
Data Locality and Replica Aware

Virtual Cluster Embeddings

Carlo Fuerst1 Maciej Pacut2 Stefan Schmid3

1 TU Berlin, Germany 2 University of Wroclaw, Poland
3 Aalborg University, Denmark

Abstract

Virtualized datacenters offer great flexibilities in terms of resource allocation.
In particular, by decoupling applications from the constraints of the under-
lying infrastructure, virtualization supports an optimized mapping of virtual
machines as well as their interconnecting network (the so-called virtual clus-
ter) to their physical counterparts: a graph embedding problem.

However, existing virtual cluster embedding algorithms often ignore a
crucial dimension of the problem, namely data locality : the input to a cloud
application such as MapReduce is typically stored in a distributed, and some-
times redundant, file system. Since moving data is costly, an embedding al-
gorithm should be data locality aware, and allocate computational resources
close to the data; in case of redundant storage, the algorithm should also
optimize the replica selection.

This paper initiates the algorithmic study of data locality aware virtual
cluster embeddings on datacenter topologies. We show that despite the mul-
tiple degrees of freedom in terms of embedding, replica selection and as-
signment, many problems can be solved efficiently. We also highlight the
limitations of such optimizations, by presenting several NP-hardness proofs;
interestingly, our hardness results also hold in uncapacitated networks of
small diameter.

1. Introduction

Distributed cloud applications, such as batch-processing applications or
scale-out databases, generate a significant amount of network traffic [25]. For
instance, MapReduce consists of a network intensive shuffle phase, where data

Preprint submitted to Elsevier TCS May 23, 2017

is transferred from the mappers to the reducers. In order to ensure a pre-
dictable application performance, especially in shared cloud environments,
it is important to provide isolation and bandwidth guarantees between the
virtual machines [37], e.g., by making explicit network reservations [5]. Ac-
cordingly, modern batch-processing applications provide the abstraction of
entire virtual networks [25], defining both the virtual machines as well as their
interconnecting network. The most prominent virtual network abstraction is
the virtual cluster [5, 16, 30, 34].

Virtualized datacenters offer great flexibilities on where these virtual net-
works can be instantiated or embedded. In order to maximize the resource
utilization in the datacenter, it is in principle desirable to map the virtual
machines of a given virtual network as close as possible in the underlying
physical network, as this minimizes communication costs (respectively, band-
width reservations) [5, 16, 30, 34].

However, existing systems often ignore a crucial dimension of the vir-
tual network embedding problem: the fact that the input data for a cloud
application, consisting of atomic chunks, is typically distributed across dif-
ferent servers and stored in a distributed file system [6, 18, 32]. In order
to properly minimize communication costs, an embedding algorithm should
hence also be data locality aware [4, 23, 36], and allocate (or embed) com-
putational resources close to the to be processed data. Moreover, in case
of redundant storage (batch processing applications often provide a 3-fold
redundancy [32]), an algorithm should also be aware of, and exploit, replica
selection flexibilities.

1.1. Our Contributions

This paper initiates the formal study of data-locality and replica aware
virtual network embedding problems in datacenters. In particular, we decom-
pose the general optimization problem into its fundamental aspects, such as
assignment of chunks, replica selection, and flexible virtual machine place-
ment, and answer questions such as:

1. Which chunks to assign to which virtual machine?

2. How to exploit redundancy and select good replicas?

3. How to efficiently embed virtual machines and their inter-connecting
network?

4. Can the chunk assignment, replica selection and virtual machine em-
bedding problems be jointly optimized, in polynomial time?

2

We draw a complete picture of the problem space: We show that even
problem variants exhibiting multiple degrees of freedom in terms of replica
selection and embedding, can be solved optimally in polynomial time, and
we present several efficient algorithms accordingly. However, we also prove
limitations in terms of computational tractability, by providing reductions
from 3-D matching and Boolean satisfiability (Sat). Interestingly, while it
is well-known that (unsplittable) multi-commodity flow problems are NP-
hard in capacitated networks, our hardness results also hold in uncapacitated
networks; moreover, we show that NP-hard problems already arise in small-
diameter networks (as they are widely used today [2]).

1.2. Organization

Section 2 introduces our formal model in detail. Algorithms are presented
in Section 3 and hardness results are presented in Section 4. Section 5 takes
a deeper look at the NP-hardness variants. After discussing related work in
Section 6, we conclude our work in Section 7.

2. Model

To get started, and before introducing our formal model and its con-
stituent parts in detail, we will discuss the practical motivation. Figure 1
gives an overview of our model.

2.1. Background and Practical Motivation

Our model is motivated by batch-processing applications such as MapRe-
duce. Such applications use multiple virtual machines to process data, of-
ten redundantly stored in a distributed file system implemented by multi-
ple servers [4, 10]. Datacenter networks are typically organized as fat-trees,
with servers are located at the tree leaves and inner nodes being switches
or routers. Given the amount of multiplexing over the mesh of links and
the availability of multi-path routing protocol, e.g. ECMP, the redundant
links can be considered as a single aggregate link for bandwidth reserva-
tions [5, 16, 30, 34].

During execution, batch-processing applications typically cycle through
different phases, most prominently, a map phase and a reduce phase; between
the two phases, a shuffling operation is performed, a phase where the results
from the mappers are communicated to the reducers. Since the shuffling
phase can constitute a non-negligible part of the overall runtime [7], and since

3

c3 c2c4 c2c1c1 c3

c4
v2v1

Figure 1: Overview: a 9-server datacenter storing τ = 4 different chunk types {c1, . . . , c4}
(depicted as circles). The chunk replicas need to be selected and assigned to the two
virtual machines v1 and v2; the virtual machines are depicted as squares, and the network
connecting them to chunks (at bandwidth b1) is dashed. In addition, the virtual machines
are inter-connected among each other at bandwidth b2 (dotted). The objective of the
embedding algorithm is to minimize the overall bandwidth allocation (sum of dashed and
dotted lines).

concurrent network transmissions can introduce interference and performance
unpredictability [37], it is important to provide explicit minimal bandwidth
guarantees [25]. In particular, we model the virtual network connecting the
virtual machines as a virtual cluster [5, 25, 34]; however, we extend this
model with a notion of data-locality. In particular, we distinguish between
the bandwidth needed between the assigned chunk and virtual machine (b1)
and the bandwidth needed between two virtual machines (b2).

2.2. Formal Model

Let us now introduce our model more formally. The model combines three
components: (1) the substrate network (the servers and the connecting phys-
ical network), (2) the input which needs to be processed (divided into data
chunks), and (3) the virtual network (the virtual machines and the logical
network connecting the machines to each other as well as to the chunks).

The Substrate Network. The substrate network (also known as the
host graph) represents the physical resources: a set S of nS = |S| servers
interconnected by a network consisting of a set R of routers (or switches)
and a set E of (symmetric) links; we will often refer to the elements in S ∪R
as the vertices. We will assume that the inter-connecting network forms an
(arbitrary, not necessarily balanced or regular) tree, where the servers are
located at the tree leaves. Each server s ∈ S can host a certain number of

4

virtual machines (available server capacity cap(s)), and each link e ∈ E has
a certain bandwidth capacity cap(e).

The Input Data. The to be processed data constitutes the input to the
batch-processing application. The data is stored in a distributed manner; this
spatial distribution is given and not subject to optimization. The input data
consists of τ different chunk types {c1, . . . , cτ}, where each chunk type ci can

have ri ≥ 1 instances (or replicas) {c(1)i , . . . , c
(ri)
i }, stored at different servers.

A single server may host multiple chunks. It is sufficient to process one
replica, and we will sometimes refer to this replica as the active (or selected)
replica.

The Virtual Network. The virtual network consists of a set V of nV =
|V | virtual machines, henceforth often simply called nodes. Each node v ∈ V
can be placed (or, synonymously, embedded) on a server; this placement can
be subject to optimization.

Depending on the available capacity cap(s) of server s, multiple nodes may
be hosted on s. We will denote the server s hosting node v by π(v) = s. Since
these nodes process the input data, they need to be assigned and connected to
the chunks. Concretely, for each chunk type ci, exactly one replica c

(j)
i must

be processed by exactly one node v; which replica c
(k)
i is chosen is subject to

optimization, and we will denote by µ the assignment of nodes to chunks.
In order to ensure a predictable application performance, both the con-

nection to the chunks as well as the interconnection between the nodes may
have to ensure certain minimal bandwidth guarantees; we will refer to the
first type of virtual network as the (chunk) access network, and to the second
type of virtual network as the (node) inter-connect ; the latter is modeled as
a complete network (a clique). Concretely, we assume that an active chunk
is connected to its node at a minimal (guaranteed) bandwidth b1, and a node
is connected to any other node at minimal (guaranteed) bandwidth b2.

2.3. Optimization Objective

Our goal is to develop algorithms which accept and embed a request
whenever this is possible, and minimize the resource footprint : the amount
of resources which have to be dedicated to a request, in order to realize its
guarantees. Essentially, the footprint captures the overall resource alloca-
tion, and is the most common objective function considered in the literature
(a.k.a. as the min-sum objective guarantee) [14].

Formally, let dist(v, c) denote the distance (in the underlying physical
network T) between a node v and its assigned (active) chunk replica c, and

5

let dist(v1, v2) denote the distance between the two nodes v1 and v2. We
define the footprint F(v) of a node v as follows:

F(v) =
∑
c∈µ(v)

b1 · dist(v, c) +
1

2
·
∑

v′∈V \{v}
b2 · dist(v, v′)︸ ︷︷ ︸

only for inter-connect

,

where µ(v) is the set of chunks assigned to v. Our goal is to minimize the
overall footprint F =

∑
v∈V F(v).

2.4. Problem Decomposition

In order to chart the landscape of the computational tractability and in-
tractability of different problem variants, we decompose our problem into
its fundamental aspects, namely replica selection (RS), multiple chunk as-
signment (MA), flexible node placement (FP), node interconnect (NI), and
bandwidth constraints (BW), as described in the following. In this paper,
we will consider all possible 32 problem variants, where each of these five
aspects can either be enabled or disabled.

Replica Selection (RS). The first fundamental problem is replica se-
lection: if the input data is stored redundantly, the algorithm has the freedom
to choose a replica for each chunk type, and assign it to a virtual machine
(i.e., node). In the following, we will refer to a scenario with redundant
chunks by RS; in the RS-only scenario, the number of chunk types is equal
to the number of nodes. Otherwise, we will add the +MA property discussed
next.

Multiple Assignment (MA). If the number of chunk types τ is larger
than the number of nodes, each node needs to be assigned multiple chunks.
We will refer to such a scenario by MA. Since all nodes are identical and no
additional information regarding the chunks is available at request time, we
assume that each node will process an identical integer number of chunks m =
τ/nV .

Flexible Placement (FP). While the nodes are placed a priori in
some cases, the node placement (or synonymously: embedding) of nodes on
physical servers can also be subject to optimization. We will refer to this
degree of freedom by FP.

Node Interconnect (NI). We distinguish between scenarios where
bandwidth needs to be reserved both from each node to its assigned chunks
as well as to the other nodes (i.e., b1 > 0 and b2 > 0), and scenarios where

6

only the (chunk) access network requires bandwidth reservation (i.e., b1 > 0
and b2 = 0). We will refer to the former scenario where bandwidth needs
to be reserved also for the inter-connect, by NI. The node interconnect is
modelled as a complete graph, to account for the all to all communication
patterns of batch processing applications such as MapReduce.

Bandwidth Capacities (BW). We distinguish between an unca-
pacitated and a capacitated scenario where the links of the substrate net-
work come with bandwidth constraints, and will refer to the bandwidth-
constrained version by BW; the capacity of servers (the number of nodes
which can be hosted concurrently) is always limited. Note that capacity
constraints introduce infeasible problem instances, where it is impossible to
allocate sufficient resources to satisfy an embedding request.

3. Polynomial-Time Algorithms

Despite the various degrees of freedom in terms of embedding and replica
selection, we can solve many problem variants efficiently. This section intro-
duces three general techniques, which can roughly be categorized into flow
(Section 3.1), matching (Section 3.2) and dynamic programming (Section 3.3)
approaches. First, let us make a simplifying observation:

Observation 1. In problems without flexible placement (FP), the bandwidth
required for the inter-connect network (NI) can be allocated upfront, as it
does not depend on the replica selection and assignment. Accordingly, we can
reduce problem variant RS+MA+NI+BW (as well as all its subproblems)
to RS + MA + BW (resp. its subproblems).

3.1. Flow Algorithms (RS + MA + NI + BW)

We first present an algorithm to solve the RS+MA+NI+BW problem.
Recall that in this problem variant, we are given a set of redundant chunks
(RS) and a set of nodes (the nodes) at fixed locations (no FP). The number
of chunk types is larger than the number of nodes (MA), and each node
needs to be connected to its selected chunks as well as to other nodes (NI),
while respecting capacity constraints (BW). Our goal is to minimize the
resource footprint F, consisting of the bandwidth reservations in the (chunk)
access network and the (node) inter-connect. As we will see in the following,
we can use a flow approach to solve this problem variant.

Construction of Artificial Graph. In order to solve the RS + MA +
NI + BW problem, we first remove the NI property using Observation 1.

7

FP

BW

RS
MA

NI

Figure 2: Variants solved by flow approach.

We then construct an artificial graph T ∗, extending the substrate network T
and normalizing bandwidth capacities, as follows. For T ∗, we normalize
the bandwidth of T to integer multiples of b1, i.e., for each link e ∈ E(T),
we set its new capacity in T ∗ to bcap(e)/b1c. After this normalization, we
extend the topology T by introducing an artificial vertex for each chunk type.
These artificial vertices are connected to each leaf (i.e., server) in T where
a replica of the respective chunk type is located, connecting the replica of
the respective chunk type by a link of capacity 1. In addition, we create a
super-source s+, and connect it to each of the artificial chunk type vertices
(with a link of capacity 1). Moreover, we create an artificial super-sink s−

and connect it to every leaf containing at least one node; the link capacity
represents the number of nodes x hosted on this server, times the multi-
assignment factor m. We additionally assign the following costs to edges
of T ∗: every edge of the original substrate network costs one unit, and all
other artificial edges cost nothing.

A solution to the RS + MA + BW problem can now be computed from
a solution to the Min-Cost-Max-Flow problem between super-source s+ and
super-sink s− on the artificial graph T ∗.

Example. Figure 3 shows an example of the extended substrate net-
work T ∗: The sink s− is connected to the two leaves, which host the nodes.
The artificial nodes are depicted below the leaves, are labeled with their re-
spective chunk types (e.g., c1), and are connected to the source s+ as well as

8

Figure 3: Example of flow construction: Problem instance with two nodes, four chunk
types, and two replicas per type. The min-cost-max-flow is indicated by the dashed lines:
each line represents one unit of flow.

to the leaves which contain replicas of their chunk type. The maximum flow
with minimal costs is indicated by the dashed lines: each line represents one
unit of flow. The dotted lines indicate links which have reduced capacity due
to NI.

Algorithm. Our algorithm to solve RS + MA + NI + BW consists
of three parts: First, we construct the normalized and extended graph T ∗

described above and compute a min-cost-max-flow solution, e.g., using [19,
33]. Second, we have to round the resulting, possibly fractional flow, to
integer values. Due to the integrality theorem [1], there always exists an
optimal integer solution on graphs with integer capacities. However, while
algorithms like the successive shortest path algorithm [24] directly give us
such an integral solution (in polynomial time), the fastest min-cost-max-flow
algorithms (e.g., based on double-scaling methods [19] or minimum mean-
cost cycle algorithms [33], may yield fractional solutions which need to be
rounded to integral solutions (of the same cost). In order to compute integral
solutions, we proceed as follows: we iteratively pick an arbitrary (loop-free)
path currently having a fractional allocation of value f (f > 0), and distribute
its flow f among all other fractional paths of the same length; due to the
optimality of the fractional solution and due to the integrality theorem, such
paths must always exist. After distributing this flow, the total allocation

9

on this path will be 0, and we have increased the number of integer paths
by at least one. We proceed until we constructed the perfect matching.
Third, given an integer min-cost-max-flow solution, we need to decompose
the integer flow into the paths representing matched chunk-node pairs: The
assignment can be obtained by decomposing the flow allocated in the original
substrate network. In order to identify a matched chunk-node pair, we take
an arbitrary (loop-free) path p carrying a flow of value ≥ 1 from s+ to s−:
the first hop represents the chosen chunk type, the second hop the chosen
replica, and the last but one hop represents the server: we will assign the
replica to an arbitrary unused node on this server. Having found this pair,
we reduce the flow along the path p by one unit. We continue the pairing
process until every chunk type is assigned.

Analysis. The correctness of our approach follows from our construction
of T ∗, using integer capacities (in our case bcap(e)/b1c), and the fact that cost
optimal integral solutions always exist [1]. The runtime of our algorithm con-
sists of four parts: construction of T ∗, computation of the min-cost-max-flow,
flow rounding, and decomposition. The dominant term in the asymptotic
runtime is the flow computation. Using the state-of-the-art min-cost-max-
flow algorithms [19, 33] we get a runtime of O(n2

S · log log min{U, τ}) where U
is the maximal link capacity; note that in networks with high capacity and
uncapacitated networks, we can simply set U = τ .

3.2. Matching Algorithms (RS + MA + NI and MA + NI + BW)

This section presents faster algorithms to solve the two problem variants
RS+MA+NI and MA+NI+BW which can also be solved with the flow
approach introduced above. In general, we refer to the algorithms presented
in this section as matching approaches.

3.2.1. RS + MA + NI

Let us first consider the RS + MA + NI variant. Recall that in this
problem, we are given a set of redundant chunks (RS) and a set of nodes
at fixed locations. The number of chunk types is larger than the number of
nodes (MA), and each node needs to be connected to its chunks as well as to
other nodes (NI). Our goal is to minimize the resource footprint F, consisting
of the bandwidth reservations in the access network and the inter-connect.

Algorithm. Due to Observation 1, RS+MA+NI degenerates to RS+
MA. In order to solve the RS+MA problem variant, we construct a bipartite
graph between the set V of nodes and the set of chunks. Concretely, we clone

10

FP

MA
RS

NI

BW

Figure 4: Variants solved by matching approaches.

each node m times, as each node needs to process m chunk types, and we
collect all copies of a given chunk type in a single “super-node”. We connect
each node to all chunk types using the lowest hop count to one of the copies
as the cost metric (the link weight). On the resulting bipartite graph, we
can now compute a Minimum Weight Perfect Matching [17]: the resulting
matching describes the optimal assignment of chunks to nodes.

Example. Before analyzing our algorithm, let us consider a small exam-
ple. Figure 5 illustrates an instance where two nodes are cloned into m = 2
nodes each, resulting in a total of four nodes in the matching problem repre-
sentation. The two replicas of each chunk type are aggregated into a single
chunk type vertex cj in the matching problem; this gives a total of four chunk
type vertices in the matching graph. The costs on the links between all clones
of a specific vertex and a chunk type are set to the minimum distance. We
can observe this for instance at the edges connecting the two clones of v1
to c2: both weights are 0.

Analysis. The correctness of our algorithm follows from the construction
and the optimal solution of the minimum matching. The runtime consists of
two parts: the construction of the matching graph and the actual matching
computation. The constructed graph consists of m · nV · τ many edges, and
for each edge we need to compute its cost, i.e., the shortest distance which
in a tree can be computed in time nS; thus, the overall construction time is
O(nS · τ 2). The state of the art algorithm to compute matchings are based

11

Figure 5: The RS+MA problem on the left is converted into a matching problem on the
right. Since each node has to process two chunks, the nodes are replicated in the matching
representation. The two replicas of each chunk type are represented by a single node, and
all edges connecting to this node have a weight according to the shorter distance to one
of the replicas. This is visualized for c2.

on scaling techniques [13]. The runtime translates to O(τ 5/2 · log(τ · nS));
recall that τ = m · nV .

3.2.2. Faster MA + NI and MA + NI + BW

We now show that we can solve MA + NI even faster, by exploiting
locality. Moreover, we will show that we can even solve MA + NI + BW
problem variants by simply verifying feasibility. In the following, due to
Observation 1, we can focus on the MA resp. MA + BW problem.

We first introduce the following definition.

Definition 1 (Local Assignment (LA)). We define an assignment µ to
be local in a specific subtree T ′, iff µ assigns the maximum number of chunks
in the subtree to nodes in the same subtree. We define µ to be local when it
is local with respect to all possible subtrees of the substrate network.

Example. Figure 6 illustrates the concept of local assignment: The
closest chunk to v2 is c1, and the closest node to c1 is v2. However, a subtree T ′

exists such that v1 ∈ T ′ and c1 ∈ T ′, but v2 /∈ T ′. Therefore, a local
assignment cannot assign c1 to v2.

We will see later that optimal solutions to MA have a local assignment.
We exploit this in our algorithms described in the following.

12

Figure 6: Illustration of local assignment: The dashed lines indicate bandwidth allocations,
which occur independently of the chosen assignment. The dotted lines indicate bandwidth
allocation which occur only if c2 is assigned to v1.

Algorithm. Our proposed algorithm for MA proceeds in a bottom-
up fashion, traversing the substrate network T from the leaves toward the
root. For each subtree T ′, we maintain two sets S1, S2 in order to match
unmatched chunks S1 in the subtree T ′ to unmatched nodes S2 in T ′. Both
sets are initially empty.

We first process all the leaves, in an arbitrary order; subsequently, we
process arbitrary inner vertices of T , whenever all their children have been
processed. We process any leaf ` by adding any nodes or chunks which are
located on ` to the corresponding sets S1 and S2. A non-leaf vertex u is
processed in the following way: we take the union of the sets of u’s children,
i.e., the sets contain the unmatched chunks and nodes in this subtree. For
both leaves and inner nodes, whenever both sets are non-empty, we greedily
match an arbitrary chunk in S1 with an arbitrary node in S2, and remove
them from the sets.

Analysis. On a given vertex u, emptying one of the sets, results in a
local assignment (cf Definition 1) in the subtree rooted at u. The bottom-up
strategy ensures that this works for every subtree in the substrate, rendering
the resulting assignment local. The complexity of this construction is low:
For each vertex in the substrate graph, we build the union of the children’s
sets, and since each vertex can only be the child of one vertex, the amortized

13

runtime per vertex is constant; and hence the overall runtime O(nS). The
sum of all remove operations, is equal to the number of chunk types O(τ).
Hence the overall complexity of this construction amounts to O(nS + τ).

It remains to prove optimality of such local assignments. By uplink of a
subtree with root r we denote the edge from parent(r) to r (if it exists). We
first characterize the bandwidth allocation on uplinks of subtrees.

Lemma 1. Given an MA problem and a subtree T ′ containing x chunks
and y nodes, the minimal bandwidth allocation of any assignment µ on the
uplink of T ′ is |x− y ·m| · b1.

Proof. In case the number of chunk types equals the processing capacities
of the nodes in the given subtree, the bandwidth allocation inflicted by the
chunk access network on the uplink can be zero, since we can assign all chunks
to nodes in the same subtree. Otherwise, we distinguish between two cases:
Recall, that in instances without RS, all chunks have to be processed. In case
there are more chunks in the subtree, at least all of the excess chunks have
to be transferred to a different subtree, which will inflict costs b1 per excess
chunk on the uplink connecting T ′ with the remaining parts of T , which will
inflict costs b1 per excess chunk on the uplink of root of T ′. Similarly, if the
processing capabilities exceed the amount of available chunks, excess chunks
from other subtrees will have to be transferred to nodes in the subtree T ′,
inflicting bandwidth costs of b1 each. Hence, the minimum bandwidth alloca-
tion for the chunk access on the uplink is the difference between the number
of chunks and the processing capabilities of the subtree |x− y ·m| times the
amount of bandwidth needed, for a single transfer b1.

Theorem 2. Given an MA+NI problem instance, a feasible assignment µ
is optimal iff it is local.

Proof. Local assignments generate exactly the minimal allocations on all
links, as the assignments which generate the minimal bandwidth allocations
described in the proof of Lemma 1 are local in the given subtree. Hence each
local assignment has to be optimal. A non-local assignment, has at least one
subtree, in which it is not local. This subtree will have a higher allocation on
the uplink. Since the local assignment has minimal allocations on all other
links, the non local assignment has a larger footprint.

14

Combined with a simple postprocessing step, this approach can also
solve MA + BW. The central idea of this extension, is that local assign-
ments allocate the minimal bandwidth on each individual edge. In conse-
quence, each bandwidth constraint which is lower than the allocation of a
local assignment on one link, renders the problem infeasible. Hence, it is suf-
ficient to temporarily omit the bandwidth limitations, compute an optimal
assignment for an MA instance, and verify that the resulting allocations do
not violate any capacities. The postprocessing step scales linearly with the
number of edges in the substrate graph.

3.3. Dynamic Programming (MA + FP + NI + BW)

We now show how to solve the MA+FP+NI+BW problem variant in
polynomial time. Note that this problem variant requires to find a tradeoff
between the desire to place nodes as close as possible to each other (in order
to minimize communication costs), and the desire to place nodes as close as
possible to the chunk locations.

Example. Figure 8 shows an example: one extreme solution is to min-
imize the distance between chunks and nodes, see mapping π1 in Figure 8
(left): the four nodes are all collocated with chunks, resulting in a zero-cost
chunk access network. As a result, the paths between the individual nodes
are longer than in alternative node placements: each node has a distance of
two hops to one other node, and four hops to two other nodes. Hence the
resulting allocations for the node interconnect sum up to 20 · b2.

Figure 8 (right) shows a different node mapping π2, which seeks to min-
imize the communication costs between the nodes, and places all nodes in
one subtree. The distance between all nodes is two, which results in a total
bandwidth allocation of 12 · b2 for the interconnect. However, this reduced
price comes at additional costs in the access network: c3 and c4 have to
be communicated to v3 and v4, which requires a total bandwidth allocation
of 8 · b1.

Basic ideas. Our proposed approach is based on dynamic programming,
and leverages the optimal substructure property of MA + FP + NI + BW:
as we will see, optimal solutions for subproblems (namely subtrees) can ef-
ficiently be combined into optimal solutions for larger problems. Indeed,
the MA + FP + NI + BW problem exhibits such a structure, and we show
how to exploit it to compute efficient embeddings, even in scenarios where
multiple chunks need to be assigned to flexibly placeable nodes.

15

RS

FP
NI

MA

BW

Figure 7: Variants solved by dynamic programming approach.

Figure 8: Two different node placements for the same substrate graph and chunk locations.
For b1 = b2, both solutions have an identical footprint. In other cases, one solution
outperforms the other.

For ease of presentation we will transform the substrate network T into a
binary tree, using binarization: we clone every higher-degree node, iteratively
attaching additional clones as right children and original children as left
descendants.

As usual in dynamic programs, we define, over the structure of the tree, a
recursive formula f for the minimal cost solution given any possible number
of nodes embedded in a given subtree. The actual set does not matter, due to
symmetry arguments. Our approach is to evaluate this function in a bottom-
up manner. To finally compute the actual optimal embedding, we traverse
the computed minimal-cost path backwards (according to the optimal values
found for f during the bottom-up computation).

16

Concretely, the first argument to function f is a subtree T ′, containing
a given number of chunks y(T ′), and the second argument is the number of
nodes to be embedded in the subtree. Function f is evaluated in a bottom
up manner. We initialize the function at each leaf `, by f(T`, x) = ∞ for
all numbers of nodes x which are larger than the server capacity cap(`); to
calculate f(T`, x), for x ≤ cap(`), we compute the bandwidth allocation on
the uplink of T`, referred to by the function bw(T`, x): bw(Tl, x) = b1 · |x−
y(T`)|+ b2 · (nV − x) · x, which accounts for the bandwidth allocation on
the uplink of T`. The first term represents the required bandwidth for the
communication between the x nodes on `, and the nV − x nodes in the
remaining parts of the substrate network. The second term represents the
bandwidth, which is necessary to transport the chunks from their location to
the node which should process the data (see Lemma 1 for more details).

After initialization, we proceed to compute f for non-leaf nodes in a
bottom-up manner: We split the x nodes into two positive integer val-
ues, and we put r on the right and x − r on the left subtree. That is,
we take the optimal cost (given recursively) of placing r nodes in the right
subtree Ri(T ′) of T ′ and x − r nodes in left subtree Le(T ′) of T ′. Given
the cheapest combination, we add the bandwidth requirements on the up-
link of T ′ to generate the overall costs for placing x nodes in T ′. There-
fore, f(T ′, x) = min0≤r≤x {f (Le(T ′), x− r) + f (Ri(T ′), r)} + bw(T ′, x).
Again, we set f(T ′, x) to infinity if the required bandwidth bw exceeds the
capacity cap of the uplink of T ′.

Analysis. The correctness and optimality of our dynamic program is
due to the decoupling of the costs induced by the tree structure of T and
the substructure optimality property. The substructure optimality follows
from the observation that costs can be accounted on the uplink, and the
fact that we check each possible node distribution. For each substrate vertex
(nS many) we have to check the cost of all possible splits, resulting in an
overall complexity of O(nS ·n2

V). The runtime to binarize T is asymptotically
negligible.

3.4. Simple Problems

For the sake of completeness, we also observe that there are several prob-
lems which allow for a trivial solution. Concretely, problems with FP plus
any combination of RS and BW (but without MA and NI) can easily be
solved by mapping nodes to chunk locations. Figure 9 shows a Venn diagram
of the trivial property combinations.

17

BW

MA
RS

FP
NI

Figure 9: Trivially solvable problem variants.

4. NP-Hardness Results

We have seen that even problems with multiple dimensions of flexibility
can be solved optimally in polynomial time. This section now points out
fundamental limitations in terms of computational tractability. In particu-
lar, we will show that problems become NP-hard if flexibly placeable nodes
(FP) have to be assigned to one of multiple replicas (RS), either with mul-
tiple chunks per node (MA in Section 4.2) or with communication among
nodes (NI in Section 4.3). Both results hold even in uncapacitated networks,
and even in small-diameter substrate networks (namely two- or three-level
trees [2]). The hardness of FP+RS+MA and FP+RS+NI imply the hard-
ness of four additional, more general models, as summarized in Figure 10:

RS+FP+NI RS+FP+NI+BW

RS+MA+FP+NI RS+MA+FP+NI+BW

RS+MA+FP RA+MA+FP+BW

Figure 10: The NP-hardness of 2 variants implies the hardness of 4 other variants.

18

4.1. Introduction to 3D Perfect Matching

Both the hardness of FP + RS + MA and FP + RS + NI are shown
by a reduction from the NP-complete problem of 3D Perfect Matching [9],
which we can see as a generalization of bipartite matchings to 3-uniform
hypergraphs. We will refer to this problem by 3-DM, and for completeness,
review it quickly: 3-DM is defined as follows. We are given three finite and
disjoint sets X, Y , and Z of cardinality k, as well as a subset of triples T ⊆
X ×Y ×Z, and t = |T |. Set M ⊆ T is a 3-dimensional matching if and only
if, for any two distinct triples t1 = (x1, y1, z1) ∈M and t2 = (x2, y2, z2) ∈M ,
it holds that x1 6= x2, y1 6= y2, and z1 6= z2. Our goal is to decide if we
can construct a M ⊆ T which is perfect, that is, a subset which covers all
elements of X ∪ Y ∪ Z exactly once.

4.2. Multi-Assignments are hard (FP + RS + MA)

Our proof that FP+RS+MA is NP-hard is based on the following main
ideas. We encode a 3-DM instance as an FP+RS+MA instance as follows:

• For every element in the universe X ∪ Y ∪ Z, we create a chunk type.
Intuitively, in 3-DM, each element must be covered, which corresponds
to the requirement of FP+RS+MA that each chunk type is processed.

• We will encode each triple as gadget with three leaves in a substrate
tree T . The three leaves are close to each other in T , and the placement
of chunk replicas in FP+RS+MA corresponds to the elements of the
triples in these leaves.

• The node placement will correspond to the choice of triples, indepen-
dently of which leaf the node is mapped to. A node will process its
collocated chunk, as well as the chunks in other two leaves of the same
gadget.

• In order to turn the optimization problem into a decision problem,
we will use a cost threshold ξ. The cost threshold will be met by
all assignments which assign all three chunks of each triple to a node
which is collocated with one of the chunks. Assignments which connect
a chunk to a node in a different triple, will have a larger footprint, and
are considered to be infeasible.

19

Construction. Let I be an instance of 3-DM with t triples and set
cardinality k (k = |X| = |Y | = |Z|). We construct an instance I ′ of FP +
RS + MA as follows:

• Tree Construction: We create a tree consisting of a root, and for each
triple, we create a gadget which we directly attach as child of the root.
The gadget is of height 2, and has the following form: The gadget of
each triple consists of an inner node (a router) and three leaves.

• Chunks and chunk replicas: For each element in X, Y and Z, we create
a chunk type (3·k in total). Every gadget contains three chunk replicas,
corresponding to the elements of the triple. Each leave in a gadget,
contains exactly one replica.

• Other properties: We set the number of to-be-embedded nodes to k,
b1 to 1, and the number of chunk slots in each node to the multi-
assignment factor m = 3. We use a threshold ξ = 4 · k.

Example. Figure 11 shows an example of our construction: An in-
stance I of 3-DM is given: The disjoint sets X, Y and Z have a cardi-
nality k = 2. We will refer to the two elements in X as x1 and x2, and
use the same notation for the other two sets. T contains the three triples
(x1, y1, z1), (x2, y1, z2), and (x2, y2, z2). The goal of 3-DM is to find a sub-
set M ⊆ T , which contains each element in each of the three sets exactly
once. This instance only has one solution: M = {(x1, y1, z1), (x2, y2, z2))}.

To construct the corresponding instance I ′ of FP+RS+MA, we create
a gadget for each triple in T . For each variable which occurs in a triple, the
corresponding gadget contains a chunk of the type of the variable. The triple
(x2, y1, z2) of the instance is represented by the middle gadget in Figure 11.
The objective of I ′ is to spawn k = 2 nodes, with the smallest possible
footprint. If the total footprint is at most 4 · k, we can construct a solution
to I from the solution to I ′. The footprint consists of the costs which occur
when a node is embedded in a gadget, and the three chunks of that gadget
which are assigned to that node: one of the chunks is collocated with the
node, the other two have to be transferred via two hops, inflicting unitary
costs on each hop.

Correctness. Given these concepts, we can now show the computational
hardness.

Theorem 3. FP + RS + MA is NP-hard.

20

Figure 11: Left: A 3-DM instance with three triples: (x1, y1, z1), (x2, y1, z2),
and (x2, y2, z2). The solution is indicated by the grey triples; the dashed triple is not
used for the solution. Right: The corresponding problem and solution of FP+MA+RS.

Proof. Let I be an instance of 3-DM and let I ′ be an instance of FP +
RS + MA constructed as described above. We prove that I ′ has a solution
of cost ≤ ξ if (⇒) and only if (⇐) I has a matching of size k.

(⇒) Let us take a feasible solution to 3-DM. We place a node in every
gadget that corresponds to the chosen triples. In each of the corresponding
gadgets, we match every chunk to the node in this gadget. This solution has
cost exactly ξ. As every element of the universe is covered, every chunk type
is processed.

(⇐) Let us take a solution to FP + RS + MA of cost at mostξ. We
choose triples that correspond to gadgets where there are nodes. Since all
chunks are processed, every element of X, Y and Z is matched. Each node
must process chunks that correspond to the triple, otherwise the cost must
be larger than ξ (high costs for chunk transportation).

4.3. Inter-connects are hard (FP + RS + NI)

Next, we prove that the joint optimization of node placement and replica
selection is NP-hard if an inter-connect has to be established between nodes.
In our terminology, this is the FP + RS + NI problem.

The proof is similar in spirit to the proof of FP+RS+MA, however, we
modify the construction to account for the absence of MA: we choose a high
value for b1, such that nodes will be directly collocated with their assigned
chunks. We leverage the fact that any solution which does not assign 0 or 3
chunks to each gadget, will have higher communication costs.

21

Construction. Let I be an instance of 3-DM with t triples and set
cardinality k (k = |X| = |Y | = |Z|). We will create an instance I ′ for FP +
RS + NI as follows:

• We will construct the same tree as in previous reduction with chunk
replicas placed in the same way.

• The communication cost in the inter-connect is set to b2 = 1.

• The number of nodes (virtual machines) is nV = 3 · k, where k is the
set cardinality.

• Only solutions which place a node in each leaf of k gadgets, can be con-
verted into solutions for the 3-DM problem. We use the cost threshold
ξ = 6·k+18·(k−1)·k, to verify whether a solution achieves this, trans-
forming FP+RS+NI into a decision problem. A detailed explanation
of this value can be found in the proof of Theorem 5.

• We set the access cost b1 to a chunk replica to a high value W . This will
force nodes to be collocated with the replica. One example of sufficient
(and polynomial but not necessarily minimal) W is the value of the
threshold ξ+1. Any solution not assigning chunks to collocated nodes,
have cost > ξ: communicating a chunk inflicts costs W = ξ + 1 over
every link.

We focus on instances with unit server capacities.
Proof of correctness of the reduction. Intuitively, in order to mini-

mize embedding costs, nodes should be placed on near-by replicas. We use
the following helper lemma.

Lemma 4. In every valid solution of I ′ of cost ≤ ξ, each gadget falls in one
of two categories: k gadgets have exactly 3 nodes, and t − k gadgets remain
empty.

Proof. Since W is large enough, the 3 · k nodes have to be placed directly
on different chunks, resulting in 0 costs for the access network. Consider any
pair of nodes communicating over the inter-connect; due to our construction,
the communication cost for each such pair is either 2 hops (if they belong
to the same gadget) or 4 hops (if they belong to different gadgets). The
lemma then follows from the observation that ξ is chosen such that it is
never possible to distribute nodes among more than k gadgets.

22

Theorem 5. FP + RS + NI is NP-hard.

Proof. Let I be an instance of 3-DM and let I ′ be an instance of FP+RS+NI
constructed as described above. We prove that I ′ has solution of cost ≤ ξ if
(⇒) and only if (⇐) I has a solution.

(⇒) In order to compute a solution for I ′ given a solution for I, we
proceed as follows. Given an exact covering set of triples S = {t1, t2, . . . , tk},
we place three nodes in each gadget that corresponds to every triple of S.
Chunks are matched to the nodes which are located on the same server.

The solution has the following cost: (1) the communication cost inside a
gadget is 2 ·

(
3
2

)
, as every pair contributes two hops; (2) the communication

cost from each gadget to all other gadgets is 4 · 3 · 3 · (k − 1)/2, where the
factor 4 is for the communication over 4 hops, the factor 3 corresponds to
the number of nodes per gadget, and 3 · (k − 1) is the number of nodes in
remote gadgets; as we count each pair twice, we need to divide by two in the
end. Summing up over all k gadgets, we get exactly ξ.

(⇐) Given a solution for I ′, we can exploit Lemma 4 to construct a
solution for I. We know that in any solution of cost at most ξ, k gadgets
contain exactly 3 nodes. These gadgets correspond to a valid 3D Perfect
Matching: exactly one replica of every chunk type is processed and hence
every element is covered exactly once.

5. A Detailed Study of Replica Selection Hardness

We have seen that replica selection flexibilities can render embeddings
computationally hard. We will now provide a more detailed look at this
hardness result and explore the minimal requirements for rendering replica
selection hard. In particular, we will show that already two replicas for each
chunk type are sufficient to introduce intractability.

Namely, we provide the NP-hardness results for two restricted variants
of Virtual Cluster Embedding (Sections 5.1 and 5.2). We augment the RS
variant of V CEMB problem in the following way: by RS(k) we denote
the problem where each chunk has the redundancy factor at most k. In
Section 5.1 we provide the hardness result for RS(2) + MA + FP, and in
Section 5.2 we provide the hardness result for RS(2) + FP + NI + BW.

Both problems are reduced from the problem 3DPM (see Section 4.1
with no further restrictions. The constructions are based upon the reduction
of 3DPM to FP+RS+MA (see Section 4.2) and the reduction of 3DPM to

23

FP+RS+NI (see Section 4.3). However, in contrast to Section 4.3, in two
replica variant without multiple assignment, we added the bandwidth con-
straints. It is currently unknown to the authors of this very paper, whether
the hardness result holds without bandwidth constraints (namely, whether
the problem RS(2) + FP + NI is NP-hard). The necessity for bandwidth
constraints arises as to deal with restricted factor of replication, we need to
introduce gadgets in the tree that makes the tree asymmetric. Introducing
bandwidth constraints allows to control the number of nodes spawning in
certain parts of the tree.

5.1. Two Replicas without Bandwidth Constraints

We now show that the 2-replica selection problem is even NP-hard
without capacity constraints. In particular, we consider the problem vari-
ant RS(2) +MA(4) +FP with at most two replicas of each chunk type and
assignment factor four. There are no capacity constraints on links.

Our construction consists of two major modifications to hardness result
without replication factor restrictions (for that result, refer to Section 4.2).

Unique chunks on the comb. First, we provide the tools for restricting
the placement of nodes in certain parts of the tree. In Section 4.2, due to
symmetric structure of the tree, the carefully crafted threshold value allowed
us to prove that e.g. no Triple Gadget ever had two or more nodes placed
in it. We still use the threshold value as the placement mechanism, but in
this section, due to the asymmetrical tree construction, we combine it with
the concept of unique chunks on the comb (by comb we denote the balanced
tree, where all non-root vertices have at most one child).

For an introduction to the concept of unique chunks, let us consider
the following example. Suppose that within one V CEMB construction, we
would like to encode not one 3DPM instance, but two 3DPM instances: M1

and M2, with disjoint universe and different number of triples to be chosen:
n1 and n2. We perform the following modifications to the encoding provided
in Section 4.2. The multi-assignment factor grows by 1, that is the instance
we construct is the RS + MA(4) + FP instance. We construct two subtrees
T1 and T2, that correspond to M1, resp. M2; we construct two two-edge-level
combs C1 and C2, with number of leaves n1, resp. n2. We attach M1 and C1

(resp. M2 and C2) to the common root and we name the resulting subtree
P1, resp. P2. Next, we attach P1 and P2 to the common root. In the end, the
height of the tree grew by 2. Finally, we populate both combs with unique
chunks, and we set the number of to-be-placed nodes to nV = n1 + n2. We

24

modify the threshold to be the sum of the thresholds for constructions for
M1 and M2 plus 4 · (n1 + n2). The last substrate of the threshold value cor-
responds to transportation of the fourth chunk processed by each machine
for the distance of four.

To see why the example indeed can solve two instances of 3DPM, we
need the following observations. First, we claim that no node is ever placed
in a comb. To prove this fact, we use the property of the comb that the
leaves are highly separated, and the fact that each machine has to process
4 chunks. Next, we claim that the number of nodes spawned in P1 (resp.
P2) is n1 (resp. n2). To see this, consider any imbalance of the number of
spawned nodes; notice that some chunks in the underpopulated comb are
processed outside of their Pi subtree, resulting in the solution that exceeds
the threshold.

Families of chunk types. The second tool that we introduce allows
us to express the redundancy of chunks without actually replicating chunks
more than two-fold. For simplicity of introduction, we consider the scenario
with no multi-assignment. For each chunk type c with redundancy, we count
the number of occurrences of replicas of such a chunk in the tree, and name
it rc. We replace the chunk type c with r chunk types, which we call the
family Fc of that chunk type. For each occurrence of replica of c, we replace
it with a replica of any chunk type from the family (without repetitions).
To this point, the redundancy factor was reduced from rc to 1. Now, we
construct the gadget Gc for chunk type c, which consists of rc leaves, each
hosting the second replica of each chunk type from family Fc. We use the
technique of unique chunks on the comb to constraint the number of nodes
in Gc to be exactly rc−1. We provide necessary additional rc−1 nodes to be
placed. Hence, exactly 1 node is placed on a chunk type of family Fc outside
the gadget Gc, and exactly rc − 1 nodes cover the remaining rc − 1 chunk
types inside gadget Gc. All chunk types are processed, the replication factor
is reduced to 2, and the size of construction grows polynomially.

Introduction to the reduction. As we already stated, we modify the
construction from Section 4.2. As a way to deal with replication, we use the
families of chunk types using the unique chunks on the comb. We extend
the construction of a gadget for chunk type with redundancy, by incorpo-
rating the fact that the multi-assignment factor is 4. For the construction
to remain correct given such a multi-assignment factor, we introduce further
chunks types with one chunk replica to place in the chunk gadget and use
the excessive 3 data processing capacities.

25

Construction. For arbitrary instance I3DPM of 3-DM we construct
a RS(2)+MA(4)+FP instance IV CEMB the way described in the remainder
of this section. Let k = |X| = |Y | = |Z|.

By T we denote the set of all triples of I3DPM, and let t = |T |. For each
e ∈ X ∪ Y ∪Z, by Te we denote the set of all triples that contain element e.
Let deg(e) = |Te|, and note that

∑
e deg(e) = 3 · t.

We proceed with the construction as follows.

Chunk types and replicas. We construct three sets of chunk types. The first
set corresponds to elements of the universe (that is, X ∪ Y ∪ Z). The con-
struction of such chunk types is similar to construction of chunk types in
Section 4.2, but to take into consideration the restricted replication factor,
we construct the familiy of chunk types (as described in the introduction to
this section). Namely, for each element of universe e, we construct as many
chunk types as there are occurences of e in triples of I3DPM. Each such chunk
type has exactly two replicas.

The other two sets of chunk types has one replica, therefore those are
called called unique chunks. We construct two types of unique chunks, dis-
tinguished by a different role in the construction. For unique chunks we
simply co-notate the chunk type with chunk replica.

Formally, the construction of chunk types and replicas unfolds as follows:

1. For each triple τ ∈ T , we construct 3 chunk types, with two replicas
each. We construct different chunk types for each triple τ , which con-
tain element e (in total deg(e) chunk types). We refer to those replicas
by ch1(e, τ) and ch2(e, τ). In total we construct 2 ·

∑
e deg(e) = 6 · t

chunk replicas.

2. We construct k additional chunk types named u1, . . . , uk with one
replica each.

3. For each element e ∈ X∪Y ∪Z, we construct additional 3 · (deg(e)−1)
chunks, with one replica each. We call this set Ue.

Tree. We construct the tree that has the following structure (see Figure 5.1):

1. The physical network consists of two subtrees connected to the root:
the Matching Subtree and the Cover Subtree. The Matching Subtree
consists of t Triple Gadgets , one per each triple τ ∈ T and k Unique
Gadgets . The Cover Subtree consist of 3 · k Element Gadgets , one for
each element e ∈ X ∪ Y ∪ Z.

26

. . .

. . .

. . .

.

. . .

3t k
4 · (deg(e1)− 1) + 1 4 · (deg(e3·k)− 1) + 1

τ1 τ2 τt u1 u2 uk e1 e2 e3·k

root

Matching Subtree Cover Subtree

Triple Gadgets Unique Gadgets Element Gadgets

Figure 12: Overview of the substrate network

2. Triple Gadget consists of four vertices: three leaves and the root of the
gadget.

3. Unique Gadget consists of two vertices: the leaf and the root of the
gadget. We construct the root node of the gadget not only to keep the
tree balanced, but also to keep leaves of Unique Gadgets far from leaves
of other Unique Gadgets . Note that Unique Gadgets form a comb.

4. Element Gadget for element e has a structure that depends on the
number of triples that cover e. The Element Gadget consists of the
root and 4 · (deg(e)− 1) + 1 leaves.

Chunk Placement. The chunks are placed as follows:

1. Chunks in the Matching Subtree: In Triple Gadget of triple τ we put
three replicas: ch1(eX(τ), τ), ch1(eY (τ), τ), ch1(eZ(τ), τ), one per each
leaf.

2. Chunks in the Unique Gadgets: We place replicas u1, . . . , uk at the
leaves of Unique Gadgets .

3. Chunks in Element Gadgets: Consider the Element Gadget for the
element e ∈ X ∪ Y ∪Z. We place two types of replicas in the leaves of
the gadget. We put replicas ch2(τ, e) for each τ ∈ Te. Additionally, we
place all the replicas from set Ue. In total, we place 4 · (deg(e)− 1) + 1
replicas, one per each leaf of the gadget.

Other properties of the instance.

1. Multiple assignment: We set the multi-assignment factor to m = 4.

27

2. Number of nodes: We set the number of nodes to spawn to nV =
k +

∑
e(deg(e)− 1) = 3 · t− 2 · k nodes.

3. Threshold: We set the following threshold: ξ = 18 · t − 10 · k. This
value corresponds to the cost of solution, where k nodes are matched to
4 chunks that are in distance: 0, 2, 2 and 4 to the node, and remaining
nV − k nodes are matched to 4 chunks that are in distance: 0, 2, 2 and
2 to the node.

The reduction.
Given any 3DPM instance I3DPM, we produce corresponding instance

of V CEMB variant, namely the RS(2) + MA + FP instance, in the way
described above. We refer to such RS(2)+MA+FP instance as the IV CEMB.

The reduction (Theorem 10) unfolds in two stages. First, given a solution
S3DPM to I3DPM, we construct a solution SV CEMB to IV CEMB. This part is
the easier of the two, and mainly consists of placing nodes in Triple Gadgets
for triples chosen in S3DPM.

In the second stage, given SV CEMB, we construct the S3DPM. In this
stage, the main difficulty lies in showing that SV CEMB has certain structure.

We call the Triple Gadget active, if it contains a node at any leaf, and we
call the node active if it is placed in Triple Gadget . Our goal is to show that
in every feasible solution, exactly k Triple Gadgets are active (Lemma 8),
and hence we can construct S3DPM from the triples that correspond to active
Triple Gadgets in SV CEMB.

In IV CEMB, chunks can be matched to nodes at distance 0, 2, 4 or 6. We
call the matches at distance 0 the free matches, the matches at distance 2
the neighbouring matches. In addition we call the matches at distance 0 or 2
the short matches, and the matches at distance 4 or 6 the long matches. We
call the distance between the pair of leaves the short distance, if the distance
between them is at most 2, otherwise we call said distance the long distance.

Proving the existance of more than k long matches is sufficient to show
that the instance is infeasible, as its cost exceeds the threshold. To see this,
note that the threshold value ξ corresponds to the cost of solution, where k
nodes has 1 free match, 2 neighbouring matches and 1 long match at distance
of 4 hops, and remaining nV − k nodes has 1 free match and 3 neighbouring
matches assigned. Note that the limit of nV free matches is exhausted, hence
excessive long matches cannot be compensated in any way. Hence, at most
k long matches are present in any feasible solution.

28

Lemma 6. In SV CEMB there are have exactly k nodes spawned in the Match-
ing Subtree.

Proof. We claim that each node spawned in the Matching Subtree results in
at least one long match. This fact is a consequence of the structure of the
tree and the fact that multi-assignment factor is set to 4. For each node
spawned in the Matching Subtree, by the construction of the tree, the node
has at most 3 leaves in short distance, hence at least one of the matches is
long. Hence, we conclude that spawning more than k nodes in the Matching
Subtree results in more than k long matches, which results in infeasibility of
the solution. In addition, each node spawned in Unique Gadget results in at
least 3 long matches, as the only leaf in short distance is the leaf collocated
with the node.

As at most k nodes are spawned in Matching Subtree, at least nV − k
nodes are spawned in the Cover Subtree. Assume then that nV − k + i
nodes spawned in the Cover Subtree for non-negative i. Now, we argue that
such node configuration results in 3 · i long matches. Consider the Element
Gadget ge for element e. The gadget ge has exactly 4 · (deg(e)−1)+1 leaves,
each hosting exactly one chunk replica. As 4 · (deg(e) − 1) + 1 mod 4 = 1,
spawnining deg(e) − 1 + j nodes in ge for non-negative j results in at least
3 · j long matches by the fact that there are insufficient chunk replicas in the
short distance. Using the fact that

∑
e(deg(e)−1) = 3 · t−3 ·k = nV −k, by

pidgeon-hole principle we conclude that indeed spawning nV −k+ i nodes in
the Cover Subtree results in at least 3 · i long matches.

Consider the configuration with nV − k + i nodes spawned in the Cover
Subtree, and k−i nodes spawned in the Matching Subtree. Such configuration
results in at least 2 · i+ k long matches, where 3 · i long matches come from
the excessive nodes spawned in the Cover Subtree, and k − i long matches
come from k− i nodes in the Matching Subtree. Hence we deduce that i = 0,
as otherwise the number of long matches would exceed k.

Lemma 7. In SV CEMB no node spawned in Unique Gadget.

Proof. By Lemma 6, exactly k nodes spawned in the Matching Subtree. Sup-
pose that out of k nodes in the Matching Subtree, a non-negative number of
nodes j spawned in the Unique Gadgets . From the fact that each leaf of
Unique Gadget has long distance to every other leaf, every node spawned in
Unique Gadget result in at least 3 long matches. Hence, the total number of

29

long matches is at least k − j + 3 · j. Finally, for the solution to be feasible
we allow at most k long matches, therefore no node spawns in the Unique
Gadget .

Lemma 8. In SV CEMB there are have exactly k active Triple Gadgets.

Proof. By Lemmas 7 and 6 we conclude that k nodes spawned in the Triple
Gadgets . As there are exactly 3 replicas in each Triple Gadget , spawning
more than one node in a single Triple Gadget results in at least additional 3
long matches. Hence, exactly k Triple Gadgets are active.

Lemma 9. In SV CEMB every chunk replica besides u1, . . . , uk is matched by
a short match.

Proof. By Lemma 8, exactly k nodes are spawned in Triple Gadgets , and by
Lemma 7 we deduce that chunks u1, . . . , uk are matched by long matches. As
at most k long matches are allowed for the solution to be feasible, remaining
matches are short.

Theorem 10. RS(2) + MA + FP is NP-hard.

Proof. Let’s take any instance I3DPM of 3DPM. We show that IV CEMB has
a solution of cost ≤ ξ if and only if I3DPM ∈ 3DPM (there exists a perfect
3D matching in I3DPM).

(⇐) Let’s take any feasible solution S3DPM to I3DPM. We construct a
solution SV CEMB in the following way:

1. We place k nodes in k Triple Gadgets (one per gadget) that correspond
to triples in S3DPM. The choice of exact leaf of the gadget to place a
node is arbitrary. We match each such node to 3 chunk replicas in the
gadget it is placed, and we match 1 arbitrary, unmatched chunk replica
in Unique Subtree.

2. In each Element Gadget that corresponds to element e, we place
deg(e) − 1 nodes and match them to arbitrary chunks in this gadget,
which are not yet matched in any Triple Gadget .

We can observe that every chunk type was processed, exactly k +∑
e(deg(e) − 1) nodes are spawned, and each of the nodes process exactly

4 chunk replicas. To see that indeed the produced solution do not exceed
the threshold ξ, we sum up the total transportation cost. The k nodes

30

placed in Triple Gadgets have 1 free match and 2 neighbouring matches to
chunk replicas within the Triple Gadget , and 1 long match of cost 4 (to some
Unique Gadget). The remaining nV − k nodes placed in the Cover Subtree
have 1 free match and 3 neighbouring matches. In total, the cost incurred is
8 · k + 6 · (nV − k) = ξ. Hence, the solution is indeed feasible.

(⇒) Let’s take any feasible solution SV CEMB to IV CEMB in the way de-
scribed in the construction section. By Lemma 8, exactly k Triple Gadgets
are active. We construct the solution S3DPM from the set of triples that
correspond to active Triple Gadgets .

It remains to show that S3DPM indeed matches every element of X∪Y ∪Z.
By Lemma 9, each match of ch(e, τ) for each e ∈ X ∪ Y ∪Z and each τ ∈ T
is matched by a short match. Hence, each active node processes the 3 chunks
that are placed in its Triple Gadget . In each Element Gadget for element e,
one chunk ch(e, τ) for some τ ∈ T is not matched. Let’s call this chunk
instance γ(e), and let’s call γ = ∪eγ(e). Note that |γ| = 3 · k. The set γ
is covered by active nodes , and hence the set of triples in S3DPM form a 3D
Perfect Matching of X ∪ Y ∪ Z.

5.2. Two replicas without Multiple Assignment

We now show that RS(2) + FP + NI + BW is even NP-hard without
multiple assignment. The proof is similar in spirit to proof of hardness of
RS(2) + FP + MA.

The reduction (Theorem 10) unfolds in two stages. First, given a solution
S3DPM to I3DPM, we construct a solution SV CEMB to IV CEMB. This part is
the easier of the two, and mainly consists of placing nodes in Triple Gadgets
for triples chosen in S3DPM.

In the second stage, given SV CEMB, we construct the S3DPM. Again, we
use the technique that we call “families of chunk types”, which was intro-
duced in previous section. The main technical difficulty lies in controlling
the number of nodes that are spawned in certain parts of (asymmetric) tree.
To guantee the desired number of spawned nodes, we use the bandwidth
constraints. Namely, if the number of nodes to be spawned in a subtree is k,
we set the bandwidth constraints on the uplink of the subtree to k · (m− k),
where m is the total number of machines to spawn in the instance. As we
further see in Lemma 11, such bandwidth constraint in form of a quadratic
expression provides both lower- and upper-bound on the number of machines
spawned in such subtree. To see this, consider a simple example: regardless
of the bandwidth constraint on the uplink of the subtree, capacities are not

31

exceeded in at least two scenarios: with all m nodes spawned in the subtree,
and with 0 nodes spawned in the subtree. More precisely, bandwidth con-
straints in such form excludes configurations with number of nodes between
k and m− k.

However, we are interested only in lower-bounding the number of nodes
to spawn in a subtree, and in fact the upper-bound on the number of nodes is
only a liability. We make sure that the upper-bound on the number of nodes
is always satisfied by artificially increasing the number of total nodes to be
spawned. In this way the upper-bound on number of nodes always exceeds
the number of leaves of any subtree in which we would like to have k nodes
spawned, see Lemmas 12 and 13. Additional nodes do not interfere with the
rest of the construction, as we provide unique chunks for them to process.
Construction.

For arbitrary instance I3DPM of 3-DM we construct a RS(2)+FP+NI+
BW instance IV CEMB the way described in the remainder of this section. Let
k = |X| = |Y | = |Z|. By T we denote the set of all triples of I3DPM, and let
t = |T |. For each e ∈ X ∪ Y ∪ Z, by Te we denote the set of all triples that
contain element e. Let deg(e) = |Te|, and note that

∑
e deg(e) = 3 · t.

We proceed with the construction as follows.
Chunk Types. We construct two sets of chunk types. The first set corre-

sponds to elements of the universe (that is, X ∪ Y ∪ Z). The construction
of such chunk types is similar to construction of chunk types in Section 4.3,
but to take into consideration the restricted replication factor, we construct
the familiy of chunk types (as described in the introduction to this section).
Namely, for each element of universe e, we construct as many chunk types
as there are occurences of e in triples of I3DPM. Each such chunk type has
exactly two replicas.

The other set of chunk types has one replica, therefore those are called
called unique chunks. For unique chunks we simply co-notate the chunk type
with chunk replica.

Formally, the construction of chunk types and replicas unfolds as follows:

1. For each triple τ ∈ T , we construct 3 chunk types, with two replicas
each. We construct different chunk types for each triple τ , which con-
tain element e (in total deg(e) chunk types). We refer to those replicas
by ch1(e, τ) and ch2(e, τ). In total we construct 2 ·

∑
e deg(e) = 6 · t

chunk replicas.

2. Additionally, we construct max{3 ·t+3 ·k+1,
∑

e(2 ·deg(e)−1)} chunk

32

. . .

. . .

. . .

.

. . .

3t
deg(e1) deg(e3·k)

τ1 τ2 τt u1 u2 uk e1 e2 e3·k

root

Matching Subtree Cover Subtree

Triple Gadgets Unique Gadgets Element Gadgets

max{3 · t+ 3 · k + 1, 6 · t− 3 · k}

Figure 13: Overview of the substrate network

types called unique chunks. We refer to the set of unique chunks by U .

The substrate network. We construct the tree that has the following
structure (see Figure 5.2):

1. The physical network consists of three subtrees connected to the root:
the Matching Subtree, the Cover Subtree, and a Unique Subtree. In the
Matching Subtree we put t Triple Gadgets . The Cover Subtree consist
of k element gadgets.

2. The Unique Subtree consist of |U | leaves, and two middle nodes: a lower
and an upper middle node. Note that this is different from RS(2) +
FP+MA(4) NP-completeness proof, where Unique Subtree was placed
in the Matching Subtree.

3. Triple Gadget : For each triple, we create a subtree consisisting of four
vertices: three leaves and one triple root. We attach the root of the
triple to the root of the matching subtree.

4. Element Gadget : For each element e ∈ X ∪ Y ∪ Z, we construct a
subtree consisting of the root of the element (attached to the root of
the cover subtree), and deg(e) leaves.

Chunk placement. The chunks are placed as follows:

1. Chunks in the Matching Subtree: In Triple Gadget of triple τ we put
three replicas: ch1(eX(τ), τ), ch1(eY (τ), τ), ch1(eZ(τ), τ), one per each
leaf.

2. Chunks in the Unique Subtree: We place replicas U at the leaves of
Unique Gadgets .

33

3. Chunks in Element Gadgets: Consider the Element Gadget for the
element e ∈ X ∪ Y ∪ Z. We place two types of replicas in the leaves
of the gadget. We put replicas ch2(τ, e) for each τ ∈ Te. In total, we
place deg(e) replicas, one per each leaf of the gadget.

Bandwidth constraints. We use bandwidth constraints of the form
bw(k) := k · (nV − k), where nV is the total number of nodes to be spawned
in the instance. Namely, we set the bandwidth constraints of an uplink of an
Element Gadget for each element e to bw(deg(e)− 1), the bandwidth of an
uplink of a Matching Subtree to bw(n), and an uplink of a Cover Subtree to
bw(

∑
e(deg(e) − 1). Note that out of deg(e) leaves of Element Gadget for

element e, we allow to spawn deg(e)− 1 nodes.
The threshold value and other properties of the instance. We set the cost

threshold for any solution to the following value:

ξ = 2 ·
(

3

2

)
· k (over 2 hops in the Matching Subtree)

+ 4 ·
(

3 · k
2

)
(over 4 hops in the Matching Subtree)

+ 4 ·
(
u

2

)
(over 4 hops in the Unique Gadgets)

+
∑
e

2 ·
(

deg(e)− 1

2

)
(over 2 hops in the Cover Subtree)

+ 4 ·
(∑

e(deg(e)− 1)

2

)
(over 4 hops in the Cover Subtree)

+ 6 ·
(
nV
2

)
(over 6 hops)

where nV is the total number of nodes to be spawned in the instance,
and u = |U |. We set b1, the cost of chunk transportation to ξ + 1 (so that
no chunk transportation happens in any feasible solution), b2 = 1, and we
host only one node per machine. We set the number of machines to spawn
to: nV := 3 · k +

∑
e(deg(e)− 1) + |U |.

Properties of the substrate network.

Lemma 11. Assume we have a RS(2) + FP + NI + BW instance I with
a subtree T ′ with l leaves and the bandwidth capacity on uplink of T ′ is
bw(k). Assume that no chunk transportation is allowed (b1 = ∞, so every

34

node must be collocated with the chunk it processes in every feasible solution),
and b2 = 1. Then in any feasible solution the number s of nodes spawned
in T satisfies s ≤ k ∨ nV − s ≤ k, and s ≤ l.

Proof. It holds that s ≤ l as we cannot spawn more nodes than leaves. The
bandwidth allocation on the uplink of T ′ is uplink(s, T) := s ·(nV −s), as no
chunk transportation is allowed (b1 =∞), and every node in T has to commu-
nicate over T ′’s uplink with nodes spawned outside of T ′. Therefore, in every
feasible solution we have: uplink(s, T ′) ≤ bw(k). Let’s define the remain-
ing bandwidth on the uplink of T ′ remainBw(s) := bw(k)− uplink(s, T ′) =
s2 − s · nV − k2 + k · nV . Every feasible solution fulfills remainBw(s) ≥ 0,
which is true for s ≤ k ∨ nV − s ≤ k (follows from the properties of the
quadratic function).

Next, we show how to precisely control the number of nodes in the con-
structed subtree.

Observation 2. In every feasible solution we have exactly |U | nodes spawned
in a Unique Subtree (no chunk transportation is allowed, and every chunk
type must be processed).

Lemma 12. The following properties holds in SV CEMB:

1. The number of nodes spawned in a Matching Subtree is 3 · k.

2. The number of nodes spawned in a Cover Subtree is
∑

e(deg(e)− 1)

Proof. From Observation 2 we know that we have |U | nodes in the Unique
Subtree. Let’s refer to the number of nodes spawned in a Matching Subtree
by M , and to the number of nodes spawned in Cover Subtree by C. By
applying Lemma 11 to Matching Subtree, we know that: M ≤ 3 · k ∨M ≥
nV − 3 · k. We observe that nV − 3 · k is greater than the number of leaves
in a Matching Subtree. By applying Lemma 11 to the Cover Subtree we
know that: C ≤

∑
e(deg(e) − 1) ∨ C ≥ nV −

∑
e(deg(e) − 1). We observe

that nV −
∑

e(deg(e)− 1) is greater than the number of leaves in the Cover
Subtree. We also know that nV = |U |+C+M . Therefore, by the pigeon-hole
principle C =

∑
e(deg(e)− 1) and M = 3 · k.

Lemma 13. In SV CEMB the number of nodes spawned in Element Gadget
of element e is deg(e)− 1.

35

Proof. Let’s call the number of nodes spawned in the Element Gadget of
element e the xe. From Lemma 11, we know that xe ≤ deg(e) − 1 ∨ xe ≥
nV −deg(e) + 1. We observe that nV −deg(e) + 1 is greater than the number
of leaves of the gadget, which is deg(e). From Lemma 12, we know that the
number of nodes spawned in the entire Cover Subtree is

∑
e(deg(e) − 1).

Therefore, by the pigeon-hole principle, we have that xe = deg(e)− 1.

From the above lemmas we know the precise number of nodes spawned
in certain parts of the tree. Feasible solutions only differ in the choice of
the deg(e)− 1 out of deg(e) chunks in each Element Gadget, and the place-
ment of nodes in the Matching Subtree.

Similar in spirit to the NP-completeness proof of RS(2) + MA(4) + FP,
we call the Triple Gadget active if it contains exactly three nodes. Similarly,
we call the Triple Gadget inactive if it does not contain spawned nodes, and
partially active if it has one or two spawned nodes.

Lemma 14. In SV CEMB, we have exactly k active Triple Gadgets.

Proof. Since I is feasible, we know that it has a solution S of cost ≤ ξ.
By Lemma 12, we know that there are exactly 3 · k spawned nodes in the
Matching Subtree. Therefore, by the pigeon-hole principle, we know that
we have at most k active Triple Gadgets . It remains to show that there
are no partially active Triple Gadgets in the solution of cost ≤ ξ. Using
Lemma 13, we conclude that the communication cost of nodes in the Cover
Subtree is the same for every feasible solution (let’s name that cost P). We
also know that the communication cost between nodes in Cover Subtree and
Matching Subtree is the same for every feasible solution (let’s name it Q).
Let’s call the would-be cost of communication in the Matching Subtree, if
there were exactly k active gadgets, R. The threshold value was chosen so
that ξ = P + Q + R. If we have at least one partially active gadget, then
the cost of communication in Matching Subtree is greater than R, because
we increase the number of 4-hop communications by at least one per each
partially active gadget in comparison to a solution where we have exactly k
active gadgets.

The reduction. Using the properties of the substrate network, we perform
the reduction in the following way.

Theorem 15. RS(2) + FP + NI + BW is NP-hard.

36

Proof. Let’s take any instance I3DPM of 3DPM. We show that IV CEMB has
a solution of cost ≤ ξ if and only if I3DPM ∈ 3DPM (there exists a perfect
3D matching in I3DPM).

Let’s take an instance I of 3DPM and construct an instance I ′ of RS(2)+
FP + NI + BW in the way described above. We show that I ′ has solution
of cost ≤ ξ if and only if I ∈ 3DPM (there exists a perfect 3D matching).

(⇐) Let’s take any feasible solution S3DPM to I3DPM and produce a solu-
tion SV CEMB to IV CEMB in the way described in the construction section. We
show that the cost of SV CEMB is indeed ≤ ξ. For each triple t ∈ T in S3DPM,
we put 3 nodes at leaves of triple gadgets corresponding to those triples.
In each element gadget (that corresponds to element e), we put deg(e) − 1
nodes. In each element gadget there is only one leaf without the node placed
in it: this node contains the chunk replica that is processed in the Matching
Subtree. It is easy to see that SV CEMB has cost exactly ξ and no bandwidth
constraint is violated. Each chunk type is processed.

(⇒) Let’s take any feasible solution SV CEMB to IV CEMB and produce a
solution S3DPM to I3DPM by taking triples that correspond to active triple
gadgets. Using Lemma 14, we conclude that there are exactly k active triple
gadgets. By feasibility of S3DPM, we know that each chunk type is processed.
From Lemma 13, we know that out of deg(e) chunk types that correspond
to e ∈ X ∪ Y ∪ Z, exactly one is processed in the Matching Subtree, hence
each element of X ∪ Y ∪ Z is matched.

6. Related Work

There has recently been much interest in programming models and dis-
tributed system architectures for the processing and analysis of big data
(e.g. [3, 10, 35]). The model studied in this paper is motivated by MapRe-
duce [10] like batch-processing applications, also known from the popular
open-source implementation Apache Hadoop. These applications generate
large amounts of network traffic [7, 25, 37], and over the last years, several
systems have been proposed which provide a provable network performance,
also in shared cloud environments, by supporting relative [26, 27, 31] or, as
in the case of our paper, absolute [5, 21, 28, 29, 34] bandwidth reservations
between the virtual machines.

The most popular virtual network abstraction for batch-processing ap-
plications today is the virtual cluster, introduced in the Oktopus paper [5],
and later studied by many others [25, 16, 30, 34]. In particular, Proteus [34]

37

improves upon the Oktopus [5] embedding algorithm of fat-trees and makes
the case for a time-adaptive embedding. The Kraken system [16] is based
on an optimal embedding algorithm of fat-trees and and allows to elastically
scale both link as well as node resources. In [30], Rost et al. show that the
virtual cluster abstraction can even be embedded on general graphs in poly-
nomial time, and initiate the algorithmic study of a Hose interpretation of
the virtual cluster abstraction.

Several heuristics have been developed to compute “good” embeddings
of virtual clusters: embeddings with small footprints (minimal bandwidth
reservation costs). The virtual network embedding problem has also been
studied for more general graph abstractions (e.g., motivated by wide-area
networks). [8, 14]

From a theoretical perspective, the virtual network embedding prob-
lem can be seen as a generalization of classic VPN graph embedding prob-
lems [20, 22], in the sense that in virtual network embedding problems, also
the embedding endpoints are flexible. In this respect, the virtual network
embedding problem can also be seen as a generalization of the classic NP-
hard Minimum Linear Arrangement problem which asks for the embedding
of guest graphs on a simple line topology (rather than tree-like topologies as
studied in this paper) [11, 12].

However, to the best of our knowledge, we are the first to provide an
algorithmic study of the virtual cluster embedding problem which takes into
account data locality as well as the possibility to select replicas—aspects
which so far have only been studied from a best-effort perspective and using
coarse-grained metrics (e.g., same rack or same server), thus limiting the
flexibility of the system [4, 23, 36].
Bibliographic Note. A preliminary version of this paper appeared at the
23rd IEEE International Conference on Network Protocols (ICNP), 2015 [15].

7. Summary and Conclusion

At the heart of locality and replica aware virtual cluster embeddings
lie fundamental algorithmic problems. This paper has shown that despite
the multiple dimensions of flexibility in terms of chunk assignment and node
placement, and despite the large scale of modern datacenters, many problems
can be solved efficiently. However, we have also shown that several embedding
problems are NP-hard already in two- and three-level trees—a practically
relevant result given today’s datacenter topologies [2]).

38

NP-hard

5 combinations RS + MA + FP + NI + BW

4 combinations RS + MA + FP + NI;
RS + MA + FP + BW;
RS + FP + NI + BW

3 combinations RS + MA + FP; RS + FP + NI

Flow

4 combinations RS + MA + NI + BW

3 combinations RS + NI + BW; RS + MA + BW

2 combinations RS + BW

DP

4 combinations MA + FP + NI + BW

3 combinations MA + FP + NI; MA + FP + BW;
FP + NI + BW

2 combinations MA + FP; FP + NI;

Matching

3 combinations RS + MA + NI; MA + NI + BW

2 combinations RS + MA; RS + NI; MA + NI;
MA + BW; NI + BW

1 combinations RS; MA; NI; BW

0 Cost

3 combinations RS + FP + BW

2 combinations RS + FP; FP + BW

1 combinations FP

Table 1: Fastest algorithms for different respective problem variants.

39

Our results are summarized in Table 1. One interesting takeaway from
this figure regards the question which properties render the problem NP-hard.
For instance, we see that, BW does not influence the hardness of any problem
variant, while RS is crucial for NP-hardness. MA only affects hardness
if combined with RS. NI is trivial without FP, and FP requires more
sophisticated algorithms when combined with NI or MA; in combination
with RS and MA or NI, FP renders the problem NP-hard.

Acknowledgments. We would like to thank Paolo Costa for many dis-
cussions. This research is in part supported by Polish National Science Centre
grant DEC-2013/09/B/ST6/01538, the EU project Bigfoot FP7-ICT-317858,
as well as by the German BMBF Software Campus grant 01IS12056.

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,
and Applications. Prentice-Hall, Inc., 1993.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network
architecture. In Proc. ACM SIGCOMM, pages 63–74, 2008.

[3] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. Nodb: Efficient
query execution on raw data files. In Proc. ACM SIGMOD, pages 241–252, 2012.

[4] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg, I. Stoica, D. Harlan,
and E. Harris. Scarlett: Coping with skewed content popularity in mapreduce clusters.
In Proc. EuroSys, pages 287–300, 2011.

[5] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable data-
center networks. In Proc. ACM SIGCOMM, 2011.

[6] R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou.
Scope: Easy and efficient parallel processing of massive data sets. Proc. VLDB
Endow., 1(2), 2008.

[7] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing Data
Transfers in Computer Clusters with Orchestra. In Proc. ACM SIGCOMM, 2011.

[8] N. M. K. Chowdhury and R. Boutaba. A survey of network virtualization. Comput.
Netw., 54(5):862–876, 2010.

[9] P. Crescenzi, V. Kann, M. Halldorsson, M. Karpinski, and G. Woeginger. Maximum
3-dimensional matching. A Compendium of NP Optimization Problems, 2000.

[10] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In Proc. USENIX OSDI, pages 137–150, 2004.

[11] N. R. Devanur, S. A. Khot, R. Saket, and N. K. Vishnoi. Integrality gaps for sparsest
cut and minimum linear arrangement problems. In Proc. ACM STOC, 2006.

40

[12] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM Comput.
Surv., 34(3):313–356, 2002.

[13] R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in bipar-
tite graphs. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1413–1424, 2012.

[14] A. Fischer, J. Botero, M. Beck, H. DeMeer, and X. Hesselbach. Virtual network
embedding: A survey. 2013.

[15] C. Fuerst, M. Pacut, P. Costa, and S. Schmid. How hard can it be? understanding
the complexity of replica aware virtual cluster embeddings. In Proc. 23rd IEEE
International Conference on Network Protocols (ICNP), 2015.

[16] C. Fuerst, S. Schmid, L. Suresh, and P. Costa. Kraken: Online and elastic resource
reservations for multi-tenant datacenters. In Proc. 35th IEEE Conference on Com-
puter Communications (INFOCOM), 2016.

[17] H. Gabow. A scaling algorithm for weighted matching on general graphs. In Proc.
IEEE FOCS, 1985.

[18] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In Proc. ACM
SOSP, pages 29–43, 2003.

[19] A. V. Goldberg and R. E. Tarjan. Finding minimum-cost circulations by canceling
negative cycles. J. ACM, 36(4):873–886, 1989.

[20] N. Goyal, N. Olver, and F. B. Shepherd. The VPN conjecture is true. Proc. ACM
STOC, 2008.

[21] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang. Second-
Net: A data center network virtualization architecture with bandwidth guarantees.
In Proc. 6th CoNEXT, 2010.

[22] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a virtual
private network. In Proc. ACM STOC, New York, New York, USA, 2001.

[23] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg. Quincy:
Fair scheduling for distributed computing clusters. In Proc. ACM SOSP, pages 261–
276, 2009.

[24] Z. Kiraly and P. Kovacs. Efficient implementations of minimum-cost flow algorithms.
In ArXiv Technical Report 1207.6381, 2012.

[25] J. C. Mogul and L. Popa. What we talk about when we talk about cloud network
performance. ACM SIGCOMM CCR, 2012.

41

[26] L. Popa, A. Krishnamurthy, S. Ratnasamy, and I. Stoica. Faircloud: Sharing the
network in cloud computing. In Proc. HotNets-X, 2011.

[27] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R. Santos.
Elasticswitch: Practical work-conserving bandwidth guarantees for cloud computing.
In Proc. ACM SIGCOMM, pages 351–362, 2013.

[28] B. Raghavan, K. Vishwanath, S. Ramabhadran, K. Yocum, and A. C. Snoeren. Cloud
control with distributed rate limiting. In Proc. SIGCOMM, 2007.

[29] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes. Gatekeeper: Sup-
porting bandwidth guarantees for multi-tenant datacenter networks. In Proc. 3rd
Conference on I/O Virtualization (WIOV), 2011.

[30] M. Rost, C. Fuerst, and S. Schmid. Beyond the stars: Revisiting virtual cluster
embeddings. In Proc. ACM SIGCOMM Computer Communication Review (CCR),
2015.

[31] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall: Performance isolation for
cloud datacenter networks. In Proc. USENIX HotCloud, 2010.

[32] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file
system. In Proc. IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1–10, 2010.

[33] E. Tardos. A strongly polynomial minimum cost circulation algorithm. Combinator-
ica, 5(3):247–255, July 1985.

[34] D. Xie, N. Ding, Y. C. Hu, and R. Kompella. The only constant is change: incorpo-
rating time-varying network reservations in data centers. ACM SIGCOMM Computer
Communication Review (CCR), 2012.

[35] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica. Shark:
Sql and rich analytics at scale. In Proce. ACM SIGMOD, pages 13–24, 2013.

[36] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica.
Delay scheduling: A simple technique for achieving locality and fairness in cluster
scheduling. In Proc. EuroSys, pages 265–278, 2010.

[37] Measuring EC2 system performance. http://goo.gl/V5zhEd.

42

http://goo.gl/V5zhEd

	Introduction
	Our Contributions
	Organization

	Model
	Background and Practical Motivation
	Formal Model
	Optimization Objective
	Problem Decomposition

	Polynomial-Time Algorithms
	Flow Algorithms (RS+MA+NI+BW)
	Matching Algorithms (RS+MA+NI and MA+NI+BW)
	RS+MA+NI
	Faster MA+NI and MA+NI+BW

	Dynamic Programming (MA+FP+NI+BW)
	Simple Problems

	NP-Hardness Results
	Introduction to 3D Perfect Matching
	Multi-Assignments are hard (FP+RS+MA)
	Inter-connects are hard (FP+RS+NI)

	A Detailed Study of Replica Selection Hardness
	Two Replicas without Bandwidth Constraints
	Two replicas without Multiple Assignment

	Related Work
	Summary and Conclusion

