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Abstract—More and more networks are becoming reconfig-
urable: not just the routing can be programmed, but the physical
layer itself as well. Various technologies enable this programma-
bility, ranging from optical circuit switches to beamformed
wireless connections and free-space optical interconnects.

Existing reconfigurable network topologies are typically hybrid
in nature, consisting of static and a reconfigurable links. However,
even though the static and reconfigurable links form a joint
structure, routing policies are artificially segregated and hence do
not fully exploit the network resources: the state of the art is to
route large elephant flows on direct reconfigurable links, whereas
the remaining traffic is left to the static network topology. Recent
work showed that such artificial segregation is inefficient, but
did not provide the tools to actually leverage the benefits on
non-segregated routing.

In this paper, we provide several algorithms which take
advantage of non-segregated routing, by jointly optimizing topol-
ogy and routing. We compare our algorithms to segregated
routing policies and also evaluate their performance in workload-
driven simulations, based on real-world traffic traces. We find
that our algorithms do not only outperform segregated routing
policies, in various settings, but also come close to the optimal
solution, computed by a mixed integer program formulation,
also presented in this paper. Finally, we also provide insights
into the complexity of the underlying combinatorial optimization
problem, by deriving approximation hardness results.

I. INTRODUCTION

The fast growth of machine learning and artificial intelli-
gence applications will soon lead to a significant increase of
data-intensive workloads, and hence more traffic in datacen-
ters [1]. The latter hence become a critical infrastructure of
our digital society.

While the design of cost-effective datacenter networks pro-
viding a high connectivity has received much attention over
the last years already (e.g., [2], [3], [4], [5], [6], [7]), we
recently witness a trend to enhance traditional static datacenter
networks with reconfigurable links: technological advances in
reconfigurable optical switches and free-space optics allow to
adjust datacenters (e.g., [8], [9]) to the workload they serve,
making them “demand-aware” [10].

While reconfigurable datacenter networks can be used to ad-
just to, and hence exploit, the typically sparse and skewed [9],
[11], [12], [13] nature of datacenter traffic, and hence provide
shorter paths between frequent communication partners, today,
we lack good algorithms for designing and routing on such
networks. In particular, most existing literature only considers
restricted “segregated” routing models where traffic is forced
to either use the fixed network or a single reconfigurable link
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Fig. 1: In this small example, six nodes v1, . . . , v6 are connected to a
reconfigurable switch (connections dashed): the network operator can choose
a matching of nodes inside the switch, creating a direct path between two
nodes each time. Consider the case where there is a demand v1 → v5
and a demand v6 → v1. Under segregated routing policies, one of the two
demands (e.g., v6 → v1) can be routed directly via the reconfigurable switch,
whereas the other demand must be routed inefficiently via the static topology.
However, using non-segregated routing, the demand e.g., v1 → v5 may also
use the direct matching connection from v1 to v6 as well for better efficiency,
requiring just one more hop in the static topology on the link (v6, v5).

(see e.g., [9], [14]), or their algorithms rely on overly simple
matching-cased heuristics (see, e.g., [8], [15], [16], [17], [18]).
While it is known that non-segregated routing improves the
performance over purely segregated routing policies [14],
the landscape of corresponding algorithms is hence mostly
uncharted. In this paper we take the first steps to provide and
evaluate new algorithms that benefit from the paradigm of non-
segregation, reaping the perks of utilizing both hybrid network
parts as a joint resource.

A. Our Contributions

This paper presents algorithms for jointly optimizing topol-
ogy and (non-segregated) routing, to build demand-aware
networks which fully exploit the available resources and
flexibilities. Our study encompasses complexity, algorithms,
and workload-driven simulation for such emerging networks:

1) Complexity: We prove that even the approximation
of demand-aware network designs with non-segregated
routing is NP-hard, by providing logarithmic inapprox-
imability bounds. Additionally, we show that the sce-
narios of one and multiple reconfigurable switches are
polynomial-time equivalent.

2) Algorithms: Given the hardness results, we present sev-
eral polynomial-time heuristic algorithms as well as an
exact algorithm based on a integer linear program (ILP)
formulation.

3) Empirical results: Using workload-driven simulations
(based on Facebook traces), we compare our algorithms
to state-of-the-art networks based on segregated routing
schemes. Our algorithms significantly outperform seg-
regated routing methods, coming close to optimal ILP
solutions.ISBN 978-3-903176-16-4 c© 2019 IFIP



B. Organization
We describe our formal model in Section II and provide

inapproximability NP-hardness results in Section III. We then
discuss various routing algorithms in Section IV, ranging from
a mixed integer program to greedy heuristics. The performance
of these algorithms is then evaluated in Section V, where we
use segregated routing as a baseline. Lastly, we discuss related
works in Section VI and conclude in Section VII.

II. MODEL
We study the problem of computing a topology to optimally

serve a given communication pattern, where the topology
combines static (fixed) and reconfigurable links and can be
jointly optimized together by non-segregated routing. Our
model closely follows the notation and definitions of [14].
Network model. Let N = (V,E, S,w) be a weighted hybrid
network [18], [19] connecting the n nodes V = {v1, . . . , vn}
(e.g., top-of-the-rack switches), using 1) (usually electrical)
static links E and 2) optical links implemented through an
reconfigurable optical circuit switch S.

A reconfigurable switch S connects a set of nodes V ′ ⊆ V
by choosing a matching M on V ′, where two matched nodes
are connected by a bidirectional (undirected) link. We will
also consider the directed case, where each node may have
one incoming and one outgoing matching link. For the sake of
generality, we assume each link, whether electrical or optical,
comes with a non-negative weight w (a cost, e.g., latency).
Generality. Our results also apply to non-optical switches and
links, as long as they match the theoretical properties described
in the model. As such, we will only talk about reconfigurable
switches and links, simply implying any appropriate tech-
nology that matches our model. Moreover, as we discuss in
Section III, under non-segregated routing in weighted hybrid
networks (the model we consider), the cases of one or multiple
reconfigurable switches can be easily translated to another. We
thus choose the case of one switch for ease of presentation.
Traffic demands. The resulting network should serve a certain
communication pattern, represented as a |V | × |V | commu-
nication matrix D (the demand matrix) with positive real-
valued entries. An entry (i, j) in D represents the traffic load
(frequency) or demands from the node vi to the node vj .
Reconfiguration problem. We say that the hybrid network
N is configured by the reconfigurable switches. That is, we
will refer to the set of configured links M = ∪n`=1M`,
the union of the matchings provided by the reconfigurable
switches, as the configuration of N . For ease of notation,
we will simply write N(M) to denote the concrete topology
resulting from configuration M and define distN(M)(i, j) to
be the shortest (weighted) distance from node vi to node
vj on the network N(M). Given a hybrid network N and
communication demands D, our goal is to compute a network
N(M) which minimizes the (weighted) average path length
for serving D in N by providing a set of matchings M
accordingly. Succinctly stated:

min
∑

(i,j)∈D

D[i, j] · distN(M)(i, j) (1)

That is, we want to minimize the sum of the path lengths,
weighted by the demand (i.e., flow size) and link costs: for
each ordered pair of nodes vi, vj ∈ V , we multiply the
(weighted) length of the shortest path distN(M)(i, j) from vi
to vj on N(M) with their entry (i, j) in D.

III. HARDNESS RESULTS

Before discussing NP-hardness results in this section, we
first show that the cases of one or many reconfigurable
switches are polynomially equivalent, by using link weights.

Problem transformation: many to one. At first sight, the case
of multiple switches seems fundamentally different to just one
reconfigurable switch: some nodes might be connected to mul-
tiple switches, which in turn might be connected to different
subsets, creating complicated combinatorial dependencies.

However, we can translate these dependencies in a few
steps. For each node v connected to k reconfigurable switches,
we create k nodes v1, . . . , vk, connecting them to v with static
links of weight 0. A newly created node vi will be used to
represent the connection of v to its ith reconfigurable switch
Si. We re-create the possible reconfigurable links from Si as
follows, slightly abusing notation: for all w connected to Si,
if v was able to connect to w via Si with a weight of ci,
then vi will be able to connect to wi with a cost of ci as
well. However, all possible connections from vi to other nodes,
which were not originally possible from v via Si, get assigned
a prohibitively large weight. In turn, all original nodes are
either disconnected from the new single reconfigurable switch
S or receive the same large weights for all their possible
reconfigurable links. Hence, we can easily translate solutions
obtained on this modified instance back to the case of multiple
switches. Respectively, if even one reconfigurable link of pro-
hibitively large weight is chosen for routing, we can conclude
that the original instance was infeasible. We note that this
transformation also allows us to directly transfer NP-hardness
results from multiple switches to the case of one reconfigurable
switch, for, e.g., [14, Theorem 4], which showed NP-hardness
for 2 demands from a min-max perspective.

Prior work [14, Theorem 3] already showed demand aware-
routing in weighted hybrid networks to be NP-hard for a sin-
gle reconfigurable switch, but did not provide approximation
bounds. We now show that the objective value (1) of the
optimal solution cannot be approximated better than Ω(log n)
for n nodes. Our reduction will be from Dominating Set,
which has a logarithmic approximation bound [20].

Theorem 1. Demand-aware routing cannot be approximated
better than Ω(log n), unless P = NP .

Proof: Feige showed that Dominating Set cannot be
approximated better than Ω(log n), unless P = NP [20]. That
is, given a graph G = (V,E), find a set K ⊆ V of minimum
cardinality k s.t. every v ∈ V is in K or has a neighbor in K.

Let I be an instance G = (V,E) of Dominating Set.
We construct an instance I ′ (G′ = (V ′, E′)) of a modified
demand-aware topology design and routing problem, where a
node may be connected to multiple reconfigurable switches,
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Fig. 2: In this small example, the four node graph on the left (instance I)
is transformed to the 4 · 4 + 1 node graph on the right (instance I′). In I′,
all unmarked links (static or reconfigurable ones, dashed) have a cost of 1;
reconfigurable links with a weight of greater than W+2 are omitted, and static
links with a weight of W + 2 are dotted. We also omit the reconfigurable
switches for less clutter. The node s has demands of 1 to u, v, x, y and
v′1, . . . , v

′
4, which each have a cost of W + 3 if only static links are used.

In order to improve the routing, the possible reconfigurable links of cost 1
can be used to build shortcuts for the demands, reaching a cost of 1 + 1 +
1 = 3 each time. Note that each node from v1, . . . , v4 can only create
one outgoing reconfigurable link. When matching to nodes from v′1, . . . , v

′
4,

only one such shortcut is created, but when a match to a node v′ is made,
then all nodes which v dominates in I obtain a shortcut. Hence, the optimal
solution corresponds to an optimal dominating set in I , where each extra node
needed to dominate induces a penalty of W : here I can be dominated by two
nodes, e.g., x and v, by matching to x′ and v′ in I′, only two demands
to v′1, . . . , v

′
4 need to have an expensive route, which corresponds to the

dominating set size in I . As such, if the objective function penalty in I′

has less than logarithmic overhead, compared to the optimal solution, we can
approximate the domination process in I better than logarithmically as well.

which in turn just connect a subset of the nodes. Recall that
we showed this problem to be polynomial-time equivalent.

We begin with the static network in G′. We first duplicate
all nodes v ∈ V and denote their clone by v′, creating directed
links of cost 1 from v′ to v. Next, if (u, v) is a link in E, then
we create a directed link with cost 1 from u′ to v, iterating
this over all links in E and adding them to E′. However,
E′ will not contain the links from E. Moreover, we create
the nodes s, v1, v2, . . . , v|V |, and v′1, v

′
2, . . . , v

′
|V |, connecting

s to each of the nodes v1, v2, . . . , v|V | with a directed link of
cost 1, and each vi to its respective v′i with a directed link of
cost W +2 > 2, to be specified later. Lastly, s is connected to
each cloned node v′ with a directed link of cost W+2. Before
specifying the reconfigurable part, we create the demands D:
s has a demand of 1 to each node v′i and to each node v
originating from V and no further demands exist. In the static
network alone, the routing cost to each of these 2|V | nodes is
1 +W + 2, i.e., 2|V |(1 +W + 2) in total.

For the reconfigurable switches, we create |V | of those, each
connecting a node vi with all |V | cloned nodes v′ and all |V |
nodes vi. However, only the outgoing links of v′ have a cost
of 1, all other outgoing possible reconfigurable links have a
cost of > W + 2. As such, if any reconfigurable link is used
for routing a positive demand that is not outgoing from a node
vi, then this route has a cost of at least 1 +W + 2, i.e., not
cheaper than solely using the static network. An example of
the polynomial construction process is given in Figure 2.

Hence, the only remaining decisions are where to match the
outgoing links of the nodes vi, as they allow routes of cost 3:
by matching to nodes of type v′i, one demand has a cost of

3, whereas by matching to a node v′, all nodes that v would
dominate in G (which is at least v itself), can be routed to
with a cost of 3. In order to obtain an optimal solution for I ′,
the task is to cover the nodes v′ with as few matching links as
possible. If K ′ such links, with |K ′| = k′, suffice, s.t. all nodes
v (originating in V ) can be reached from s with a cost of 3,
then only k′ nodes from v′i need to have their demand routed
with a cost of 1+W +2. In other words, an optimal solution
minimizes k′, with a routing cost of k′(3+W )+3(2|V |−k′) =
k′W +6|V |. Optimal k′ for I ′ and k for I must have the same
size, as k′ matching links (covering all nodes v originating in
V ) represent a dominating set for G and vice versa.

It remains to show the transfer of the inapproximability
results, which we prove in the spirit of a linear reduc-
tion [21]. To this end, we pick W sufficiently large, e.g.,
W = 100|V |2, one can easily optimize for significantly
smaller values of W while retaining the same results. Assume
that our optimization problem can be approximated better
than Ω(log n), by some approximation ratio f . We can then
approximate Dominating Set better than Ω(log n) as well
by 1) picking the Dominating Set instance I , 2) creating
the corresponding instance I ′, 3) approximating I ′ with ratio
f , and then 4) positively answering that a solution of size fk
exists for I , by observing the following: A solution of size at
most fk′W+f6|V | of I ′ implies that there is a solution for I ′

where at most bfk′c demands have to be routed with a cost of
at least 1+W +2, as W significantly exceeds f6|V |. Hence,
we can conclude that there is also a solution of I using at
most bfk′c nodes to dominate the graph, which would imply
P = NP , as f is not contained in Ω(log n).

IV. ALGORITHMS

Given that computing an optimal non-segregated routing on
a reconfigurable network is NP-hard to approximate, we next
present various polynomial-time heuristics as well as a non-
polynomial time exact algorithm. We start with a general ILP
in Section IV-A, followed by an algorithm for a single flow in
Section IV-B. We then provide a wide range of polynomial-
time general heuristics, starting by prioritizing large demands
in Section IV-C respectively large demands w.r.t. their initial
routing distance in Section IV-D, followed by algorithms that
greedily add paths (IV-E) or links (Section IV-F).

A. An ILP for Demand-Aware Routing
We now present our integer linear program (ILP) for

demand-aware routing. The fundamental idea is that we would
like to select a matching in the reconfigurable switch that
optimizes the objective function for the demand matrix D.
Variables: Given a network topology, sij represents the
weight of the static link from i to j, oRij represents the weight
of the reconfigurable link from i to j in switch R and Dst is
the size of the demand from node s to node t.
We denote a matching from node i to j in switch R by setting
the value of mR

ij to 1. The boolean xstij is set to 1 if a link
from i to j is used in the shortest path from s to t, as well as
ystij if that link is a reconfigurable one. Finally, the length of
the shortest path from s to t is given by dst.



Objective: The goal is to minimize the length of the shortest
path for each communicating pair according to their priority.

min
∑
s

∑
t

Dstdst (2)

Constraints: A node connected to a reconfigurable switch can
only have one incoming and one outgoing reconfigurable link
in the directed case (3). In the bidirected case, creating a link
from i to j also always creates the reverse link from j to i (4).

n∑
j=1

mR
ij ≤ 1;

n∑
j=1

mR
ji ≤ 1 (3)

mij = mji (4)

Flow conservation: A flow that enters a node must leave it,
with the exception of the start and end nodes.

∑
j

xstij −
∑
i

xstij =


1, if i = s.

−1, if i = t.

0, otherwise.
(5)

Path cost: The length of the path from the sender to the
reciever is the sum of every link that is taken along the path.
If a matching has occurred between two nodes, the length
of the link between the two nodes is now the length of the
reconfigurable link instead of the length of the static link.

dst =

n∑
i=1

n∑
j=1

(xstijsij − ystij sij + (
∑
R

oRijy
st
ij )) (6)

Matching: If a reconfigurable link is taken between i and j
then there must be a matching in the reconfigurable switch.

(
∑
R

mR
ij) + xstij − 1 ≤ ystij (7a)

ystij ≤
∑
R

mR
ij (7b)

ystij ≤ xstij (7c)

Even though the ILP presented in this section will achieve
optimal results, its runtime is non-polynomial and it will not
scale for larger instances. We thus present several polynomial-
time heuristics, which we will evaluate in Section V.

B. ReconfigDijkstra: a subroutine for a single flow

We start with the case of a single flow, which we will call as
a subroutine in the later heuristics. We distinguish two cases,
differentiating the reconfigurable link types.

The first is ReconfigDijkstra for directed reconfig-
urable links, i.e., nodes connected to a reconfigurable switch
can choose one outgoing and one incoming link. Therefore,
we can use Dijkstra’s algorithm [22] on a graph containing
every possible matching candidate link and the static graph,
updating it afterwards, simplifying the flow algorithm in [14].

For the case of undirected reconfigurable links we adapt the
ReconfigDijkstra algorithm. We run it in the same fash-
ion, on a graph in which every possible matching candidate

link is present. The difference with this heuristic is that when it
reaches a node via a reconfigurable link, it will not update new
neighbors that are only visible through another reconfigurable
link. This heuristic is optimal in the case where the reconfig-
urable links follow the triangular inequality [14]: if a shortest
path requires that two reconfigurable hops (u, v), (v, w) to
be taken one after the other then |u, v| + |v, w| < |u,w|
and the triangular inequality is violated. In the case where
the triangular inequality is not respected by the weights, the
algorithm will give a correct solution, but it might not be
optimal. It is an open question if the general case can be
solved optimally in polynomial time [14]. To update the graph
for future computations, we first transform the candidate links
taken in the path into static links, and then delete the candidate
links that become illegal. The reconfiguration step is linear as
we are checking for every node its outgoing and incoming
links involved in the matching. If implemented naı̈vely, the
complexity is O(n2), which can be improved by using Fi-
bonacci heaps in the ReconfigDijkstra algorithm [23].

C. DemandFirst: Large Demands First

We first present DemandFirst in Algorithm 1. This
algorithm greedily chooses the biggest demand, and routes
it through the network, creating the best matches for it. It
stops when all possible matches have been created or every
communicating pair has been processed. As the algorithm
consists of running ReconfigDijkstra for every demand,
we find its complexity to be O(dn2) with d being the amount
of non-zero entries in the demand matrix and n being the
number of nodes in the network. While it is the fastest solution,
it is oblivious to the interplay of different demands.

D. GainDemand: Gains and Demands

A first improvement over DemandFirst is to take into
consideration the impact that creating an optimal matching
for a node-pair has on other pairs. To this end we introduce
the algorithm GainDemand (see Algorithm 2). With this
algorithm we compute, for every demand, the improvement
of the matching (w.r.t. to the objective value) created by
ReconfigDijkstra, storing it in an ordered list. More
formally, this improvement is defined as:

Definition 1. Let N be a weighted hybrid network. The gain
of a matching configuration N(M) for a demand matrix D is
the improvement in comparison just using the static network:

∑
(i,j)∈D

D[i, j] · distN(∅)(i, j)−
∑

(i,j)∈D

D[i, j] · distN(M)(i, j) .

We then run ReconfigDijkstra iteratively on the or-
dered list, until no more matching links can be created.

The complexity of this algorithm is O(d2n2) as it finds
the d paths for each of the d matching configurations. For
further runtime improvements, it is possible to only consider
the demands that will be affected by the creation of matching
links. GainDemand finds its limitation when larger sets of
communicating pairs are helpful to one another.



E. GainUpdate: Greedy Paths

We next present algorithm GainUpdate (see Algo-
rithm 3). It is inspired by GainDemand, but it recomputes the
gain after every matching that occurs, in order to benefit from
the current situation. In other words, when a set of demands
creates a high gain for themselves, once one of these demand
is routed, the gain can be much smaller at the next iteration. Its
complexity is O(d3n2) as we are executing a similar routine
as in as in GainDemand after every demand gets routed.

F. GreedyLinks: Greedy Links

Lastly, in order to further shrink the gap to the optimal
solution, we introduce GreedyLinks (see Algorithm 4). The
principle is the same as in GainUpdate, but rather than con-
sidering the set of links introduced by a demand, we consider
every possible link at each step. In terms of complexity it
is similar to the previous algorithm on denser graphs, but
much heavier on sparser graphs. The implementation is in
O(dn4) for d > 0. Instead of executing the GainDemand
routine on every demand, we will execute it on every possible
reconfigurable link, which might form a complete graph.

V. EVALUATIONS

In order to assess the benefits of non-segregated routing and
joint optimization of the reconfigurable network, and to com-
pare the different algorithms introduced above, we conducted
extensive simulations. We consider a datacenter scenario and
use the real-world workloads based on Facebook’s datacenter
traffic data [24], [25], [26].

A. Methodology

In order to generate workloads, we use the data of Facebook
cluster C, which features the most dense demands. We map
the corresponding demands to the leafs (i.e., the servers) of a
balanced tree of diameter 6: the fixed network hence describes
a Clos topology. In addition to the Clos network, the servers
can be connected via a single optical circuit switch providing
a matching. In order to preserve locality, we order the leaves
according to their IP addresses. The weights of the optical
links are set to 1, while the static link weights vary between
experiments.

In order to tune the density of the demand, we aggregate
requests over a time window, either 10s or 100s. We also
note that the Facebook data is sampled, at a rate of 30,000.
Furthermore, to increase the density of the demand and hence
render the experiments more interesting, we interpret the rack-
to-rack demands as server-to-server demands, between the
leaves. Intra-rack communication is hence ignored.

All presented results are averaged values over 10 different
starting times.

For our experiments, trace data was stored in MongoDB
and and simulations executed on 4 identical VMs each with
24 cores. We used Intel Xeon CPUs E5-2650 v4 at 2.20GHz
X 24, with 16 GB RAM and running Ubuntu 18.04.1 LTS.
Experiments are implemented in Python version 3.7.1 using
gurobipy, networkx, and munkres libraries. To solve the ILP,

Algorithm 1: DemandFirst
Input: A weighted hybrid network N and traffic demands D.

1) Sort the demand entries in D by size.
2) Until the list is empty or no more links can be created do:

a) Pick the first entry Di,j in D.
b) Run ReconfigDijkstra for i,j on N .
c) Update N , delete the first entry in D.

Output: A graph N with the newly created links.

Algorithm 1: Pseudocode of the DemandFirst algorithm.

Algorithm 2: GainDemand
Input: A weighted hybrid network N and traffic demands D.

1) Initialize an empty list value.
2) For every entry (i, j) in D:

a) Run ReconfigDijkstra on N , adding the value of
the objective function in the updated N to value.

b) Reset N to its initial state.
3) Sort the objective function values by size.
4) For the values of (i, j) in value in descending order, until

empty or all possible matching links have been created:
a) Run ReconfigDijkstra for (i, j) on N .
b) Update N , delete the first entry in value.

Output: A graph N with the newly created links.

Algorithm 2: Pseudocode of the GainDemand algorithm.

Algorithm 3: GainUpdate
Input: A weighted hybrid network N and traffic demands D.

1) Initialize an empty list value.
2) Until the demand matrix D has no more entries or all possible

matching links have been created:
a) For every demand in D

i) Run ReconfigDijkstra on N , adding the value
of the objective function in the updated N to value.

ii) Reset N to its initial state.
b) Find the maximum entry (i, j) in value.
c) Run ReconfigDijkstra for (i, j) in D, update N .
d) Remove the entry (i, j) from D and clear value.

Output: A graph N with the newly created links.

Algorithm 3: Pseudocode of the GainUpdate algorithm.

Algorithm 4: GreedyLinks
Input: A weighted hybrid network N and traffic demands D.

1) Initialize an empty list value.
2) Until no more matching links can be added to N :

a) For every possible further reconfigurable link e in N :
i) Add e as a matching link to N .

ii) Compute the value of the objective function on N .
iii) Add the value (for the link e) to value.
iv) Reset N by removing e as a matching link.

b) Find the best link e in value.
c) Update N with the reconfigurable link e.
d) Clear the list value.

Output: A graph N with the newly created links.

Algorithm 4: Pseudocode of the GreedyLinks algorithm.
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Fig. 3: Comparison of execution time in seconds for the different heuristics. All results are averaged values over 10 different starting times from the Facebook
data. We believe that the runtime of DemandFirst can be heavily improved in the undirected case, by employing optimizations for the considered weights.

we used Gurobi. In order to optimize the runtime of our ILP
for the smaller instances, we used quadratic constraints rather
than linear constraints, leveraging internal optimizations of
Gurobi. The computed solutions remain unchanged.

We set a runtime limit of 20 minutes for each test, which
limits the completion of the ILP for larger instances, but is
irrelevant for the faster heuristics, except for the ones re-
computing iteratively based on gain, which run into problems
in larger networks. We note that the gain algorithms are not
parallelized (the same holds for all heuristics), they only run
on a single core. Furthermore, their implementation could
benefit from improved gain re-computation and a port to e.g.,
C++. However, as our focus is on the quality of the achieved
solutions, we defer such optimizations to future work.

Notwithstanding, we provide an exemplary comparison in
Fig. 3. Whereas the execution time of DemandFirst is
similar to the segregated algorithm for the directed case,
DemandFirst is significantly slower in the undirected case.
The reason is that the subroutine ReconfigDijkstra in
the undirected case is not optimized for the employed weights.
Rather, it is a general approach, as it is not even clear if the
problem is NP-hard for a single flow with arbitrary weights.
We plan to improve the performance for the undirected case in
future work, by employing a more specialized algorithm and
a better utilization of optimized libraries such as networkx.
We then expect the undirected case to behave similarly to the
directed case, i.e., roughly similar to the segregated matching
algorithm for DemandFirst.

B. Baseline

Even though prior work [14] showed that non-segregated
routing improves over (artificially) segregated routing, the
level of improvement was not studied yet. To this end, we
use standard1 approaches for segregated routing in hybrid
networks as a baseline, described next.

For the undirected case, we compute a maximum weight
matching on the demand matrix, as done in e.g., c-
Through [15]. Recall that only the leaf nodes act as sources and

1Standard with respect to the studied topology

destinations in our setting. The unidirectional case is handled
similarly, where we compute a maximum weight bipartite
matching between the outgoing and incoming reconfigurable
link ports, as suggested in e.g., Helios [16]. The routing is
then performed in a segregated manner, where a route may
either use a direct matching link or the static network parts.
We denote these methods as heuristics segregated in the plots.

For the sake of completeness, we also include the routing
performance without the optical circuit switch, denoted as ilp
static tree only (we used the ILP for convenience reasons here).

C. Results

We first describe our results on very small networks, then
expanding to networks to up to 100 nodes, all shown in Fig. 4.

Small examples. Figures 4a and 4b provide a first impression
of the optimization opportunities provided by the different
algorithms (weight factor 1, time window 10), for a small
network of up to n = 10 servers, due to the high runtime
of the exact solution (the integer linear program). We observe
that in these networks, while the optimal solution computed
by the integer linear program (ilp) is always strictly better
than all other algorithms, the difference is relatively small. But
already here, we can see a price of segregated routing, which
results in longer paths. Moreover, we can already on these
small networks see a significant difference when the optical
circuit switch is turned off, roughly a factor of 2.

Larger networks. For larger networks, the situation be-
comes more interesting, see Figure 4c for results on undi-
rected networks (weight 5, time window 10): The heuristics
DemandFirst, GainDemand, and GainUpdate perform
consistently better than the segregated heuristic, however,
GainDemand and GainUpdate are also much slower. Thus,
we conclude that DemandFirst is the most attractive algo-
rithm for such undirected networks.

For directed networks networks, the situation is in-
teresting as well: Figure 4d shows the results on di-
rected scenarios (weight 5, time window 10): also here,
DemandFirst provides the best results, also clearly outper-
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(g) Undirected, n ≤ 100 servers, weight ratio: 1:1, time window: 100.
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Fig. 4: Comparison of the achieved objective values (Eq. (1)) for the different heuristics and the segregated approach. Smaller values are better, as they
represent the (weighted) average path lengths. The optimum value (ILP) is only computed for small networks, similarly, some slower heuristics do not finish
their computation in the allotted time. Note that all results are averaged values over 10 different starting times from the Facebook data.



forming GainDemand and GainUpdate in terms of quality,
while at the same time being much faster (lower runtime).

Denser traffic. Figures 4e and 4f show the results of the
same experiments but where requests in the demand are
aggregated over 100 units, resulting in denser demands. Here
DemandFirst again performs best, very clearly outperform-
ing the segregated algorithms. While the other of our heuristics
come close, their computation time is too prohibitive currently
for larger network instances, and might already run into issues
at 30-40 nodes. Maybe interestingly, the performance of the
segregated algorithms degrades even further, getting close to
the static networks without the optical circuit switch.

Identical weights. In the prior experiments, we considered a
1-to-5 ratio for the weight of reconfigurable versus static links.
However, when using technologies such as cheap converter
switches [27], one can also consider the case where all
link weights are created equal, though such networks usually
have a much higher degree of topological reconfigurability.
Figures 4g and 4h show the same experiments for the denser
demands as before, but with a 1:1 weight ratio. As expected,
the benefit of hybrid routing is much smaller, yet still clearly
visible. Notwithstanding, DemandFirst again outperforms
the segregated algorithms, with our other heuristics being
close.

D. Discussion

All in all, we can conclude that non-segregated approaches
significantly outperform the standard segregated routing meth-
ods on hybrid networks, for all evaluated settings from the
Facebook traffic traces. Interestingly, the simplest of our
heuristics, DemandFirst, typically also provides the best
results, making it an attractive solution in practice: its runtime
is significantly lower than that of the other heuristics, and the
provided route lengths shorter, both for undirected and directed
scenarios. At the same time, we believe that DemandFirst
can be refined further, and tailored to specific scenarios,
which introduces an interesting avenue for future research.
A first next step would be to improve the execution time of
DemandFirst in the undirected case, we believe a similar
performance as in the directed case is possible.

VI. RELATED WORK

The benefits and limitations of reconfigurable networks,
which not only arise in datacenters but also in wide-area net-
works [28], [29], [30], [31], are currently discussed intensively
in the literature, see e.g., [8], [9], [16], [28], [32], [33], [34],
[35], [36]. There is a wide spectrum of approaches to make
datacenter topologies more dynamic, with solutions ranging
from approaches leveraging converter switches to dynamically
change between a Clos network and approximate random
graphs [27] to approaches based on rotor switches rotating
through a set of pre-defined matchings [37]. Some empirical
studies have shown that depending on the workload, demand-
aware networks can achieve a performance similar to demand-
oblivious networks at lower cost [8], [9].

Less is known about the underlying algorithmic problem
of designing and routing on such topologies. The problem is
related to graph augmentation [38], [39] literature considering
how to enhance a given (fixed) graph with an optimal num-
ber of “extra edges”, sometimes also referred to as “ghost
edges” [40]: the objective in this literature is typically to
provide small world properties [41] or minimize the network
diameter [42], [43]. However, most of these algorithms are not
applicable directly to our model, where rather than individual
edges, entire matchings can be added.

In this context, it could also be interesting to consider the
removal of links, e.g., for the scheduling of link repairs [44].

Most existing algorithms on the optimization of reconfig-
urable topologies are restricted to “segregated” routing models
where traffic is forced to either use the fixed network or a
single reconfigurable link (see e.g., [9], [14]), and consider
simple heuristics based on matchings [15], [16], [17], [8], [18]
and related concepts, such as edge-coloring [45] and stable-
marriage schemes [9]. The closest paper to ours is the work
by Foerster et al. [14], [46], which we extend by presenting
several efficient algorithms for non-segregated routing which
we also evaluate in simulations. Furthermore, we show that not
only computing exact solutions is NP-hard, but also computing
approximations.

Finally we note that there also exists much recent work on
non-hybrid, fully reconfigurable (static and dynamic) topolo-
gies that do not account for the possibility of oblivious (fixed)
links [47], [48], [49], [50], [51], [52].

VII. CONCLUSION

This paper initiated the study of efficient algorithms for
non-segregated routing and optimization of emerging recon-
figurable network topologies. We have shown that while the
underlying problem is hard to approximate in the worst-
case, fast and simple algorithms can significantly improve the
performance compared to the state-of-the-art, which is also
confirmed by our trace-driven simulations.

We understand our work as a first step and believe that
it opens several interesting avenues for future research. In
particular, it will be interesting to provide a more complete
picture of upper and lower bounds on approximations, also
by considering randomized routing schemes, and to better
understand which specific workloads and scenarios allow to
improve quality and runtime further. Moreover, it would also
be interesting to consider dynamic or online settings, possibly
in conjunction with consistent network updates [53].
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our results reproducible, we created a code repository at https:
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