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Abstract—Computer networks have become a critical infras-
tructure. It is hence increasingly important to guarantee a
correct, consistent and secure network operation at any time, even
during route updates. However, most existing works on consistent
network update protocols focus on connectivity properties only
(e.g., loop-freedom) while ignoring basic (security) policies.

This paper studies how to update routes in a software-defined
network in a transiently policy-compliant manner. In particular,
our goal is to enforce waypoints: at no point in time should
it be possible for packets to bypass security critical network
functions (such as a firewall). This problem is timely, given the
advent of network function virtualization which envisions more
flexible middlebox deployments, not limited to the network edge.

This paper shows that enforcing waypoint traversal in tran-
sient states can be challenging: waypoint enforcement can conflict
with loop-freedom. Even worse, we rigorously prove that de-
ciding whether a waypoint enforcing, loop-free network update
schedule exists is NP-hard. These results hold for both kinds
of loop-freedom used in the literature: strong and relaxed loop-
freedom. This paper also presents optimized, exact mixed integer
programs to decide feasibility quickly and to compute optimal
update schedules. We report on extensive simulation results, and
also study scenarios where entire “service chains”, connecting
multiple waypoints, need to be updated consistently.

I. INTRODUCTION

Computer networks are becoming more and more pro-
grammable and flexible. In particular, the software-defined
networking paradigm enables a logically centralized operation
of computer networks: in a Software-Defined Network (SDN),
a software controller can install, update and verify “the paths
that packets follow”, i.e., the (routing) policies [7], fast and in
a globally consistent manner.

However, today, we do not yet have a good understand-
ing of the opportunities and limitations of a more dynamic
network management in general, and the Software-Defined
Network (SDN) paradigm in particular. Over the last years,
especially the problem of consistent network updates has
received much attention [12], [18], [20], [27], [30]. While the
logically centralized control introduced by software-defined
networking is appealing, an SDN still needs to be regarded as a
distributed system, posing non-trivial challenges: in particular,
the communication channel between switches and controller
exhibits non-negligible and varying delays [9], [20], [23].
These delays may result in temporary misconfigurations, i.e.
invalid network configurations, diverging from the expected
control plane view [22].

In a first line of works, initiated by Reitblatt et al. [30],
network updates providing strong consistency guarantees have
been studied: even during the transition from an old routing
policy π1 to a new routing policy π2, the Per-Packet Consis-
tency (PPC) property is ensured, i.e., each packet will either

be forwarded according to π1 (exclusively-) or π2, but not a
combination of both. In a second line of works, initiated by
Mahajan and Wattenhofer [27], weaker transient consistency
properties have been investigated: during a network update, a
packet may be forwarded according to the old policy π1 at
some switches and according to the new policy π2 at other
switches; however, the update still provides basic transient
guarantees, such as Loop-Freedom (LF): packets will never
be forwarded along a loop. Providing only weak transient
guarantees, like loop-freedom, is an attractive alternative to
stronger consistency models such as PPC: parts of the updates
can take effect earlier, update protocols can be more resource
efficient (e.g., there is no need for extra rules on the switch),
and tagging is not required (tagging is often problematic given
the limited packet header space). In fact, Ludwig et al. [12]
have observed that there exist multiple consistency levels even
for loop-freedom itself: besides the canonical strong loop-
freedom (studied in [27]), a relaxed notion of loop-freedom
may facilitate even faster network updates.

However, ensuring connectivity properties such as loop-
freedom alone is often insufficient in practice: especially in
security critical environments, additional consistency guaran-
tees are required, related to the network’s (security) policies. A
particularly important policy is Waypoint Enforcement (WPE):
the traversal of specific network functions or middleboxes
must be ensured for each packet. In fact, today’s computer
networks consist of a large number of so-called middleboxes,
providing a wide spectrum of in-network functionality for
security, performance, policy compliance, etc. For example,
network policies are often defined in terms of adjacency
matrices or big switch abstractions, specifying which traffic
is allowed between an ingress network port s and an outgress
network port d [21]. In order to enforce such a policy, traffic
from s to d needs to traverse a middlebox instance inspecting
and classifying the flows. In fact, the number of middleboxes
in enterprise networks can be of the same order of magnitude
as the number of routers [19]. Middleboxes can also be
virtualized [1] and hence be deployed fast and flexibly e.g.,
as a virtual machine on a commodity x86 server. Along with
network function virtualization also comes the trend to deploy
middleboxes not only at the edge, but also in the network
core, potentially reducing deployment costs but also rendering
waypoint enforcement more challenging.

A. Contributions

This paper studies an important class of network update
problems: updates which respect the (security) policy of the
network, by enforcing waypoints. In a nutshell, a weakly



IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, AUGUST 2017 2

consistent flow rerouting algorithm providing waypoint en-
forcement guarantees that before, during and after the tran-
sition from route π1 to route π2, packets traverse a certain
middlebox (the waypoint). Prior work on network updates
mainly focused on basic forwarding properties related to
connectivity, most prominently loop-freedom [13].

We make the following contributions:
1) Waypoint enforcement matters: We show that way-

points may easily be bypassed during a route update,
if no countermeasures are in place. Moreover, we
prove that Loop-Freedom (LF) and Waypoint Enforce-
ment (WPE) cannot always be implemented in a wait-
free manner, in the sense that the controller must rely
on an upper bound estimation for the maximal packet
latency in the network.

2) LF and WPE may conflict: We observe that the
transient Waypoint Enforcement property (WPE) may
conflict with Loop-Freedom (LF), in the sense that
ensuring both properties may not be possible simul-
taneously. We also prove that relaxing the notion of
loop-freedom, as suggested by Ludwig et al. [12] for
performance reasons, does not help to render impossible
instances feasible: a problem instance which cannot be
solved under strong loop-freedom and waypoint enforce-
ment, cannot be solved under relaxed loop-freedom and
waypoint enforcement either.

3) NP-hardness: The main technical result of this paper is
a formal proof that the decision problem whether both
consistency properties, LF and WPE, can be satisfied
simultaneously is NP-hard. This result holds for both
strong and relaxed loop-freedom.

4) Multiple waypoints: We initiate the discussion of how
to consistently update routes with more than one way-
point, i.e. service chains. In particular, we show that
flexibilities in the order in which service chain functions
are traversed, cannot be utilized to render the updating
problem easier.

5) Algorithms: We present efficient algorithms for many
network update variants, as well as optimized, exact
mixed integer programming algorithms for the general
problem.

6) Simulations: We report on an extensive simulation
study. In particular, we find that the number of nodes as
well as the number of waypoints significantly impacts
the runtime. While computing the schedule with a min-
imum number of rounds is the main objective, we show
that for many scenarios the feasibility or the infeasibility
can be decided quickly.

B. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II introduces our formal model. Section III presents first
intuitions and insights. The formal NP-hardness proof is given
in Section IV. Section V initiates the discussion of multiple
waypoints. Section VI presents mixed integer programs for
solving the network update problem together with several
optimizations. Simulation results are discussed in Section VII.

After reviewing related work in Section VIII, we conclude the
paper in Section IX.

II. FORMAL MODEL

We consider a Software-Defined Network (SDN) which is
managed by a controller, communicating flow rules to the
switches across an asynchronous communication channel. As
the updates occur asynchronously, we require the controller
to send out updates only to a “safe” subset of nodes at any
time. Only after these updates have been confirmed (using
acknowledgments), updates for the next subset can be issued.

A. Representation of Policy Updates

The controller needs to change an old policy resp. route
π1 to a new policy resp. route π2. Both π1 and π2 fol-
low simple directed paths. Initially, packets are forwarded
along π1 (henceforth also called old edges), and eventually
they should be forwarded according to the new rules of π2.
Packets should never be delayed or dropped at a switch,
henceforth also called node: whenever a packet arrives at a
node, a matching forwarding rule should be present.

Without loss of generality, we assume that π1 and π2 lead
from a source s to a destination d. Since nodes appearing only
in one of the two paths are trivially updateable, we focus on the
network G induced by the nodes V which are part of both poli-
cies π1 and π2, i.e., V = {v : v ∈ π1∧v ∈ π2}. Thus, we can
represent the policies as paths π1 = 〈s = v0, v1, . . . , v`−1 =
d〉 and π2 = 〈s = v0, π(v1), . . . , π(v`−2), v`−1 = d〉, for some
permutation π : V \ {s, d} → V \ {s, d} and some number `.
Additionally, edges (vi, vi+1) being contained in both π1 and
π2 can be removed as the node vi does not need to be updated
in the first place. In fact, the edges lying on the old and the
new policy can be removed by contracting the nodes of the
respective edges to become a single node. Hence, we assume
that edges in π1 and π2 are disjoint.

Figure 1 illustrates the model [12]: depicted on the left is
an old policy π1 (solid) and a new policy π2 (dashed). As
discussed above, only the updateable nodes which are shared
by the two policies are of interest. Thus, the update problem
can be reduced to the 5-node chain graph (right).

In the following we call an edge (u, v) of the new policy
π2 forward, if v is closer to the destination, resp. backward,
if u is closer to the destination (both times with respect to π2).
Similarly, we refer to nodes having a forward edge as forward
nodes and to nodes having a backward edge as backward

Fig. 1. Overview of model and reduction. The solid lines show the old
policy π1 and the dashed lines show the new policy π2. The update problem
on the left boils down to the update problem for the line representation
depicted on the right (the old route goes from left to right). Nodes shown
in white are the only ones which are part on both paths, and hence relevant
for the problem.
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nodes. Hence, the edges (s, v3) and (v3, v2) of the new policy
depicted in Figure 1 (left) are forward and backward edges,
respectively, and node s is a forward node while v3 is a
backward node.

B. The Network Update Problem
The task is to find an update schedule U =

〈U1, U2, . . . , Uk〉, i.e. a sequence of switches Ut ⊆ V to be
updated “asynchronously” in rounds t = 1, . . . , k, such that
after round k the new policy π2 is in effect. Note that the
updates of round t are only issued by the controller if the
updates of round t−1 have been acknowledged by the switches
contained in Ut−1. As any node v ∈ V \ {d} is updated
exactly once, the subsets Ut form a partition of the nodes:
V \ {d} =

⊔
t=1,...,k Ut.

The objective is to find update schedules ensuring properties
as loop-freedom and waypoint enforcement even in transient
states (see below) while minimizing the number of update
rounds k. The reduction of the number of rounds is a natural
objective, given the time it takes to update an individual
OpenFlow switch today [9], [20], [23].

C. Transient Forwarding States and Graphs
We introduce the following notation to formally capture the

transient forwarding states possible when asynchronously up-
dating the switches within a round. Let U<t =

⋃
i=1,...,t−1 Ui

denote the set of nodes which have already been updated
before round t, and let U≤t, U>t etc. be defined analogously.
Furthermore, let δ+1 (v) and δ+2 (v) denote the outgoing edge
of node v ∈ V according to policy π1 and π2, respectively.
Similarly, we denote by out1(v) and out2(v) the outgoing
neighbors of v, i.e. the heads of δ+1 (v) and δ+2 (v), respectively.
Moreover, we extend the definition of δ+i to entire node
sets S ⊆ V , i.e., δ+i (S) = {δ

+
i (v) | v ∈ S}, for i ∈ {1, 2}.

Since updates in round t are performed asynchronously,
any subset X ⊆ Ut of nodes might be updated, while the
nodes X = Ut \X are not updated. To capture the forwarding
behavior in round t given that the nodes X ⊆ Ut are updated,
we introduce the transient forwarding graph GXt = (V,EXt )
on the set of nodes V . As any node v ∈ U<t ∪X is updated,
the forwarding on v is performed according to the new policy
π2. On the other hand, the nodes U>t∪X are not updated and
hence for these nodes the old policy π1 is in effect. Hence,
EXt = δ+1 (U>t ∪X) ∪ δ+2 (U<t ∪X) holds.

Lastly, note that by setting X = Ut, the respective transient
forwarding graph GXt also describes the forwarding state after
round t. Hence, when enforcing a property for each round
t and each subset X ⊆ Ut, the respective property will be
enforced throughout the update process.

D. Transient Forwarding Properties
Following [12], we consider two types of Loop-

Freedom (LF), namely Strong Loop-Freedom (SLF) and
Relaxed Loop-Freedom (RLF) and introduce the notion of
waypoint enforcement (WPE). Throughout the paper, we use
the term LF whenever a result holds both for SLF and RLF.
Furthermore, if both WPE and RLF or SLF are enforced we
simply write RLF + WPE and SLF + WPE, respectively.

1) Strong Loop-Freedom (SLF): Strong Loop-Freedom
requires that the update schedule U = 〈U1, U2, . . . , Uk〉 fulfills
the property that for all times t and for any subset of updated
nodes X ⊆ Ut, the transient forwarding graph GXt is loop-
free. In other words, all intermediate forwarding topologies
form DAGs.

2) Relaxed Loop-Freedom (RLF): While strong loop-
freedom forbids the existence of any loop in any of the
transient forwarding graphs GXt , relaxed loop-freedom only
forbids loops reachable from the source s: for any round t
and for any subset X the graph GXt must not contain a loop
reachable from the source s.

Relaxed Loop-Freedom is motivated by the practical obser-
vation that transient loops are only harmful as long as the loop
is connected to the source and hence arbitrarily many packets
may loop. Accordingly, if relaxed loop-freedom is enforced,
only a constant number of packets can loop: new packets are
never pushed into a loop “at line rate”. In other words, even if
nodes acknowledge new updates late (or never), new packets
will not enter loops.

3) Waypoint Enforcement (WPE): Waypoint Enforcement
is the property that each packet must traverse a special node
wp ∈ V of the network, henceforth called the waypoint.
For instance, the waypoint could be a firewall or intrusion
detection system which each packet must traverse even in
transient states. WPE is defined as follows: for any round
t and any subset X ⊆ Ut, the transient forwarding graph GXt
must not contain a path from the source s to the destination
d bypassing the waypoint wp.

This definition easily generalizes to multiple waypoints: if
multiple waypoints are given none of the waypoints may be
bypassed in any transient forwarding graph GXt .

E. Example

Given these definitions, let us consider an extended exam-
ple, as illustrated in Figure 2. The old policy π1 connects four
nodes (switches), from left to right (depicted as a straight,
solid line); the new policy π2 is shown as a dashed line.
The second node, v1 (in black), represents the waypoint which
needs to be enforced.

How can we update the policy π1 to π2? A simple solution
is to update all nodes concurrently. However, as the controller
needs to send these commands over the asynchronous network,
they may not arrive simultaneously at the nodes, which can
result in inconsistent states. For example, if s is updated
before v1 and v2 are updated, a transient forwarding path
emerges which violates WPE: packets originating at s will be
sent to v2 and from there to the destination d: the waypoint v1
is bypassed.

Fig. 2. Examplary network update instance; node v1 is the waypoint.
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One solution to overcome this problem would be to perform
the update in two (communication) rounds: in the first round,
only v1 and v2 are updated, and in a second round, once these
updates have been performed and acknowledged, the con-
troller also updates s. Note that this 2-round strategy indeed
maintains the waypoint at any time during the policy update.
However, the resulting solution may still be problematic, as it
violates our second desirable transient consistency property,
loop-freedom: if the update for node v2 arrives before the
update at node v1, packets may be forwarded in a loop, from
nodes v1 to v2 and back. Both Waypoint Enforcement WPE
as well as Loop-Freedom LF can be ensured (for this specific
example) in a three-round update: in the first round, only v1
is updated, in the next round v2, and finally s. The above
example already highlights the complexity of finding the
network update schedules using the minimal number of rounds
as the LF and WPE property conflict. In fact, some network
update instances cannot be solved at all (cf. Theorems 3 and 4).

III. FIRST OBSERVATIONS

In this section, we provide some initial insights into the
network update problem.

A. Observation 1: You may have to wait

It turns out that the transient enforcement of a waypoint is
non-trivial. We first show an interesting negative result: it is
not possible to implement WPE in a “wait-free manner”, in the
following sense: a controller does not only need to wait until
the nodes have acknowledged the policy updates of round i
before sending out the updates of round i+1, but the controller
also needs some estimate of the maximal packet latency: if
a packet can take an arbitrary amount of time to traverse the
network, it is never safe to send out a policy update for certain
scenarios. We are not aware of any other transient property for
which such a negative result exists. For ease of presentation,
we use the notation π<wpi to refer to the first part of the route
given by policy πi, namely the sub-path from the source to
the waypoint, and π>wpi to refer to the second part from the
waypoint to the destination.

Theorem 1. In an asynchronous environment, a new policy
can never be installed without violation of WPE, if a node is
part of π<wp1 and π>wp2 .

Proof. Consider the example in Figure 2 again, but imagine
that the waypoint is at node v2 instead of node v1. Consider
the following update strategy (all other strategies are similar):
in the first round, s and v2 are updated, and in the second
round, v1. This strategy clearly ensures WPE, if (but only if)
the updates of Round 2 are sent out after packets forwarded
according to the rules before Round 1 have left the system.
However, if packets can incur arbitrary delays, then there
could always be packets left which are still traversing the
old (solid) path from s to v1. These packets have not been
routed via the waypoint (v2) so far but will be sent out to d
by v1 in the new path, violating the WPE property.

Algorithm 1: WAYUP

1 Input: old policy π1, new policy π2, threshold θ
2 update nodes of π2 which are not in π1
3 update nodes of π>wp1 with backw. rules in π<wp2

4 update remaining nodes of π<wp2

5 wait θ
6 update nodes of π>wp2

B. Observation 2: Waypoint enforcement alone is easy

Fortunately, in practice, packets do not incur arbitrary
delays, and Theorem 1 may only be of theoretical interest:
it is often safe to provide an update algorithm with some
good upper bound θ on the maximal packet latency. The upper
bound θ can be seen as a parameter to tune the safety margin:
the higher θ, the higher the probability that each packet is
actually waypoint enforced.

With these concepts in mind, we now describe our algorithm
WAYUP which always ensures correct network updates, i.e.,
updates which consistently implement WPE if the maximal
packet transmission time is bounded by θ. We define v1 ≺πi

v2
to express that a node v1 is visited before v2 on πi. The update
rule (v2, v1) with v1 ≺π1 v2 is a backward rule (or backward
edge) with respect to the initial direction of the line.

The round complexity of WAYUP is four: in the first round,
all nodes are updated which were not part of the old policy
π1, and therefore do not have an impact on current packets. In
the second round, each node behind the waypoint (i.e., π>wp1 )
which is part of π<wp2 and which has a backward rule, is
updated. This allows us to update the remaining nodes from
π<wp2 in the third round, since each packet which is sent
“behind“ the waypoint will eventually come back, according to
the consistency properties of the new policy. After this round,
the algorithm will wait θ time to ensure that no packet is on
π<wp1 anymore. In the fourth round it is possible to update
all nodes of π>wp2 in one round, because the update cannot
interfere with π<wp2 anymore, and hence it cannot violate
WPE.

Theorem 2. WAYUP takes four rounds and guarantees the
WPE property at any time.

Proof. The round complexity follows from the algorithm
definition. The transient consistency can be proved line-by-
line: Line 2 of Algorithm 1 cannot violate WPE since no
packet is crossing any of these nodes. Line 3 does not interfere
with π<wp1 and therefore each packet will still be sent via
π<wp1 towards the waypoint. As long as π2 is consistent, any
packet that reaches any node of π<wp2 will eventually reach the
waypoint during Line 4, since all backward rules are already
updated and no rule will bypass them. In Line 6, WPE is
already guaranteed, since π<wp2 is already in place and θ time
has elapsed.

C. Observation 3: Consistency properties may contradict

While WAYUP is good and fast at updating routes in a
waypoint enforcing manner, it does not provide loop-freedom.
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Fig. 3. WPE and LF may conflict.

As we will show next, WPE and LF may even conflict, i.e.
it is sometimes impossible to simultaneously enforce both.

Theorem 3. WPE and LF may conflict.

Proof. Consider the example depicted in Figure 3. Clearly, the
source s can only be updated once v3 is updated, otherwise
packets will be sent to d directly, which violates WPE. An
update of v3 can only be scheduled after an update of v2
without violation of LF. However, v2 needs to wait for v1 to
be updated for the same reasons. This leaves an update of v1
as the last possibility, which however violates WPE. Hence no
update schedule not violating either WPE or LF exists.

D. Observation 4: It does not help to relax

Relaxed loop-freedom offers additional flexibility over
strong loop-freedom and allows for update schedules of fewer
rounds. Given that WPE and LF may conflict, the question
arises whether under RLF and WPE more instances can be
solved than under SLF and WPE. The following theorem
answers this question negatively: all instances solvable under
RLF and WPE (henceforth RLF + WPE) are also solvable
under SLF and WPE (SLF + WPE).

Theorem 4. A network update instance is solvable under
SLF + WPE, if and only if, the instance is solvable under
RLF + WPE.

Proof. As any strong loop-free schedule is also a relaxed
one, we only need prove that any instance solvable under
RLF + WPE is also solvable under SLF+WPE. For the sake
of contradiction, assume that there exists an instance solvable
under RLF + WPE which is not solvable under SLF + WPE.

Let U denote all valid update schedules of the instance under
RLF + WPE. For any update schedule U ∈ U , we denote by
l(U) the round in which the first loop (disconnected from the
source) is created by U . If U contains no loops at all, we
set l(U) = ∞. Clearly, as the instance is not solvable under
SLF + WPE by assumption, any feasible update schedule
must contain a loop at some point in time and hence l(U)
is finite. We now pick an update schedule Û ∈ U maximizing
l(Û), i.e. an update schedule maximally delaying the creation
of the first loop. We denote the round in which the first loop
is created by r = l(Û).

Note that we can assume without loss of generality that in
any round of Û only a single update takes place: if multiple
updates take place in a round, then these parallel updates can
be executed sequentially by introducing additional rounds (one
per update) while not decreasing l(Û) and neither violating
RLF nor WPE.

Now, let x ∈ V be the (single) node updated in round r =
l(Û), such that the update of x creates a loop (not reachable
from the source). We denote by Xr the set of nodes reaching
x after all updates of round r− 1 were successfully installed.
As the update of node x in round r creates a loop, any node
contained in the set Xr leads (via x) to a loop. Furthermore,
any node in Xr is connected to some other node in Xr, which
equivalently implies the existence of a loop. Hence, none of
the nodes in Xr can be reachable from the source in round r
as otherwise RLF would be violated.

Now, let v ∈ Xr denote the first node being updated after
round r, such that out2(v) /∈ Xr holds, i.e. the new target of
node v lies outside Xr. The existence of such a node will be
shown below. Let rv denote the round in which v is updated.
We prove that within the round r, r + 1, . . . , rv − 1 all nodes
in Xr are only connected to nodes in Xr. We prove this by
induction. Initially, at round r, all nodes in Xr are connected to
nodes in Xr. Now, consider a round r′, with r ≤ r′ < rv− 1,
in which a node w is updated. If w is not contained in Xr,
still all nodes in Xr are connected to nodes in Xr as the
update of w does not change the forwarding behavior of any
node in Xr. Now, if w is contained in Xr, then as r′ < rv
holds, the new target of w must lie in Xr by the choice of
v, i.e. out2(w) ∈ Xr holds. Hence, still all nodes in Xr are
connected to nodes in Xr by transitivity. Hence, by induction,
within the rounds r, r + 1, . . . , rv − 1, all nodes in Xr are
connected to nodes in Xr only. This implies the following:

1) Any node w ∈ Xr leads to a loop in round r′ ∈ {r, r+
1, . . . , rv − 1}.

2) Any node w ∈ Xr is not reachable from the source in
round r′ ∈ {r, r + 1, . . . , rv}.

To see that the first statement holds, it suffices to note that all
nodes in Xr must lead to a loop eventually, as any node has
one outgoing neighbor and Xr is finite. The second statement
follows from the first: In rounds r, r+1, . . . , rv−1 the nodes
in Xr are not reachable from the source as this would violate
RLF. Furthermore, in round rv only the update of node v is
executed. By updating the rule of v, none of the nodes in Xr

can become reachable from the source as node v itself has not
been reachable after round rv − 1.

Considering the existence of v, we note the following. The
above proof has shown that all nodes in Xr lead to loops in
rounds r, r + 1, . . . , rv − 1 and are hence not reachable from
the source. If a node v leading outside of Xr was not to exist,
then the update schedule cannot be feasible as then loops were
to exist even after all nodes are updated.

Given the above, we now adapt the update schedule Û by
iteratively moving the update of node v to a previous round.
Concretely, let Ũ(i) denote the update schedule obtained from
Û in which the update of node v is executed in round rv − i
while the updates of rounds rv − i, . . . , rv − 1 (with respect
to Û ) are postponed by a single round. We will prove by
induction that the update schedule Ũ(i) does not violate WPE
or RLF for 0 ≤ i ≤ rv − r. Initially, for i = 0, Ũ(0) = Û
is valid with respect to RLF + WPE. Assuming that Ũ(i)
is valid for 0 ≤ i < rv − r, we now show that Ũ(i + 1)
satisfies RLF + WPE as well. Ũ(i+1) is obtained from Ũ(i)
by swapping the update of node v in round rv − i with the
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update executed in round rv − i− 1. Clearly, node v has not
been reachable from the source in rounds r, . . . , rv − i, as
Ũ(i) agrees with the update schedule Û on the first rv− i−1
rounds. As node v has therefore not been reachable in round
rv − i − 1 (with respect to Ũ(i)), swapping the update of v
with the update of round rv− i−1 can never violate WPE or
RLF as both properties only need to be safeguarded for nodes
reachable from the source.

Hence, by induction Ũ(rv − r), i.e. the update schedule in
which the update of node v has been moved from rv to r
while postponing the updates of rounds r, . . . , rv − 1 by one
(all with respect to Û ), is still a valid update schedule under
RLF + WPE. Denoting by Ũ the update schedule Ũ(rv −
r), we now prove that l(Ũ) > l(Û) holds, i.e. the first loop
according to Ũ is created in a later round than according to
Û . We only need to prove that Ũ does not create a loop in
round r. Assume for the sake of contradiction that this is not
the case, i.e. the update of v in round r creates a loop. As
updating v creates a loop, we know that v can be reached from
out2(v) before executing the update of round r. By transitivity,
as v ∈ Xr held by choice of v before the update of round
r (note that Xr always references the state before round r)
and as out2(v) can reach v, out2(v) can also reach x, i.e.
out2(v) ∈ Xr must hold. This however contradicts the choice
of v as we required out2(v) to be not contained in Xr.

Hence, as Ũ is a valid schedule under RLF + WPE and
does not contain a loop in the first r + 1 rounds, we have
l(Ũ) > l(Û). This contradicts the choice of Û being the
update schedule that delays the creation of the first loop the
longest. Hence, maxU∈U l(U) = ∞ holds for any feasible
network update instance, i.e. if there exists a valid update
schedule under RLF + WPE, then there also always exists
a valid update schedule satisfying SLF + WPE.

The proof of the above theorem is constructive and we
obtain the following interesting corollary.

Corollary 1. Any valid schedule under RLF + WPE can be
turned into a valid schedule under SLF + WPE.

Proof. Orienting ourselves at the proof of Theorem 4, we
outline an algorithm to obtain a schedule under SLF + WPE
given a schedule under RLF + WPE.

1) If multiple updates take place in a single round, spread
these updates onto distinct, successive rounds, such that
all updates are performed sequentially.

2) Iteratively delay the creation of loops as described in the
proof of theorem 4.

3) Merge the updates of adjacent rounds (e.g. greedily) as
long as neither WPE nor SLF are violated (optional).

The correctness of the algorithm is immediate: the schedule
obtained in Step 1) still satisfies RLF + WPE, the schedule
obtained in Step 2) satisfies SLF + WPE, and Step 3) cannot
violate WPE or SLF.

IV. NP-HARDNESS

Our observation that LF and WPE can conflict may not
necessarily be a problem in practice: if these instances can

be identified quickly, one could resort to alternative, pos-
sibly more resource-intensive update mechanisms [6], [30].
Unfortunately, however, as we will prove in the following, the
underlying decision problem is NP-hard. In particular, we will
prove a polynomial-time reduction from 3-SAT: we construct a
network update instance according to a 3-SAT formula which
is updatable if and only if the 3-SAT formula is satisfiable.
We will refer to the 3-SAT formula as C and to the respective
network update instance as G(C).

Notation: In our reduction we assume that each clause in 3-
SAT has exactly 3 literals. We denote the number of variables
as k and the number of clauses as m. The variables are
denoted as x1, x2, . . . , xk and the clauses as K1,K2, . . . ,Km.
We denote the total number of clauses with variable xi as mi,
number of clauses with literal xi as pi and number of clauses
with literal ¬xi as qi. We also denote the clauses with
literal xi as P i1, P

i
2, . . . , P

i
pi and the clauses with literal ¬xi

as Qi1, Q
i
2, . . . , Q

i
qi .

General Structure: In the constructed instance there will be
a destination d, waypoint wp and auxiliary nodes u1, u2, u3
and δ. For each variable and each clause in 3-SAT we will
create a gadget. Additionally for each clause we will add
three nodes di1, d

i
2, d

i
3 and for each variable we will add m

nodes r1j , . . . , r
m
j . The source of the path will be the first node

in the first clause gadget. The order of gadgets and nodes is
presented in Figure 4.

In a gadget for variable xi there will be a set of nodes
connected with clauses containing xi. Updating one of those
edges connecting a clause with the gadget will allow to
untangle the corresponding clause (we will define untangling
more formally later; generally speaking in order to untangle a
clause we need to update one of its edges which corresponds
to satisfying it in 3-SAT formula). The variable gadgets will be
constructed such that until all clauses are untangled only the
edges corresponding to one literal (xi or ¬xi) can be updated.
Therefore the constructed instance will be solvable only if we
can untangle all clauses using one literal for each variable,
which corresponds to satisfying 3-SAT formula.

K1 K2 Km

r1k+1
r1k

r11 rmk+1
rmk rm1

u1 u2 u3 wp

x1 x2 xk
δ

d11 d12
dm3

d
wp

Fig. 4. Order of gadgets and nodes. The upper part shows the order from the
source to wp. The lower part shows the order from wp to the destination.

Variable Gadgets: For each variable xj we construct a gad-
get (cf. Figure 5 for a visualization). The nodes vj1, v

j
2, v

j
3, v

j
4

are connected via edges (vj1, v
j
3) and (vj2, v

j
4) and there is

an edge from vj4 to the first node of next variable gad-
get, vj+1

1 (and in case of the last variable gadget there is an
edge from vk4 to δ). Note that the nodes vj4 and vj+1

1 would
actually be contracted into a single node in our model, but
the proof is simpler when considering these nodes separately.
In the gadget there are also nodes yj1, y

j
2, . . . , y

j
pi between vj1
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and vj2 and nodes zj1, z
j
2, . . . , z

j
qi between vj3 and vj4. The

clauses P j1 , P
j
2 , . . . , P

j
pi will be connected to yj1, y

j
2, . . . , y

j
pi ,

and updating an edge yji will allow clause P ji to become un-
tangled. Similarly clauses Qj1, Q

j
2, . . . , Q

j
qi will be connected

to zj1, z
j
2, . . . , z

j
qi . In turn nodes yj1, y

j
2, . . . , y

j
pi can be updated

only if vj1 is updated, and zj1, z
j
2, . . . , z

j
qi if vj2 is updated and vj1

is not updated (or all clauses are already untangled). This will
allow us to draw conclusions about the value of xj based on
whether before all clauses become untangled vj1 is updated
or not. A visualization of the gadget structure for variables is
presented in .

vj−1
4 vj+1

1vj1 vj2 vj3 vj4

yj
piyj

pi−1

yj
1

zj
qi

zj
qi−1

zj
1

xj
xj−1 xj+1

Fig. 5. Construction of a variable gadget for xj .

Clause Gadgets: For each clause Ki we construct a gad-
get consisting of nodes ci1, c

i
2, . . . , c

i
6. Additionally, we add

three nodes (outside of the gadget, close to d, see also
Figure 4) di1, d

i
2, d

i
3 per clause Ki . For each j ∈ {1, 2, 3} we

add edges (cij , d
i
j) and (dij , c

i
j+3). The purpose of nodes di1, d

i
2

and di3 is to delay the update of nodes ci1, c
i
2 and ci3 until all

the clauses are untangled. The construction of a clause gadget
is shown in Figure 6.

ci1 ci2 ci3 ci4 ci5 ci6 wp di1 di2 di3

Fig. 6. Construction of a clause gadget.

Connecting the Gadgets: Let us consider variable xi.
Let Kj = P ia be any clause containing literal xi. Then we
connect one of the nodes cj4, c

j
5, c

j
6 to node yia, and this node to

cj+1
1 , cj+1

2 or cj+1
3 (if Kj is the last clause than to u1, u2 or u3

instead), respectively. Note, that the order of nodes yi1, . . . , y
i
pi

is reversed compared to the order of P i1, . . . , P
i
pi (so the first

clause is connected to the last node). We proceed similarly
with clauses Qi1, . . . , Q

i
qi and nodes zi1, . . . , z

i
qi . Figure 7

depicts this construction.
Connecting the Whole Graph: In addition to the gadgets

we need to connect the path to the destination d, the waypoint
node wp and the three nodes u1, u2, u3 which are placed in
the old policy just before the waypoint. We add edges from u3
to wp, from wp to v11 , from u1 to c12 and from u2 to c13. After
every clause gadget we create k+1 nodes ri1, r

i
2, . . . , r

i
k+1 in

reverse order, i.e. rik+1 is the first node after the gadget and ri1
is the last. For each variable xi we create a path starting in vi3,

P i
1 P i

2
P i
pi xi

Fig. 7. Edges to connect clauses.

then going through nodes rmi , r
m−1
i , . . . , r1i and ending in vi2.

We also create a similar path starting in δ, then going through
nodes rmk+1, r

m−1
k+1 , . . . , r

1
k+1 and ending in vid. All these edges

are shown in Figure 8.
Proof of Correctness: In this section we prove, that correct-

ness of the reduction. We say that a clause (or clause gadget) is
untangled if at least one of the nodes ci4, c

i
5 or ci6 is updated.

We say that a clause is tangled if this is not the case.

Theorem 5. If C is satisfiable then there is a schedule for G(C)
which satisfies SLF and WPE.

Proof. Let σ : {x1, . . . , xk} → {⊥,>} be an assignment that
satisfies C. Based on σ we show how to update all nodes
in G(C) without violating SLF or WPE. The nodes will be
updated according to the following round schedule:

1) For each variable xi we update vi2. Additionally,
if σ(xi) = > holds, we update vi1 (which makes the
update of vi2 irrelevant as it bypasses vi2).

2) For each variable xi we update either nodes yi1, . . . , y
i
pi ,

if σ(xi) = > holds, or nodes zi1, . . . , z
i
qi otherwise.

3) Since for each clause Kj there is at least one literal
that satisfies it, we update one of the nodes cj4, c

j
5, c

j
6

connected to that literal. The path after these updates is
shown on Figure 9.

4) We update nodes rij for all i, j. This can be done, since
every clause has at least one outgoing edge and every rij
edge has a clause in between.

5) We update nodes vi3, for all i, and node δ, which
connects the path updated in round 4 with the reachable
parts behind the waypoint.

6) We update those nodes vi1 that were not updated earlier,
as the path starting at vi3 is now loop-free.

7) We update those nodes yij and zij that were not updated
earlier.

8) We update those nodes cj4, c
j
5 and cj6 that were not

updated earlier.
9) We update nodes dj1, d

j
2, d

j
3, for all j.

10) We update nodes cj1, c
j
2, c

j
3, for all j.

11) We update nodes u1, u2, u3 and wp.
None of these updates will violate WPE or SLF.

Theorem 6. If there is a schedule for G(C) which satis-
fies RLF and WPE then C is satisfiable.

We will start by proving the following lemma:

Lemma 1. In any correct order of updating edges, as long as
some clause gadgets remain tangled, the following conditions
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Fig. 8. Connecting all paths.

Fig. 9. The path after three rounds of updating according to the schedule in proof of Theorem 5.

hold:

1) A node yij can be updated only if node vi1 is updated.
A node zij can be updated only if node vi2 is updated.
Nodes zij and vi1 cannot be both updated.

2) For any i ∈ {1, . . . ,m} and j ∈ {1, . . . , k + 1},
node rij can be updated only if the i-th clause gadget is
untangled.

3) A node cij , for j ∈ {4, 5, 6} can be updated only if its
successor is already updated or if there is h ∈ {4, 5, 6}
such that h < j and cih is already updated.

4) A node vi3, for any i, can be updated if rji is updated
for all j ∈ {0, 1, . . . ,m} or if vi2 is updated, but vi1 is
not. The same applies to node δ.

5) Nodes di1 and di2 and di3, for any i, cannot be updated.
6) Node ci3 cannot be updated. Node ci2 can be updated

only if ci−16 and its successor are updated, ci−15 or its
successor are not updated and ci−14 or its successor
are not updated. ci1 can be updated only if ci−14 or
its successor are not updated and either ci−16 and its
successor or ci−15 and its successor are updated.

Before proving the lemma, let us make some observations
about what these conditions mean in terms of the path tra-
versed by packets. Conditions 1 and 4 guarantee, that if a
packet is in vi1 or vi2, for some i, then it will be forwarded
to node δ without going through wp. That is because it uses
edges from vj1 and vj2 to bypass any backward edges. Then
Condition 5 guarantees that it travels from δ to d without
passing through the waypoint.

Conditions 2, 3 and 6 guarantee that a packet will traverse
from the source through all the clauses until it reaches the way-
point. That holds because for each clause, if it is untangled,
the packet will be forwarded from some cij to yal , and then,
as yal must have been updated before cij , it returns to ci+1

j−3.
On the other hand, if the clause is tangled, the packet will go
through rik+1, r

i
k, . . . , r

i
0 (none of them is updated, since the

clause is tangled) to ci+1
1 .

Conditions 2 and 4 guarantee that as long as not all clauses
are untangled, δ cannot be updated and vi3 can be updated only
if the path from source to destination does not go through that
node.

Let us also notice that if Conditions 5 and 6 hold, then a
packet can enter a clause gadget only through nodes ci1, c

i
2

and ci3, and it is afterwards forwarded to node ci4. Hence, it is
sufficient to show that a packet enters a clause gadget twice
to prove that loop-freedom does not hold.

Proof. Let us take any order of updating edges, and consider
the first update that violates one of the conditions. If we update
any node other than vi1, one of the conditions is violated. So
firstly let’s assume that only one condition is violated and
consider the cases for which condition it is.

1) Let us assume that yij is updated, but vi1 is not. Then
the packet goes through all clauses, and then through
all previous variable gadgets. Upon entering the gadget
for xi it goes through an edge from yij to Ki and
therefore violates loop-freedom. The case when zij is
updated is similar.

2) Let us assume that rij is updated, but the i-th clause is
tangled. Then the packet goes through all clause gadgets
up to Ki, then it is forwarded to rij . Then there are two
possibilities. Firstly it may be forwarded back to r1l ,
for l ≤ j, and from there to the gadget for xl. But
because Conditions 1, 4 and 5 are satisfied, it would go
to the end, without passing through the waypoint. The
other case is that it is forwarded back to ral , for some
a < i and l ≤ j, and then re-enters some clause gadget,
which would violate loop-freedom.

3) Let us assume that cij is updated but its successor yla
and cih, for all h ∈ {4, 5, 6} such that h < j, are not.
Then the packet traverses through cij without passing
through the waypoint, and then it goes to yla. Then it may
either be forwarded to vl2, which means that it would be
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forwarded to d without passing through the waypoint,
because Conditions 1, 4 and 5 are satisfied, or it travels
from some node ylg to gadget Kf . But then f ≤ i,
because of the order of nodes ylpl , . . . , y

l
1, it would go to

a gadget that was already visited, and therefore violate
loop-freedom. The case when the successor of cij is zla,
for some l, a, is similar.

4) Let us assume that vi3 is updated, but there is some rji
which is not updated and either vi1 is updated or vi2 is
not. Then the packet, after going through the waypoint,
reaches the gadget for xi. Then, because vi1 is updated
or vi2 is not, it is forwarded to vi3. From there it traverses
through some backward edges, before it enters some
clause gadget (it cannot take backward edges until it
goes to r1a, and then go forward to some variable gadget,
because Condition 2 holds, and not all clauses are
untangled). Since all clause gadgets were already visited,
it violates loop-freedom.

5) If dij is updated, then the packet traverses through all
clause gadgets and variable gadgets until it reaches dij .
From there it goes back to cij+3. Then there are two
possibilities: if it will be forwarded to the next clause
gadget, it will violate loop-freedom, because all clauses
were already visited. Otherwise, if cij+3 is updated, the
packet is forwarded to some node yla (or zla). From there,
it can either be forwarded to some clause gadget, or
to xl+1. In both cases, it violates loop-freedom.

6) The condition guarantees that if the packet traverses
through cij , for j ∈ {1, 2, 3}, then this node cannot be
updated. Otherwise, the packet after going to Ki (with-
out going through the waypoint), would go to dij , and
from there to the destination.

Finally let us consider what happens when we update vi1 and
it violates Conditions 1 and 4. Then the case is similar to
violating only Condition 4, that is, the packet traverses through
all the clauses to the waypoint, and from there to vi1 and next
to vi3. From there it goes through some backward edges and
re-enters some clause, which violates loop-freedom.

Now we are ready to prove Theorem 6.

Proof of Theorem 6:. Let us assume that there is a schedule
for G(C). Then let us look at the update which untangles
the last clause (i.e., before this update there was an tangled
clause, and after this update all clauses are untangled). Then
Condition 1 guarantees, that for each variable there is no
node corresponding to positive literal (node yia) and a node
corresponding to negative literal (node zil ) that are both
updated. This happens as updating node yia requires that vi1
is updated, whereas updating node zil requires that vi1 is not
updated. Therefore we can set the corresponding assignment
of variables in C to >, if at least one of the nodes yia is
updated, or to ⊥ otherwise. Then, as all clauses are untangled,
and untangling a clause requires that at least one literal has
value >, this assignment satisfies all clauses of C.

Theorem 7. The following statements are equivalent:
1) The formula C is satisfiable.
2) There is a schedule for G(C) satisfying RLF + WPE.

3) There is a schedule for G(C) satisfying SLF + WPE.

Proof. We have shown that the existence of a schedule sat-
isfying RLF and WPE implies that C is satisfiable. We have
also shown that if C is satisfiable then there is a schedule
satisfying SLF and WPE. Hence, 1) and 2) are equivalent
and the equivalence of 3) follows from Theorem 4.

V. EXTENSION TO SERVICE CHAINS

We currently witness a trend towards more complex network
services, which concatenate multiple network functions or
middleboxes into so-called service chains [11], [26]: se-
quences of network functions which are allocated and stitched
together in a flexible manner. For example, a service chain
could define that traffic originating at source s is first steered
through an intrusion detection system for security (1st net-
work function), next through a traffic optimizer (2nd network
function), and only then is routed towards the destination d.

Clearly, enforcing multiple waypoints does not render the
problem easier. Interestingly, it is even impossible to compute
an update from a route π1 to a route π2, if waypoints occur
in different order in the two policies.

Theorem 8. The order, in which two waypoints wp1 and wp2
are traversed cannot be changed from π1 to π2 without
violating either WPE or LF.

Proof. Assume that in π1 packets traverse wp1 first, followed
by wp2 and vice versa for π2. By definition, before the start of
the update, packets are forwarded according to π1 and hence,
visit wp1 before wp2. Due to WPE, both waypoints are on the
source-destination path in every round and hence, to change
the order of both waypoints, we can identify a single round
where this order changes. Otherwise there are either loops or
bypassed waypoints. We can assume w.l.o.g. that this round
includes an update, which leads to a forwarding of packets
to wp2 before they traversed wp1 and that this update will
be executed as the first update in this round. However, this
update immediately bypasses wp1, since a way back to wp1
could only exist if this path existed before. Thus, the round
before included a loop, as wp1 was visited before wp2.

Interestingly, however it is still possible to update a policy
with multiple waypoints, if only WPE is required (and the
waypoints are in the same order in the old policy π1 and the
new policy π2). Algorithm MULTIWAYUP is a generalized
version of algorithm WAYUP. We denote the number of
waypoints as k and the waypoints as wp1, wp2, . . . , wpk. As
in WAYUP we will use an upper bound θ on the maximal
packet latency. Similarly to the algorithm WAYUP we start by
updating all nodes, which are only in the new policy π2. In the
second round we update those nodes, which are behind some
waypoint wpi in π1, but before wpi in π2, and which have a
backward rule. Then we need k rounds, one for each waypoint,
to update nodes before each waypoint in π2 (i.e., π<wpi2 for
each i) in the order of waypoints in π1. After each round we
need to wait θ time to ensure that no packet is on π<wpi1 .
Finally in the last round we update all remaining packets, i.e.,
packets of π>wpk2 .
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Algorithm 2: MULTIWAYUP

1 Input: old policy π1, new policy π2, threshold θ
2 update nodes of π2 which are not in π1
3 update
∀i ∈ [k] nodes of π>wpi1 with backw. rules in π<wpi2

4 for i from 1 to k
5 update remaining nodes of π<wpi2

6 wait θ
7 update nodes of π>wpk2

Theorem 9. MULTIWAYUP takes k+3 rounds and guarantees
the WPE property at any time.

Proof. The round complexity follows from the algorithm
definition. The proof of transient consistency is similar to the
one in Theorem 2. Line 3 cannot violate WPE, as only forward
edges can be used to skip waypoints. Then, in Line 5, we
update all nodes in π<wp12 . As all forward nodes, which are
updated in this round, lead to nodes in π<wp12 , all packets will
eventually use some backward edge updated in Line 3 to reach
wp1. After time θ, all packets reach wp1 by traversing along
π2, so we can repeat the same argument for the subsequent
waypoints. Finally, Line 7 cannot violate WPE, as all packets
are already guaranteed to reach all waypoints.

VI. OPTIMAL UPDATE ALGORITHMS

Given the hardness of the general network update problem,
we now present exact algorithms, based on Mixed-Integer
Programs (MIPs), for computing update schedules, whenever
this is possible. We generalize the Mixed-Integer Program
presented in [25] (considering RLF) for multiple waypoints
and present the following extensions: (1) we model the
decision problem by forcing only a single update to take
place in each round, (2) present an adaptation for realizing
SLF, and (3) introduce a flow extension that computationally
strengthens the formulation. Based on these extensions, we
obtain 8 different Mixed-Integer Programming formulations
in total. We refer to the formulations by 3 character acronyms
of the form −/D |S/R | − /F : the first character indicates
whether the decision problem is considered (D) or not (-),
the second character indicates whether the strong (S) or
the relaxed (R) loop-freedom property is used, and the last
indicates whether the flow extension is used (F) or not (-).
Hence, DSF refers to the MIP formulation for the decision
variant under SLF with the flow extension and -R- denotes the
basic MIP formulation for the relaxed-loop freedom property
without the decision and flow extensions (cf. MIP 1).

A. Base Formulation

According to the line representation presented in Section III,
the policies π1 and π2 are paths on the common set of
nodes V , such that π1 and π2 connect the source s ∈ V to the
destination d ∈ V . We denote the edges of π1 and π2 by E1

and E2, respectively. We denote by E = E1∪E2 the set of all
possible edges. Furthermore, the set of waypoints is denoted
by WP ⊆ V .

The decision of whether switch v ∈ V is updated in
round r ∈ R = {1, . . . , |V | − 1} is modeled using binary
variables xrv ∈ {0, 1}. Constraint 2 of MIP 1 forces the
forwarding rule of each node to be changed in exactly one of
the rounds. The general objective of the optimization problem
is to minimize the number of rounds. This is realized by
minimizing the variable R ≥ 0 which is lower bounded by all
the rounds in which an update is performed (see Constraint 1).

Given the assignment of switch updates to rounds, the
Constraints 3 and 4 set the variables yre ∈ [0, 1] to indicate
whether the edge e ∈ E exists after the (successful) execution
of all updates up to and including round r. Note that these
variables will attain binary values based as these are computed
as a function of the binary variables xrv . To check that
the properties WPE and LF hold, transient states between
consecutive rounds need to be considered as discussed below.

a) Enforcing RLF: We first outline how to enforce RLF
and will then discuss how to adapt the constraints to en-
force SLF. To model the RLF property, we need to guarantee
that transient states between rounds are loop-free. Note that
the updates for round r ∈ R will only be triggered when
all updates of nodes in previous rounds were successful. As
updates within one round are sent out asynchronously, the
updates can be installed in an arbitrary order. To effectively
forbid any intermediate cycles it is sufficient to forbid cycles
in the union of edges already installed after the execution
of round r − 1 together with the edges that are enabled in
round r. This suffices, as, if there exists a partial update of
nodes that forms a transient loop, this loop is also contained
in the respective union of the edges.

Specifically, considering RLF only loops which are reach-
able from the source node s ∈ V need to be considered. To
this end, we define variables arv ∈ {0, 1} to indicate whether
a node v ∈ V may be reachable or accessible from the source
node s under any order of updates between rounds r − 1
and r. The variables are set to 1 if, and only if, there exists
a (simple) path from s towards v using edges of either the
previous round or the current round (see Constraints 5 -
7). Similarly, and based on this reachability information, the
variables yr−1∨ru,v ∈ {0, 1} are set to 1 if the edge (u, v) ∈ E
may be used in the transient state, namely if the edge existed
in round r− 1 or r and u could be reached (see Constraints 8
and 9). Lastly, having reconstructed the information which
edges effectively may carry flow, we employ the well-known
Miller-Tucker-Zemlin constraints (see Constraint 10) with cor-
responding level variables lrv ∈ [0, |V | − 1] to forbid loops: if
traffic may be sent along edge (u, v) ∈ E, i.e., if yr−1∨ru,v = 1
holds, then lrv ≥ lru + 1 is enforced. Hence, the level variable
of the head v of the edge (u, v) is strictly larger than the level
variable of its predecessor u. Clearly, an existing cycle does
not allow for a feasible assignment of level variables.

We lastly note, that we need to introduce the following
constants, modeling the initial state in round 0, for the MIP 1
to be well-defined: we set a0s = 1, as the source node s is
always reachable, and enforce that initially only edges of the
old policy E1 may be used, i.e. we set y0u,v = 1 for (u, v) ∈ E1

and y0u,v = 0 for (u, v) ∈ E2.
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Mixed-Integer Program 1: Basic Formulation (-R-)

min R (Obj)
R ≥ r · xrv ∀r ∈ R, v ∈ V (1)
1 =

∑
r∈R x

r
v ∀v ∈ V (2)

yru,v = 1−
∑
r′≤r x

r′

u ∀r ∈ R, (u, v) ∈ E1 (3)

yru,v =
∑
r′≤r x

r′

u ∀r ∈ R, (u, v) ∈ E2 (4)

ars = 1 ∀r ∈ R (5)

arv ≥ aru + yr−1u,v − 1 ∀r ∈ R, (u, v) ∈ E (6)

arv ≥ aru + yru,v − 1 ∀r ∈ R, (u, v) ∈ E (7)

yr−1∨ru,v ≥ aru + yr−1u,v − 1 ∀r ∈ R, (u, v) ∈ E (8)

yr−1∨ru,v ≥ aru + yru,v − 1 ∀r ∈ R, (u, v) ∈ E (9)

yr−1∨ru,v ≤ lrv − lru − 1

|V | − 1
+ 1 ∀r ∈ R, (u, v) ∈ E (10)

ar,ws = 1 ∀r ∈ R, w ∈WP (11)

ar,wv ≥ ar,wu + yr−1u,v − 1
∀r ∈ R, w ∈WP ,
(u, v) ∈ Ew

WP
(12)

ar,wv ≥ ar,wu + yru,v − 1
∀r ∈ R, w ∈WP ,
(u, v) ∈ Ew

WP
(13)

ar,wd = 0 ∀r ∈ R, w ∈WP (14)

b) Enforcing WPE: For enforcing the WPE property, a
reachability construction similar to the one of Constraints 5
- 7 is employed. We define variables ar,wv ∈ {0, 1} for each
waypoint w ∈WP , each round r ∈ R and each node v ∈ V .
Intuitively, ar,wv = 0 may only hold, if no path from the
source towards the node v exists in the transient state between
rounds r and r−1, which does not contain waypoint w ∈WP .
To this end, we denote by Ew

WP
⊂ E all edges not incident to

the waypoint w and reachability propagation is only enforced
along these edges (cf. Constraints 11 - 13). As Constraint 14
ensures that no packet must arrive at the destination d – using
a path in Ew

WP
– no waypoint w ∈ WP will be bypassed in

any transient state.

B. Model Extensions

Based on MIP 1 for RLF and WPE, we now consider a
series of model extensions.

1) Decision Variant: First, note that the above presented
formulation only considers the optimization problem of finding
an update schedule using the minimal number of rounds.
However, for checking whether a given problem is feasible
or not, it will prove useful to consider the respective decision
problem. To this end, we may include the following constraint,
which allows only one switch to be updated per round.∑

v∈V
xrv = 1 ∀r ∈ R . (15)

While simple, this constraint can drastically reduce the search
space and acts as a symmetry reduction.

2) Enforcing SLF: SLF is strictly stronger than RLF as it
forbids cycles under any circumstances, i.e. it forbids cycles
even if none of the nodes on the cycle are (anymore) reachable

from the source node. Hence, to obtain the formulation for
SLF, we may simply assume that all nodes are always
reachable from the source. Hence, fixing all variables arv to
1, the Constraints 5 - 9 reduce to:

yr−1∨ru,v ≥ yr−1u,v ∀r ∈ R, (u, v) ∈ E (16)

yr−1∨ru,v ≥ yru,v ∀r ∈ R, (u, v) ∈ E (17)

Note that the reachability variables arv are not used anywhere
else and hence these do not need to be instatiated for SLF.

3) Flow Extension: A disadvantage of the MIP 1 is
the (necessary) use of reachability propagation constraints in
the form of binary conjunctions (cf. Constraints 6 - 9): if the
tail u is reachable and the respective edge (u, v) is enabled,
then the head v is also reachable. These constraints often yield
weak linear relaxations [4], which may lead to high runtimes
in practice. To strengthen the models, we present an extension
built on multi-commodity flows. Concretely, we consider s-d
flows for each round r ∈ R to enforce the correctness of the
non-transient states and introduce flow variables fre ∈ [0, 1]
for each round r ∈ R and each edge e ∈ E. Our extension
can be formalized as follows:∑

e∈δ+(s)

fre = 1 ∀r ∈ R (18)

∑
e∈δ+(v)

fre =
∑

e∈δ−(v)

fre ∀r ∈ R, v ∈ V \ {s, d} (19)

fre ≤ yre ∀r ∈ R, e ∈ E (20)∑
e∈δ−(w)

fre ≥ 1 ∀r ∈ R, w ∈WP (21)

arv ≥ fr−1v ∀r ∈ R (22*)
arv ≥ frv ∀r ∈ R (23*)

The first two constraints induce an s-d flow, such that
the flow starting at the source s ∈ V must reach the
destination d ∈ V , where δ+(v) = {(v, u)|(v, u) ∈ E}
and δ−(v) = {(u, v)|(u, v) ∈ E} denote the outgoing
and incoming edges of v with respect to the edge set E,
respectively. As the flow is upper bounded by the existence of
the edges (see Constraint 20), not even fractional cycles may
exist after having executed the updates of round r ∈ R; this
is in fact not safe-guarded by the linear relaxations of MIP 1.
Note, that the Constraint 20 is valid both for SLF and RLF,
since the flow always emerges at s and all nodes on the flow
are therefore reachable.

With respect to WPE, the Constraint 21 states that all
waypoints must be reached by all of the flow by lower
bounding the flow along the the set of incoming edges. Lastly,
the Constraints 22* and 23* strenghten the (relaxed) loop
detection by bounding the reachability variables arv from
below. Note that these constraints are only added, when RLF is
considered, as these variables do not exist in the SLF variant.

VII. SIMULATIONS

We generated instances (i.e., scenarios) with varying number
of nodes and waypoints and are specifically interested in the
number of scenarios in which LF and WPE conflict, and hence
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Fig. 10. Classification of the generated scenarios according to whether a feasible solution exists, how many optimal solutions can be computed under strong
and relaxed loop-freedom, how many scenarios are infeasible and lastly for which percentage of the scenarios neither feasibility nor infeasibility can be proven
with any of the algorithms in 1,000 seconds. As can be seen, the number of waypoints has a distinct impact on the number of feasible scenarios.

-R
-

-R
F -S
-

-S
F

DR
-

DR
F

DS
-

DS
F0

20

40

60

80

100

sc
en

ar
io

s [
%

]

WP=1

infeasible
unknown
feasible
optimal

-R
-

-R
F -S
-

-S
F

DR
-

DR
F

DS
-

DS
F0

20

40

60

80

100

sc
en

ar
io

s [
%

]

WP=2

infeasible
unknown
feasible
optimal

-R
-

-R
F -S
-

-S
F

DR
-

DR
F

DS
-

DS
F0

20

40

60

80

100

sc
en

ar
io

s [
%

]

WP=3

infeasible
unknown
feasible
optimal

Algorithm Performance

-R
-

-R
F -S
-

-S
F

DR
-

DR
F

DS
-

DS
F0

20

40

60

80

100

sc
en

ar
io

s [
%

]

WP=4

infeasible
unknown
feasible
optimal

-R
-

-R
F -S
-

-S
F

DR
-

DR
F

DS
-

DS
F0

20

40

60

80

100

sc
en

ar
io

s [
%

]

WP=5

infeasible
unknown
feasible
optimal

Fig. 11. Qualitative evaluation of the studied algorithms for the maximum number of 35 switches. For each of the eight algorithms and each of the 250
instances (per waypoint) the output is classified as in Figure 10. When considering the decision variant, feasibility coincides with optimality.

are not updateable without violating either. We generate policy
updates randomly and vary the number of nodes as well as the
number of waypoints. The generated policies always have a
fixed source node s ∈ V and destination node d ∈ V , and the
intermediate nodes’ order is shuffled uniformly at random. In
cases of multiple adjacent waypoints, we ensure that the order
in which the waypoints are traversed does not differ. This is
necessary, as by Theorem 8 these scenarios are unsolvable (and
can easily be identified). In addition, we guarantee that the
policies are (edge-wise) disjoint, as the respective tail nodes
do not need to be updated in the first place.

We generate updates of number of nodes {15, . . . , 35},
containing one to five waypoints. For each combination of
these values, we generate 250 instances at random (26,250
overall). Our Python2.7 implementation uses Gurobi 8.0 to
solve the respective eight different MIP formulations and
terminate experiments, if neither optimality nor infeasibility
was shown, after 1,000 seconds. The complete code for our
evaluation, including the instances studied and our results, is
freely available at [31]. The experiments were conducted on
a server equipped with Intel Xeon E5-4627v3 CPUs running
at 2.60GHz.

As to be expected, the feasibility of scenarios is influenced
by the number of waypoints within the update (cf. Figure 10).
For a single waypoint the percentage of infeasible scenarios
is decreasing when increasing the number of nodes. While
roughly 10% of the scenarios are infeasible for 15 nodes, for
scenarios involving at least 28 nodes only a fraction of at
most 3% remains infeasible. These numbers increase signifi-
cantly when considering more waypoints, leading to close to
20% infeasible instances when considering 5 waypoints and
35 nodes. More waypoints do not only lead to a higher per-
centage of infeasible scenarios, but also to more time-intensive
computations. While scenarios with one waypoint are solved
in nearly all cases within the 1,000 seconds, the feasibility

of roughly 20% of the scenarios cannot be decided when
considering 5 waypoints at 35 nodes, i.e., within the time limit
neither the feasibility nor the infeasibility could be proven
using any of the Mixed-Integer Programs. Furthermore, the
number of scenarios solved to optimality decreases both with
the scenario size and the number of waypoints. Comparing the
different notions of Loop-Freedom, we note that for RLF a
smaller amount of scenarios could be solved to optimality.

The feasibility trends observed in Figure 10 can also be
found in Figure 11, which gives an overview of the algo-
rithms’ performance for the scenarios containing 35 nodes.
Independent of the number of waypoints, it can be observed
that the MIP variants, which only allow a single update
per round (i.e. the decision variants), find more solutions
than the formulations which aim for a minimization of the
number of rounds. Note that when considering the decision
variant, any feasible solution is an optimal solution. The flow
extension formulations also show a slight benefit compared to
its counterparts in terms of the ability to find feasible solutions
as well as to detect infeasibilities. However, in scenarios with
multiple waypoints, some optimization variants fail to detect
a significant fraction of up to 20% of feasible scenarios as
such, i.e. even though solutions exist, none are found within
the time limit.

Figure 12 provides a more detailed view on the runtime
distributions leading to the increase of undecided scenarios.
While there are only negligible differences for 15 nodes, these
differences increase drastically with the number of nodes.
In terms of the infeasibility detection, there is a significant
improvement when adding the flow extension to the algo-
rithms, e.g., the median runtime for the 25 node scenarios
decreases roughly by two orders of magnitude (specifically,
when considering the decision variants). When considering the
time until the first solution was found, no clear impact can be
detected. The algorithm yielding solutions the fastest is the
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SLF (solid). More than 90% of the scenarios can be solved using 10 or less
rounds. Note the logarithmic x-axis.

strongest formulation (with respect to its LP relaxations): the
decision variant for SLF using the flow extension: even for
35 nodes the majority of solutions is found within less than
10 seconds. Given these results one could possibly use the
decision variant to construct a solution quickly (or decide that
no solution exists) and – if a solution was found – use the
found solution to warm-start the Mixed-Integer Program for
minimizing the rounds.

We lastly present in Figure 13 we show the difference
between RLF and SLF, in terms of the We consider scenarios
with 15, 25, and 35 nodes. We observe that more than 90%
of the scenarios are solvable using at most 10 rounds. Fur-
thermore, the usage of RLF decreases the required number of
rounds by roughly one on average.

VIII. RELATED WORK

The problem of how to consistently update network routes
has received much attention over the last years, also motivated
by the advent of software-defined networks. A recent survey
of the field [13] classifies network update problems according
to the consistency property they provide: connectivity (e.g.,
blackhole- and loop-freedom [2], [12], [14], [15]), policy (e.g.,
per-packet consistency [8], [30] or waypoint enforcement), and
performance (taking into account the actual availability and
limits of network bandwidth resources, e.g., updated must be
congestion-free [5], [17]). We in this paper initiated the study
of a fundamental policy-aware update problem: updates which
also respect waypoints.

In their seminal work, Reitblatt et al. [30] initiated the study
of SDN route updates providing strong, per-packet consis-
tency guarantees. Their 2-phase commit protocol also forms
the basis of the distributed implementation in [6]. Mahajan
and Wattenhofer [27] started investigating weaker transient

consistency properties for destination-based routing policies,
and introduced the node-ordering technique. The model in-
troduced in [27] already led to several follow-up papers, for
example [12] which also studies round-based models and [10]
which studies extensions to jointly optimizing multiple poli-
cies. Our work builds upon [27]. Besides considering a new
consistency property, waypoint enforcement, and we also go
beyond destination-based routing.

Researchers have also started investigating consistent up-
dates for networks which include (network function virtual-
ized) middleboxes. In their interesting work [16], Ghorbani
and Godfrey argue that in the context of network function
virtualization, rather stronger consistency properties are re-
quired. In terms of more general policy-respecting updates,
McClurg et al. [28] present a model for consistent updates
using Linear Temporal Logics and show how to synthesize
SDN updates automatically. In a recent work, Vissicchio et
al. [32] propose an algorithm for preserving generic policies
during SDN updates. Here, a policy is defined as a set of
paths such that the flow must traverse any of those paths in
each intermediate state.

The measurement studies in [20] and [23] provide empirical
evidence for the non-negligible time and high variance of
switch updates, motivating our work. However, there is also
work on network update problems in synchronous models:
Time4 [29] makes stronger assumptions on the synchroniza-
tion in the network and among switches, which however leads
to a very different algorithmic problem [33].

Finally, there is also first work on polynomial-time update
algorithms for special cases (e.g., [8]), in particular on acyclic
graphs [3], however, without focusing on waypoint properties.
Bibliographic note. First versions of this work have been
presented at the ACM HotNets 2014 workshop [25] and at
the ACM SIGMETRICS 2016 conference [24].

IX. CONCLUSION

This paper initiated the study of how to update a network in
a transiently consistent manner, ensuring not only classic for-
warding correctness properties related to connectivity (namely
loop-freedom), but also respecting network (security) policies
and in particular waypoint enforcement. We believe that our
paper opens a rich and interesting area of research. In particu-
lar, it would be interesting to further explore polynomial-time
algorithms like [3], for special instances of the network update
problem.
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