson et al. [10] argue for a joint control of NFV
and SDN components, and present the OpenNF architecture to
coordinate the different control plane tasks, and to enable an
efficient reallocation of flows across network function (NF)
instances. Concretely, the southbound interface of OpenNF
deals with the NF state diversity and seeks to minimize modi-
fications. The northbound interface allows control applications
to flexibly move, copy, or share subsets of state between NF
instances. [46] presents a system for dynamic up- and down-

13

scaling of middleboxes following a split/merge approach. Mer-
lin [47] is a language to provision NFs and entire NF chains.
An interesting NFV platform is ClickOS [48], a virtualized
software middlebox platform, based on light virtual machines.
OPENSDWN also leverages the Click [15] framework.

Home networks have received particular attention over the
last years [49], [50]. Users are offered more flexibilities on
how their network can be optimized [51], [52], sometimes
even over participatory interfaces [49], helping home users
to improve performance [53]. Programmable middleboxes can
also be exploited to provide a faster ISP service delivery [54].
Bibliographic Note. Some material of this paper were pre-
sented at ACM SOSR 2015 [55] and at the ACM CoNEXT
2016 CAN Workshop [56].

VII. CONCLUSION

We have presented OPENSDWN, a programmable and
virtualized WiFi network which may be used as a prototype to
experiment and demonstrate a more flexible and fine-grained
network management environment for WiFi networks. We
understand our system as an enabler of more flexible WiFi
networks. How to optimally exploit the resulting flexibilities
(e.g., in order to provide QoS guarantees) or how to fine-
tune performance (e.g., of function migration), are orthogonal
questions, and are left for future research.
Acknowledgment We are thankful for many discussions with
Henry Owen, James Kempf, and Thomas Hühn. We also like
to thank Sven Zehl and Tobias Steinicke for their efforts on
the wireless datapath. Research supported by the Federal Min-
istry of Education and Research (BMBF) Software Campus
"SDWN" Project Grant (Reference number 01IS12056) as well
as by Aalborg University’s PreLytics project.

REFERENCES

[1] Cisco, “Cisco Service Provider Wi-Fi: A Platform for Business Innova-
tion and Revenue Generation,” in Cisco, 2015.

[2] P. Valerio, “Using carrier wifi to offload iot networks,” in Information-
Week: Network Computing, 2014.

[3] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN,” Queue,
vol. 11, no. 12, pp. 20:20–20:40, Dec. 2013.

[4] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“SDX: A Software Defined Internet Exchange,” in Proc. SIGCOMM
’14.

[5] S.K. Fayazbakhsh et al., “Enforcing Network-Wide Policies in the
Presence of Dynamic Middlebox Actions using FlowTags,” in Proc.
USENIX NSDI, 2014,.

[6] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving High Utilization with Software-driven
WAN,” SIGCOMM Comput. Commun. Rev. 2013.

[7] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined wan,” SIGCOMM Comput. Commun. Rev., 2013.

[8] D. Drutskoy, E. Keller, and J. Rexford, “Scalable network virtualization
in software-defined networks,” Internet Computing, IEEE, vol. 17, no. 2,
pp. 20–27, March 2013.

[9] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford, “A Slick
Control Plane for Network Middleboxes,” in Proc. HotSDN ’13.

[10] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: Enabling Innovation in Network
Function Control,” in Proc. ACM SIGCOMM, 2014.

[11] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“SIMPLE-fying Middlebox Policy Enforcement Using SDN,” in ACM
SIGCOMM ’13.

[12] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Participatory networking: An api for application control of SDNs,”
SIGCOMM Comput. Commun. Rev., 2013.

[13] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, and
R. Merz, “Programmatic Orchestration of WiFi Networks,” in Proc.
USENIX ATC ’14.

[14] V. Paxson, “Bro: A system for detecting network intruders in real-time,”
Comput. Netw. Dec. 1999.

[15] “Click modular router project,” http://read.cs.ucla.edu/click.
[16] ISO/IEC 23009-1:2014 - Dynamic adaptive streaming over HTTP

(DASH), 2014.
[17] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-

eown, and G. Parulkar, “Can the production network be the testbed?”
in OSDI ’10.

[18] “Meru Networks,” http://www.merunetworks.com. [Online]. Available:
http://www.merunetworks.com

[19] “Meraki,” http://www.meraki.com/. [Online]. Available: http://www.
meraki.com/

[20] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T. Hühn, and
R. Merz, “Programmatic Orchestration of WiFi Networks,” in Proc.
USENIX ATC ’14.

[21] J. Schulz-Zander, N. Sarrar, and S. Schmid, “AeroFlux: A Near-Sighted
Controller Architecture for Software-Defined Wireless Networks,” in
Proc. Open Networking Summit (ONS), 2014.

[22] R. Murty, J. Padhye, A. Wolman, and M. Welsh, “Dyson: an architecture
for extensible wireless LANs,” in Proc. USENIX ATC ’10.

[23] A. Cidon, K. Nagaraj, S. Katti, and P. Viswanath, “Flashback: decoupled
lightweight wireless control,” in ACM SIGCOMM ’12.

[24] Y. Yiakoumis, M. Bansal, A. Covington, J. van Reijendam, S. Katti, and
N. McKeown, “BeHop: A Testbed for Dense WiFi Networks,” in Proc.
WiNTECH ’14.

[25] M. Bansal, A. Schulman, and S. Katti, “Atomix: A Framework for
Deploying Signal Processing Applications on Wireless Infrastructure,”
in Proc. NSDI, 2015.

[26] B. Chen, V. Yenamandra, and K. Srinivasan, “FlexRadio: Fully Flexible
Radios and Networks,” in Proc. NSDI 15, 2015.

[27] P. Zerfos, G. Zhong, J. Cheng, H. Luo, S. Lu, and J. J. Li, “DIRAC: a
software-based wireless router system,” in MobiCom, 2003.

[28] R. Murty, J. Padhye, R. Chandra, A. Wolman, and B. Zill, “Designing
high performance enterprise Wi-Fi networks,” in Proc. NSDI ’08.

[29] V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee, S. Keshav,
K. Papagiannaki, and A. Mishra, “CENTAUR: realizing the full potential
of centralized wlans through a hybrid data path,” in Proc. MobiCom
’09. [Online]. Available: http://doi.acm.org/10.1145/1614320.1614353

[30] S. S. Hong, J. Mehlman, and S. Katti, “Picasso: Flexible RF and
Spectrum Slicing,” in ACM SIGCOMM 2012.

[31] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, and I. Tin-
nirello, “MAClets: active MAC protocols over hard-coded devices,” in
Proc. CoNEXT ’12.

[32] K. Tan, J. Fang, Y. Zhang, S. Chen, L. Shi, J. Zhang, and Y. Zhang,
“Fine-grained channel access in wireless LAN,” in ACM SIGCOMM
2010.

[33] L. Yang, W. Hou, L. Cao, B. Y. Zhao, and H. Zheng, “Supporting de-
manding wireless applications with frequency-agile radios,” in USENIX
NSDI ’10.

[34] M. Bansal, J. Mehlman, S. Katti, and P. Levis, “OpenRadio: a pro-
grammable wireless dataplane,” in HotSDN ’12.

[35] China Mobile Research Institute, “C-RAN: The road toward green
RAN,” in White Paper, 2011.

[36] X. Jin, L. E. Li, L. Vanbever, and J. Rexford, “SoftCell: Scalable and
Flexible Cellular Core Network Architecture,” in CoNEXT ’13.

[37] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software
Defined Radio Access Network,” in Proc. HotSDN ’13’.

[38] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. ACM SIGCOMM 2012.

[39] A. Gember, A. Krishnamurthy, S. S. John, R. Grandl, X. Gao, A. Anand,
T. Benson, A. Akella, and V. Sekar, “Stratos: A network-aware orches-
tration layer for middleboxes in the cloud,” Technical Report, Tech. Rep.,
2013.

[40] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico replication: A high
availability framework for middleboxes,” in Proc. 4th annual Symposium
on Cloud Computing (SOCC), 2013.

[41] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for nfv: Simplifying middlebox modifica-
tions using statealyzr,” in Proc. 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2016, pp. 239–253.

14

[42] “Re-examining the performance bottleneck in a {NIDS} with detailed
profiling,” Journal of Network and Computer Applications, vol. 36, no. 2,
pp. 768 – 780, 2013.

[43] H. Dreger, C. Kreibich, V. Paxson, and R. Sommer, “Enhancing the
accuracy of network-based intrusion detection with host-based context,”
in Proc. DIMVA, 2005.

[44] R. Sommer, M. Vallentin, L. De Carli, and V. Paxson, “HILTI: An
Abstract Execution Environment for Deep, Stateful Network Traffic
Analysis,” in Proc. IMC, 2014.

[45] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi, “The
middlebox manifesto: Enabling innovation in middlebox deployment,”
in Proc. ACM HotNets, 2011.

[46] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/Merge: System Support for Elastic Execution in Virtual
Middleboxes,” in Proc. NSDI, 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2482626.2482649

[47] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster, “Merlin: A language for provisioning network resources,”
in Proc. CoNEXT, 2014.

[48] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the Art of Network Function Virtualization,”
in Proc. NSDI, 2014.

[49] C. Dixon, R. Mahajan, S. Agarwal, A. Brush, B. Lee, S. Saroiu, and
P. Bahl, “An operating system for the home,” in Proc. NSDI, 2012.

[50] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown,
“Slicing home networks,” in Proc. HomeNets ’11.

[51] R. Mortier, T. Rodden, T. Lodge, D. McAuley, C. Rotsos, A. W. Moore,
A. Koliousis, and J. Sventek, “Control and understanding: Owning your
home network,” in Proc. COMSNETS, 2012.

[52] Y. Yiakoumis, S. Katti, T.-Y. Huang, N. McKeown, K.-K. Yap, and
R. Johari, “Putting home users in charge of their network,” in Proc.
UbiComp ’12.

[53] M. S. Seddiki, M. Shahbaz, S. Donovan, S. Grover, M. Park, N. Feam-
ster, and Y.-Q. Song, “FlowQoS: QoS for the Rest of Us,” in Proc. ACM
HotSDN, 2014.

[54] K. R. Khan, Z. Ahmed, S. Ahmed, A. Syed, and S. A. Khayam, “Rapid
and scalable isp service delivery through a programmable middlebox,”
SIGCOMM Comput. Commun. Rev. 2014.

[55] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann,
“Opensdwn: Programmatic control over home and enterprise wifi,” in
Proc. ACM Sigcomm Symposium on SDN Research (SOSR), 2015.

[56] J. Schulz-Zander, R. Lisicki, S. Schmid, and A. Feldmann, “Secuspot:
Toward cloud-assisted secure multi-tenant wifi hotspot infrastructures,”
in Proc. ACM CoNEXT Workshop on Cloud-Assisted Networking (CAN),
2016.

Julius Schulz-Zander is a Postdoctoral Researcher
at the Fraunhofer Heinrich-Hertz-Institute (HHI),
Germany. He also continues working as a con-
sulting Postdoc in Prof. Anja Feldmann’s group at
Technische Universität Berlin (TU Berlin), Germany.
Previously, he was a research assistant at TU Berlin
and Deutsche Telekom Innovations Laboratories (T-
Labs) in Berlin, Germany. From 2007-2011, he
was a student worker working at the T-Labs and a
research scholar in Prof. Nick McKeown’s group at
Stanford University in 2009. His current research is

centered around network architectures and security, virtualization, wireless
networking, machine learning, and embedded systems.

Carlos Mayer is a software engineer in a Berlin-
based startup company working on distributed
services-oriented architectures. He received a B.Sc.
in Electrical Engineering from the Federal Technical
University of Paraná, Brazil, and a M.Sc. in Com-
puter Engineering from the Technische Universität
Berlin in 2015. During his masters studies, he fo-
cused on computer networking, specifically on wire-
less networking, Network Function Virtualization,
and SDN.

Bogdan Ciobotaru is a software developer in a
Berlin-based startup working on Backend Devel-
oper and Data Scientist. He received his M.Sc.
in Computer Engineer from Technische Universität
Berlin and his B.Sc. from University Politehnica
of Bucharest in 2015 and 2010, respectively. His
main research interest are telecommunication sys-
tems, wireless networking, network architectures and
security.

Stefan Schmid is an Associate Professor at Aalborg
University, Denmark (since 2015). He received his
MSc (2004) and PhD degrees (2008) from ETH
Zurich, Switzerland. Subsequently, Stefan Schmid
worked as postdoc at TU Munich and the University
of Paderborn (2009). From 2009-2015, he was a
senior research scientist at the Deutsche Telekom
Innovations Laboratories (T-Labs) in Berlin, Ger-
many. His research interests revolve around the
fundamental and algorithmic problems of networked
and distributed systems.

Anja Feldmann Since 2006 Prof. Anja Feldmann,
Ph.,D. is a full professor at the Technische Uni-
versität Berlin, Germany. From 2000 to 2006 she
headed the network architectures group first at Saar-
land University and then at TU München. Before
that (1995 to 1999) she was a member of the Net-
working and Distributed Systems Center at AT&T
Labs – Research in Florham Park, New Jersey.
Her current research interests include Internet mea-
surement, traffic engineering and characterization,
network performance debugging, intrusion detection,

and network architecture. She has been Co-Chair of ACM SIGCOMM and
IMC and Co-PC-Chair of ACM SIGCOMM, ACM IMC, and ACM HotNets.
She is a member of the German Academy of Sciences Leopoldina, the BBAW,
and the supervisory board of SAP SE. She received a M.S. degree in Computer
Science from the University of Paderborn in 1990 and M.S. and Ph.D. degrees
in CS from CMU in 1991 and 1995, respectively.

