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Abstract—This paper demonstrates that virtual networks
that are dynamically embedded on a given resource net-
work may constitute a security threat as properties of the
infrastructure—typically a business secret—are disclosed.
We initiate the study of this new problem and introduce the
notion of request complexity which captures the number of
virtual network embedding requests needed to fully disclose
the infrastructure topology. We derive lower bounds and
present algorithms achieving an asymptotically optimal
request complexity for the important class of tree and
cactus graphs (complexity Θ(n)) as well as arbitrary
graphs (complexity Θ(n2)).

I. INTRODUCTION

An Internet Service Provider’s (ISP) network infras-
tructure and its properties often constitute a critical busi-
ness secret, not only because the smarter investment of
a given resource budget yields a competitive advantage,
but also because the discovery of, e.g., bottlenecks,
may be exploited for attacks or bad publicity. Hence,
providers around the world are often reluctant to open
the infrastructure to novel technologies and applications
that might lead to information leaks.

This paper raises the question whether today’s virtual-
ization trend in the Internet, and especially the network
virtualization [2] paradigm, can be used to obtain infor-
mation about the infrastructure. Network virtualization
is a novel networking paradigm which allows customers
to request virtual networks (VNets) on demand. VNets
can come in different flavors and with different speci-
fications, and can also provide QoS guarantees such as
a minimal bandwidth (given that corresponding traffic
shaping and reservation policies are in place). Although
VNets appear as dedicated and “real” networks to their
users, several VNets can be embedded (i.e., realized)
over the same infrastructure network (referred to as the
substrate network); network virtualization technology
therefore enables the reuse of substrate resources.

Basically a VNet defines a set of virtual nodes (e.g.,
virtual machines) interconnected via virtual links ac-
cording to the specified VNet topology over a substrate
network. In this paper we consider VNet requests which
do not impose any location constraints on where the
virtual nodes are mapped to. One can take advantage

of this flexibility in the VNet specification to optimize
the VNet embedding. The set of virtual nodes and
virtual links forming the VNet can hence be realized
on arbitrary substrate nodes and paths, respectively.

Contribution. This paper initiates the study of a new
problem, the discovery of a substrate topology through
repeated VNet embedding requests. From a theoretical
side, our model differs from existing topology discovery
problems as the requests come in the form of entire
graphs instead of paths only.

To measure how quickly a topology can be disclosed,
we pursue an algorithmic approach and propose request
strategies that reveal the substrate topology. These algo-
rithms are evaluated on their request complexity which
counts the number of VNet requests issued. Each request
has the following simple form: Is graph G (the VNet or
“guest graph”) embeddable in graph H (the substrate
or “host graph”)?

We show that the request complexity of trees or even
of cactus graphs is Θ(n), while arbitrary graphs have a
request complexity of Θ(n2), where n is the number of
nodes in the substrate.

Related Work. For a survey on network virtualization,
the reader is referred to [2]. While there is a large body
of literature on how to embed VNets efficiently (e.g., [3],
[7], [9]), we focus on the orthogonal question of what
can be learned about a provider’s infrastructure by such
embeddings in this paper. For example, in the context of
clouds, it has been shown that VM location information
has security implications and that VM locations has been
exploited for collocation attacks. [6]

Traceroute based topology inference [4] and network
tomography [1] problems differ from our model as there,
the exploration is inherently path-based.

II. VNET EMBEDDING

We first introduce the VNet topology discovery prob-
lem and subsequently describe our algorithmic approach.

VNet Embedding. Our formal setting consists of two
entities: a customer (the “adversary”) that issues virtual
network (VNet) requests and a provider that performs
the access control and the embedding of VNets. We



model the virtual network requests as simple, undirected,
weighted graphs G = (V,E,w) (the guest graph) where
V denotes the virtual nodes and E denotes the virtual
edges connecting nodes in V ; the weight function w
specifies capacity requirements, i.e., w(v) denotes the
resource demand for node v ∈ V (e.g., computation or
storage), and w(e) denotes the demand for edge e ∈ E
(e.g., bandwidth).

Similarly, the infrastructure network is given as a
weighted undirected graph H = (V,E,w) (the so-called
host graph or substrate) as well, where V denotes the set
of substrate nodes, E is the set of substrate links, and w
is a capacity function describing the available resources
on a given node or edge. Without loss of generality,
we assume that there are no parallel edges or self-loops
neither in VNet requests nor in the substrate, and that
H is connected.

In this paper we assume that besides the resource
demands, the VNet requests do not impose any map-
ping restrictions, i.e., a virtual node can be mapped to
any substrate node, and we assume that a virtual link
connecting two substrate nodes can be mapped to an
entire (but single) path on the substrate as long as the
demanded capacity is available. These assumptions are
typical for virtual networks. [2]

A virtual link which is mapped to more than one
substrate link however can entail certain costs at the
relay nodes, the substrate nodes which do not constitute
endpoints of the virtual link and merely serve for for-
warding. For example, this cost may represent a header
lookup cost and may depend on the packet rate of the
communication. However, depending on the application,
the cost can also be more complex, for instance in case
of a VNet which requires additional functionality at the
backbone routers, or to implement an intrusion detection
system. We model these kinds of costs with a parameter
ε > 0 (per link). Moreover, we also allow multiple
virtual nodes to be mapped to the same substrate node
if the node capacity allows it; we assume that if two
virtual nodes are mapped to the same substrate node,
the cost of a virtual link between them is zero. With
these definitions, we can formalize VNet embeddings.

Definition 1 (Embedding π, Relation 7→). An embedding
of a graph A = (VA, EA, wA) to a graph B =
(VB , EB , wB) is a mapping π : A → B where every
node of A is mapped to exactly one node of B, and
every edge of A is mapped to a path of B. That is, π
consists of a node πV : VA → VB and an edge mapping
πE : EA → PB , where PB denotes the set of paths. We
will refer to the set of virtual nodes embedded on a node
vB ∈ VB by π−1V (vB); similarly, π−1E (eB) describes

the set of virtual links passing through eB ∈ EB and
π−1E (vB) describes the virtual links passing through
vB ∈ VB with vB serving as a relay node.

To be valid, the embedding π has to fulfill the follow-
ing properties: (i) Each node vA ∈ VA is mapped to
exactly one node vB ∈ VB (but given sufficient capaci-
ties, vB can host multiple nodes from VA). (ii) Links are
mapped consistently, i.e., for two nodes vA, v′A ∈ VA, if
eA = {vA, v′A} ∈ EA then eA is mapped to a single
(possibly empty and undirected) path in B connecting
nodes π(vA) and π(v′A). A link eA cannot split into
multiple paths. (iii) The capacities of substrate nodes
are not exceeded: ∀vB ∈ VB:

∑
u∈π−1

V (vB) w(u) + ε ·
|π−1E (vB)| ≤ w(vB). (iv) The capacities in EB are
respected as well, i.e., ∀eB ∈ EB:

∑
e∈π−1

E (eB) w(e) ≤
w(eB).

If there exists such a valid embedding mapping π, we
say that graph A can be embedded in B, denoted by
A 7→ B. Hence, 7→ denotes the VNet embedding relation.

Definition 2 (Embedding Cost). The cost associated
with an embedding π is denoted by Cost(π) =∑
vA∈VA

w(vA) +
∑
eA∈EA

w(eA) ·|π−1(eA)| + ε ·∑
vB∈VB

|π−1E (vB)|.

The provider is flexible where to embed a VNet as
long as a valid mapping is chosen.

Request Complexity. In order to define the com-
plexity of substrate topology discovery, we assume the
perspective of a customer (an “adversary”) that seeks to
disclose the (fixed) infrastructure topology of a provider
with a minimal number of requests. These requests (and
the answers to them) are the only means of obtaining
information. As a performance measure, we introduce
the notion of request complexity, i.e., the number of
VNet requests which have to be issued until a given
network is fully discovered, i.e., all nodes, edges and
capacities are known to the adversary.

We are interested in algorithms that “guess” the target
topology H (the host graph) among the set H of possible
substrate topologies allowed by the model. Concretely,
we assume that given a VNet request G (a guest graph),
the substrate provider always responds with an honest
(binary) reply R informing the customer whether the re-
quested VNet G is embeddedable on the substrate H . In
the following, we will use the notation request(G,H)
to denote such an embedding request of G to H , and
the provider will answer with the binary information
whether G is embeddable in H (short: G 7→ H). Based
on this reply, the customer may then decide to ask the
provider to embed the corresponding VNet G on H ,
or it may not embed it and continue asking for other
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VNets (i.e., the customer does not pay for requests).
Note that considering binary replies results in a worst
case approach: we assume that very little information
is leaked from the provider. Another plausible model
is the valued reply model, where the provider returns
Cost(request(G,H)).

Let ALG be an algorithm that issues a series of request
requests G1, . . . , Gt each consisting of a request graph to
reveal H . The request complexity to infer the topology is
measured in the number of requests t (in the worst case)
until ALG issues a request Gt which is isomorphic to H
and terminates (i.e., ALG knows that H = Gt and does
not issue any further requests).

In order to focus on the topological aspects, we
assume that the substrate graph elements in H all have
a constant capacity of one unit. Moreover, if not state
otherwise, we assume that the requested nodes and links
have a demand of one unit as well. In fact, our general
lower bounds show that given the constant capacities
of H , using alternative demands does not make the
discovery faster. Clearly, with an VNet request approach
only the parts of the substrate that are not occupied
by other customers can be discovered. If simultaneously
other customers’ requests are fulfilled that inferrable part
of the substrate changes.

III. ADVERSARIAL TOPOLOGY DISCOVERY

This section presents tight request complexity bounds
for the discovery of three graph classes.

A. Trees

First, note that even if a topology discovery algorithm
ALG is initially not aware that the substrate H ∈ H can
only have a tree structure, it can discover the absence
of cycles in the topology with a single request: If ALG
asks for a triangle network (i.e., a complete graph K3

consisting of three virtual nodes) with unit virtual node
and link capacities, it can be embedded if and only if H
contains a cycle. Once it is known that the set of possible
infrastructure topologies (or host graphs) H is restricted
to trees, the algorithm described in this section can be
used to discover them. Moreover, if H ∈ H contains
cycles, our algorithm computes a spanning tree of H .

The tree discovery algorithm TREE (see Algorithm 1
for the formal listing) described in the following is based
on the idea of incrementally growing the request graph
by adding longest chains (i.e., “branches” of the tree).
Intuitively, such a longest chain of virtual nodes will
serve as an “anchor” for extending further branches in
future requests: since the chain is maximal and no more
nodes can be embedded, the number of virtual nodes
along the chain must equal the number of substrate nodes

on the corresponding substrate path. The endpoints of
the chain thus cannot have any additional neighbors and
must be tree leafs (we will call these nodes explored),
and we can recursively explore the longest branches of
the so-called pending nodes discovered along the chain.

More concretely, TREE first discovers the overall
longest (cycle-free) chain of nodes in the substrate tree
by performing binary search on the length of the maxi-
mal embeddable path. This is achieved by requesting, in
request Ri, a VNet of 2i linearly connected virtual nodes
(of unit node and link capacities); in Algorithm 1, we
refer to a single virtual link connecting two virtual nodes
by a chain C, and a sequence of j chains by Cj . The first
time a path of the double length 2i is not embeddable,
TREE asks for the longest embeddable chain with 2i−1

to 2i − 1 virtual nodes; and so on. Once the longest
chain is found, its end nodes are considered explored
(they cannot have any additional neighbors due to the
longest chain property), and all remaining virtual nodes
along the longest chain are considered pending (set P):
their tree branches still need to be explored. TREE then
picks an arbitrary pending node v and seeks to attach a
maximal chain (“branch”) analogously to the procedure
above, except for that the node at the chain’s origin is
left pending until no more branches can be added. The
scheme is repeated recursively until there are no pending
nodes left. Formally, in Algorithm 1, we write GvC to
denote that a chain C is added to an already discovered
graph G at the virtual node v.

Algorithm 1 Tree Discovery: TREE

1: G := {{v}, ∅} /* current request graph */
2: P := {v} /* pending set of unexplored nodes*/
3: while P 6= ∅ do
4: choose v ∈ P , S :=exploreSequence(v)
5: if S 6= ∅ then
6: G := GvS, add all nodes of S to P
7: else
8: remove v from P

exploreSequence(v)
1: S := ∅
2: if request(GvC,H) then
3: find max j s.t. GvCj 7→ H (binary search)
4: S := Cj

5: return S

Theorem 1. Algorithm TREE is correct and has a
request complexity of Θ(n), where n is the number of
substrate nodes. This is asymptotically optimal.

Proof: Correctness: Since the substrate network is
connected, each node can be reached by a path from any
other node. As the algorithm explores each path attached
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to a discovered node until no more nodes can be added,
every node is eventually found. Since a tree is cycle-
free, this also implies that the set of discovered edges
is complete. Complexity (upper bound): We observe that
our algorithm has the property that at time t, it always
ask for a VNet which is a strict super graph of any
embeddable graph asked at time t′ < t (positive answer
from the provider). Moreover, due to the exponential bi-
nary search construction, TREE issues O(log `) requests
to discover a chain consisting of ` links. The cost of
exploring a path can be distributed among its constituting
links, thus we have an accounting scheme which shows
that the amortized cost per link is constant: As there
are at most n − 1 links in a tree, the total number of
requests due to the link discovery is linear in n as well.
In order to account for requests at nodes that do not
have any unexplored neighbors and lead to marking a
node explored (at most one request per node), O(n)
requests need to be added. Complexity (lower bound):
The lower bound follows from the cardinality of the
set of non-isomorphic trees, which is in the order of
2.96n/n5/2 [5]. Since any discovery algorithm can only
obtain a binary information for each request issued, a
request cuts the remaining search space in (at most) half.
Therefore, the request complexity of any algorithm is at
least Ω(log(2.96n/n5/2)) = Ω(n).

Observe that TREE has the nice property that if H
is not a tree, TREE computes a spanning tree of H by
extending maximal (cycle-free) branches from the nodes.

Corollary 1. TREE determines a spanning tree of any
graph with request complexity Θ(n).

B. Arbitrary Graphs

Let us now turn to the general problem of inferring
arbitrary substrate topologies. First note that even if the
total number of substrate nodes is known, the adversary
cannot simply compute the substrate edges by testing
each virtual link between the node pairs: the fact that
the corresponding virtual link can be embedded does
not imply that a corresponding substrate link exists,
because the virtual link might be mapped across an
entire substrate path. Nevertheless, we will show in the
following that a request complexity of O(n2) can be
achieved; this is asymptotically optimal.

The main idea of our algorithm GEN is to build upon
the TREE algorithm to first find a spanning tree (see
Corollary 1). This spanning tree (consisting of pending
nodes only) “reserves” the resources on the substrate
nodes, such that they cannot serve as relay nodes for
virtual links passing through them. Subsequently, we
try to extend the spanning tree with additional edges.

An arbitrary pending node u is chosen, and we try
to add an edge to any other pending node v in the
spanning tree. After looping over all pending nodes and
adding the corresponding links, u is marked explored.
GEN terminates when no more pending nodes are left.
The lower bound is a consequence of the number of
unlabelled nodes.

Theorem 2. A general graph can be discovered with
request complexity Θ(n2). This is asymptotically tight.

C. Cactus Graphs

So far we presented an asymptotically optimal tree
discovery algorithm with request complexity Θ(n), and
an optimal algorithm for general graphs with request
complexity Θ(n2). This raises the question whether
a linear request complexity can only be achieved in
acyclic graphs. At least our approach of first computing
a spanning tree seems to be problematic when applied
to cyclic graphs, as there are instances where Ω(n2)
requests are unavoidable to find just one additional cyclic
edge. We will now show that it is still possible to infer
more general topologies without sacrificing efficiency.

The cactus graph is a particularly interesting topology
in the context of the Internet. (For example, the topolo-
gies collected in experiments such as Rocketfuel are often
sparse but contain certain cycles along the backbone, and
thus resemble the cactus graph [8].) Formally, every edge
in the cactus graph belongs to at most one 2-connected
component, i.e., the cactus graph does not contain any
diamond graph shaped minors.

The underlying idea of our cactus discovery algorithm
CACTUS is that in contrast to a tree where nodes are
origins of simple paths (i.e., branches), a cactus node can
be the origin of several sub-cactus graphs consisting of 1-
and 2-connected components. That is, the resulting graph
when collapsing one or several 2-connected components
to a single node is a cactus as well, or even a tree if
all components are collapsed. We use these properties
to extend our tree algorithm to include cycle requests
in addition to chains when exploring a pending virtual
node. Concretely, instead of using longest chains as
“anchor points” for extending an existing topology, we
search, in each possible direction from a pending cactus
node v for a maximal sequences of cycles (short: Y ) and
chains (short: C). Once such a sequence (or “motif ”)
is found, our algorithm CACTUS attempts to discover
the detailed structure of the chain/cycle sequence by
inserting as many nodes on the chains and cycles as
possible.

See Algorithm 2 for the formal listing. We use graph
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Algorithm 2 Cactus Discovery: CACTUS

1: G := {{v}, ∅} /* current request graph */
2: P := {v} /* pending set of unexplored nodes*/
3: while P 6= ∅ do
4: choose v ∈ P , S :=exploreSequence(v)
5: if S 6= ∅ then
6: G := GvS, add all nodes of S to P
7: for all e ∈ S do edgeExpansion(e)
8: else
9: remove v from P

exploreSequence(v)
1: S := ∅, P ′′ := ∅
2: if GvY CY 7→ H then
3: find max j s.t. GvY jCY 7→ H
4: S := Y jCY , P ′ := {C}
5: while P ′ 6= ∅ do
6: for all Ci ∈ P ′ do
7: A := prefix(Ci, S), B := postfix(Ci, S);
8: if GvACY CB 7→ H then
9: find max j, k s.t. GvAC(Y jC)kB 7→ H

10: for l := 1, . . . , k do
11: P ′′ := P ′′ ∪ {Cl}
12: S := AC(Y jC)kB
13: P ′ := P ′′, P ′′ := ∅
14: if request(GvSY,H) then
15: find max j s.t. GvSY j 7→ H
16: S := SY j

17: if request(GvSC,H) then
18: S := SC
19: return S

edgeExpansion(e)
1: let u, v be the endpoints of edge e, remove e from G
2: find max j s.t. GvCju 7→ H
3: G := GvCju, add newly discovered nodes to P

grammar notation for the iterative exploration process.

Definition 3. Let C denote a Chain (V = {u, v}, E =
{{u, v}}), i.e., a virtual edge that maps to a path on the
substrate, and let Y denote a cYcle (V = {u, v, w}, E =
{{u, v}, {u,w}, {w, v}}), i.e., a virtual triangle that
maps to a cycle in the substrate. Two chains, cycles or
a chain and a cycle can be appended to each other, by
merging one of their virtual nodes (due to symmetry it
does not matter which nodes). This operation can be
repeated to form an arbitrary sequence of chains and
cycles S. By Y j or Cj we refer to the concatenation
of j cycles or chains respectively. Given a graph G
containing nodes u, v, the notation GvS(u) denotes a
graph where the node v ∈ G is merged with the first
node in S, i.e., the edges of S are added to the set of
G’s edges and the corresponding nodes to the set of G’s
nodes; the node u ∈ G is optional, and if it is stated,
it means that in addition, node u is connected to the
last node in S. Given a sequence S and a particular
chain C belonging to this sequence then prefix(C, S)
and postfix(C, S) denote the subsequences of S before

and after this chain C.

Theorem 3. CACTUS discovers any cactus topology
with request complexity Θ(n). This is tight.

Proof sketch: The algorithm terminates as soon as
all edges incident to nodes found so far (i.e., pending
nodes) have been discovered. Consequently, we need
to show that all nodes and all their adjacent edges are
detected in order to prove correctness (i.e., there is a
bijection between the edges in G and in H and thus it is
not possible that a virtual edge connects two nodes that
are not adjacent in the (sub)cactus graphs). Note that the
algorithm maintains the invariant that GvS 7→ H at all
times. As a consequence we can analyze the properties
of S and thereby deduce properties of the substrate.
For a sequence S discovered in exploreSequence(v)
the following properties hold: (i) no more Y s can be
inserted (replace a Y by a Y Y or a C by a CY C), (ii)
no chain can be inserted between two cycles (replace
Y Y with Y CY ) and (iii) no C can be replaced by a
Y . Thus the discovered sequence S cannot be extended
with more cycles or chains between cycles. Based on
these invariants it remains to show that the steps of
the algorithm discover all nodes which are part of this
sequence. For the complexity, we can again use an
amortization scheme that assigns request costs to edges:
an edge is assigned the cost of the requests where it is
identified for the first time
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