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Abstract—The minimum cut problem for an undirected edge-
weighted graph asks us to divide its set of nodes into two blocks
while minimizing the weighted sum of the cut edges. In this paper,
we engineer the fastest known exact algorithm for the problem.

State-of-the-art algorithms like the algorithm of Padberg and
Rinaldi or the algorithm of Nagamochi, Ono and Ibaraki identify
edges that can be contracted to reduce the graph size such
that at least one minimum cut is maintained in the contracted
graph. Our algorithm achieves improvements in running time
over these algorithms by a multitude of techniques. First, we
use a recently developed fast and parallel inexact minimum cut
algorithm to obtain a better bound for the problem. Afterwards,
we use reductions that depend on this bound to reduce the
size of the graph much faster than previously possible. We use
improved data structures to further lower the running time
of our algorithm. Additionally, we parallelize the contraction
routines of Nagamochi et al. . Overall, we arrive at a system that
significantly outperforms the fastest state-of-the-art solvers for
the exact minimum cut problem.

I. INTRODUCTION

Given an undirected graph with non-negative edge weights,
the minimum cut problem aims at partitioning the vertices
into two sets so that the sum of edge weights between the
two sets is minimized. The problem has applications in many
fields. In particular, for network reliability [17, 31], assuming
equal failure probability edges, the smallest edge cut in the
network has the highest chance of disconnecting the network;
in VLSI design [22], a minimum cut can be used to minimize
the number of connections between microprocessor blocks;
and it is further used as a subproblem in the branch-and-cut
algorithm for solving the Traveling Salesman Problem and
other combinatorial problems [28].

As the minimum cut problem has many applications and
is often used as a subproblem for complex problems, it
is highly important to have algorithms that can solve the
problem in reasonable time on huge data sets. As data sets
are growing substantially faster than processor speeds, a good
way to achieve this is efficient parallelization. While there is a
multitude of algorithms which solve the minimum cut problem
exactly on a single core [12, 15, 18, 25], to the best of our
knowledge, there exists only one parallel exact algorithm for
the minimum cut problem: Karger and Stein [18] present a par-
allel variant for their random contraction algorithm [18] which
computes a minimum cut with high probability in polylogarith-
mic time using n2 processors. This is, however, infeasible for
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large instances. There has been a MPI implementation of this
algorithm by Gianinazzi et al. [9]. However, there have been
no parallel implementations of the algorithms of Hao et al. [12]
and Nagamochi et al. [25, 26], which outperformed other exact
algorithms by orders of magnitude [6, 14, 16], both for real-
world and generated networks.

All algorithms that solve the minimum cut problem exactly
have non-linear running times, currently the fastest being
the deterministic algorithm of Henzinger et al. [15] with
running time O(m log2 n log log2 n). There is a linear time
approximation algorithm, namely the (2 + ε)-approximation
algorithm by Matula [24] and a linear time heuristic minimum
cut algorithm by Henzinger et al. [14] based on the label
propagation algorithm [30]. The latter paper also contains a
shared-memory parallel implementation of their algorithm.

A. Contribution.

We engineer the fastest known exact minimum cut algorithm
for the problem. We do so by (1) incorporating recently
proposed inexact methods, (2) by using a novel combination
of data structures and other optimizations as well as (3)
parallelization.

Algorithms like the algorithm of Padberg and Rinaldi or
the algorithm of Nagamochi, Ono and Ibaraki identify edges
that can be contracted to reduce the graph size such that at
least one minimum cut is maintained in the contracted graph.
Our algorithm achieves improvements in running time by a
multitude of techniques. First, we use a recently developed fast
and parallel inexact minimum cut algorithm [14] to obtain a
good approximate bound λ̂ for the problem. As several graph
reduction techniques depend on this bound, the better bound
enables us to apply more reductions and reduce the size of the
graph much faster. For example, edges whose incident vertices
have a connectivity of at least λ̂ can be contracted without
affecting the minimum cut. Using a novel combination of well
suited data structures as well as incorporating observations that
help to save a significant amount of work in the contraction
routine of Nagamochi et al. [26] further reduce the running
time of our algorithm. For example, we observe a significantly
higher performance on some graphs when using a FIFO bucket
priority queue in combination with bounded priority queues
as well as better bounds λ̂. Additionally, we give a parallel
variant of the contraction routines of Nagamochi et al. [26].
Overall, we arrive at a system that outperforms the state-of-
the-art by a factor of up to 2.5 sequentially, and when run



in shared-memory parallel by a factor of up to 12.9 using 12
cores.

The rest of the paper is organized as follows. Chapter
II gives preliminaries, an overview over related work and
details of the algorithms of Nagamochi et al. [25, 26] and
Henzinger et al. [14], as we make use of their results. Our
shared-memory parallel exact algorithm for the minimum cut
problem is detailed in Chapter III. In Chapter IV we give
implementation details and extensive experiments both on
real-world and generated graphs. We conclude the paper in
Chapter V.

II. PRELIMINARIES

A. Basic Concepts.

Let G = (V,E, c) be a weighted undirected graph with
vertex set V , edge set E ⊂ V × V and non-negative edge
weights c : E → N. We extend c to a set of edges E′ ⊆
E by summing the weights of the edges; that is, c(E′) :=∑
e=(u,v)∈E′ c(u, v). Let n = |V | be the number of vertices

and m = |E| be the number of edges in G. The neighborhood
N(v) of a vertex v is the set of vertices adjacent to v. The
weighted degree of a vertex is the sum of the weights of its
incident edges. For brevity, we simply call this the degree
of the vertex. For a set of vertices A ⊆ V , we denote by
E[A] := {(u, v) ∈ E | u ∈ A, v ∈ V \ A}; that is, the
set of edges in E that start in A and end in its complement.
A cut (A, V \ A) is a partitioning of the vertex set V into
two non-empty partitions A and V \ A, each being called a
side of the cut. The capacity of a cut (A, V \ A) is c(A) =∑

(u,v)∈E[A] c(u, v). A minimum cut is a cut (A, V \ A) that
has smallest capacity c(A) among all cuts in G. We use λ(G)
(or simply λ, when its meaning is clear) to denote the value of
the minimum cut over all A ⊂ V . For two vertices s and t, we
denote λ(G, s, t) as the smallest cut of G, where s and t are
on different sides of the cut. The connectivity λ(G, e) of an
edge e = (s, t) is defined as λ(G, s, t), the connectivity of its
incident vertices. This is also known as the minimum s-t-cut
of the graph or the connectivity or vertices s and t. At any
point in the execution of a minimum cut algorithm, λ̂(G) (or
simply λ̂) denotes the smallest upper bound of the minimum
cut that an algorithm discovered until that point. For a vertex
u ∈ V with minimum vertex degree, the size of the trivial cut
({u}, V \ {u}) is equal to the vertex degree of u. Hence, the
minimum vertex degree δ(G) can serve as initial bound.

Many algorithms tackling the minimum cut problem use
graph contraction. Given an edge (u, v) ∈ E, we define
G/(u, v) to be the graph after contracting edge (u, v). In the
contracted graph, we delete vertex v and all edges incident to
this vertex. For each edge (v, w) ∈ E, we add an edge (u,w)
with c(u,w) = c(v, w) to G or, if the edge already exists, we
give it the edge weight c(u,w) + c(v, w).

B. Related Work.

We now review algorithms for the global minimum cut and
related problems. A closely related problem is the minimum
s-t-cut problem, which asks for a minimum cut with nodes s

and t in different partitions. Ford and Fulkerson [7] proved
that minimum s-t-cut is equal to maximum s-t-flow. Gomory
and Hu [11] observed that the (global) minimum cut can be
computed with n− 1 minimum s-t-cut computations. For the
following decades, this result by Gomory and Hu was used to
find better algorithms for global minimum cut using improved
maximum flow algorithms [18]. One of the fastest known
maximum flow algorithms is the push-relabel algorithm [10]
by Goldberg and Tarjan.

Hao and Orlin [12] adapt the push-relabel algorithm to
pass information to future flow computations. When a push-
relabel iteration is finished, they implicitly merge the source
and sink to form a new sink and find a new source. Vertex
heights are maintained over multiple iterations of push-relabel.
With these techniques they achieve a total running time of
O(mn log n2

m ) for a graph with n vertices and m edges, which
is asymptotically equal to a single run of the push-relabel
algorithm. Gabow [8] gives an algorithm with running time
of O(m+ λ2n log(n/λ)).

Padberg and Rinaldi [27] give a set of heuristics for edge
contraction. Chekuri et al. [6] give an implementation of these
heuristics that can be performed in time linear in the graph
size. Using these heuristics it is possible to sparsify a graph
while preserving at least one minimum cut in the graph. If
their algorithm does not find an edge to contract, it performs
a maximum flow computation, giving the algorithm worst case
running time O(n4). However, the heuristics can also be used
to improve the expected running time of other algorithms by
applying them on interim graphs [6].

Nagamochi et al. [25, 26] give a minimum cut algorithm
which does not use any flow computations. Instead, their
algorithm uses maximum spanning forests to find a non-
empty set of contractible edges. This contraction algorithm
is run until the graph has only two remaining vertices. The
algorithm has a running time of O(mn + n2 log n). Stoer
and Wagner [32] give a simpler variant of the algorithm of
Nagamochi et al. [26], which has the same asymptotic time
complexity. The performance of this algorithm on real-world
instances, however, is significantly worse than the performance
of the algorithms of Nagamochi et al. or Hao and Orlin, as
shown in experiments conducted by Jünger et al. [16]. Both
the algorithms of Hao and Orlin, and Nagamochi et al. achieve
close to linear running time on most benchmark instances [6,
16]. To the best of our knowledge, there are no parallel
implementation of either algorithm. Both of the algorithms
do not have a straightforward parallel implementation.

Kawarabayashi and Thorup [19] give a deterministic near-
linear time algorithm for the minimum cut problem, which
runs in O(m log12 n). Their algorithm works by growing
contractible regions using a variant of PageRank [29]. It
was later improved by Henzinger et al. [15] to run in
O(m log2 n log log2 n) time.

Based on the algorithm of Nagamochi et al., Matula [24]
gives a (2 + ε)-approximation algorithm for the minimum
cut problem. The algorithm contracts more edges than the
algorithm of Nagamochi et al. to guarantee a linear time com-



plexity while still guaranteeing a (2 + ε)-approximation fac-
tor. Karger and Stein [18] give a randomized Monte Carlo
algorithm based on random edge contractions. This algo-
rithm returns the minimum cut with high probability and a
larger cut otherwise. In experiments, their algorithm was often
outperformed by Nagamochi et al. and Hao and Orlin by
orders of magnitude [6, 14, 16].

C. Nagamochi, Ono and Ibaraki’s Algorithm.

We discuss the algorithm by Nagamochi, Ono and
Ibaraki [25, 26] in greater detail since our work relies heavily
on their results. The intuition behind the algorithm is as fol-
lows: imagine you have an unweighted graph with minimum
cut value exactly one. Then any spanning tree must contain
at least one edge of each of the minimum cuts. Hence, after
computing a spanning tree, every edge not contained in the
spanning tree can be contracted without losing the minimum
cut. Nagamochi et al. extend this idea to the case where the
graph can have edges with positive weight as well as the
case in which the minimum cut is upper bounded by λ̂. The
first observation is the following: assume that you already
found a cut in the current graph of size λ̂ and you want
to find out whether there is a cut of size < λ̂. Then the
contraction process only needs to ensure that the contracted
graph contains all cuts having a value strictly smaller than λ̂.
To do so, Nagamochi et al. build edge-disjoint maximum
spanning forests and contract all edges that are not in one
of the λ̂ − 1 first spanning forests, as those connect vertices
that have connectivity at least λ̂. Note that the edge-disjoint
maximum spanning forest certifies for any edge e = (u, v)
that is not in the forests that the minimum cut between
u and v is at least λ̂. Hence, the edge can be “safely”
contracted. As weights are integer, this guarantees that the
contracted graph still contains all cuts that are strictly smaller
than λ̂. Since it would be inefficient to directly compute λ̂−1
edge disjoint maximum spanning forests, the authors give a
modified algorithm to detect contractable edges faster. This is
done by computing a lower bound on the connectivity of the
endpoints of an edge which serves as a certificate for an edge
to be contractable. The algorithm has worst case running time
O
(
mn+ n2 log n

)
. In experimental evaluations [6, 14, 16] it

is one of the fastest exact minimum cut algorithms, both on
real-world and generated instances.

We now take a closer look at details of the algorithm. To
find contractable edges, the algorithm uses a modified breadth-
first graph traversal algorithm [25, 26]. More precisely, the
algorithm starts at an arbitrary vertex. In each step, the
algorithm visits (scans) the vertex v that is most strongly
connected to the already visited vertices. For this purpose,
a priority queue Q is used, in which the connectivity strength
of each vertex r : V → R to the already discovered vertices
is used as a key. When scanning a vertex v, the value r(w)
is kept up to date for every unscanned neighbor w of v by
setting i.e. r(w) := r(w) + c(e). Moreover, for each such
edge e = (v, w), the algorithm computes a lower bound q(e)
for the connectivity, i.e. the smallest cut λ(G, v, w), which

places v and w on different sides of the cut. More precisely,
as shown by [25, 26], if the vertices are scanned in a certain
order (the order used by the algorithm), then r(w) is a lower
bound on λ(G, v, w).

For an edge that has connectivity λ(G, v, w) ≥ λ̂, we know
that there is no cut smaller than λ̂ that places v and w in
different partitions. If an edge e is not in a given cut (A, V \A),
it can be contracted without affecting the cut. Thus, we can
contract edges with connectivity at least λ̂ without losing any
cuts smaller than λ̂. As q(e) ≤ λ(G, u, v) (lower bound), all
edges with q(e) ≥ λ̂ are contracted.

Afterwards, the algorithm continues on the contracted
graph. A single iteration of the subroutine can be performed
in O(m+ n log n). The authors show that in each run, at least
one edge of the graph can be contracted [25]. This yields a
total running time of O(mn+n2 log n). However, in practice
the number of iterations is typically much less than n − 1,
often it is proportional to log n.

D. Inexact Shared-Memory Minimum Cuts.

VieCut [14] is a multilevel algorithm that uses a shared-
memory parallel implementation of the label propagation
algorithm [30] to find clusters with a strong intra-cluster
connectivity. The algorithm then contracts these clusters as
it is assumed that the minimum cut does not split a cluster, as
the vertices in a cluster are strongly interconnected with each
other. This contraction is followed by a linear-work shared
memory run of the Padberg-Rinaldi local tests for contractible
edges [27]. This whole process is repeated until the graph has
only a constant number of vertices left and can be solved by
the algorithm of Nagamochi et al. [26] exactly.

While VieCut can not guarantee optimality or even a
small approximation ratio, in practice the algorithm finds near-
optimal minimum cuts, often even the exact minimum cut,
very quickly and in parallel. The algorithm can be imple-
mented to have sequential running time O(n+m).

III. FAST EXACT MINIMUM CUTS

In this section we detail our shared-memory algorithm for
the minimum cut problem that is based on the algorithms of
Nagamochi et al. [25, 26] and Henzinger et al. [14]. We aim to
modify the algorithm of Nagamochi et al. [26] in order to find
exact minimum cuts faster and in parallel. Their algorithm uses
a routine described above in Section II-C, called CAPFOREST
in their original work, in order to compute a lower bound q(e)
of the connectivity λ(G, u, v) for each edge e = (u, v).

If the connectivity between two vertices is at least as large
as the current upper bound for the minimum cut, then it can
be contracted. That also means that edges e with q(e) ≥ λ̂
can be safely contracted, The algorithm is guaranteed to find
at least one such edge.

We start this section with optimizations to the sequential
algorithm. First we use a recently published inexact algorithm
to lower the minimum cut upper bound λ̂. This enables us
to save work and to perform contractions more quickly. We
then give different implementations of the priority queue Q



and detail the effects of the choice of queue on the algorithm.
We show that the algorithm remains correct, even if we limit
the priorities in the queue to λ̂, meaning that elements in the
queue having a key larger than that will not be updated. This
significantly lowers the number of priority queue operations
necessary. Then we adapt the algorithm so that we are able to
detect contractible edges in parallel efficiently. Lastly, we put
everything together and present a full system description.

A. Sequential Optimizations.

1) Lowering the Upper Bound λ̂: Note that the upper bound
λ̂ for the minimum cut is an important parameter for exact
contraction based algorithms such as the algorithm NOI of
Nagamochi et al. [26]. Their algorithm computes a lower
bound for the connectivity of the two incident vertices of each
edge and contracts all edges whose incident vertices have a
connectivity of at least λ̂. Thus, it is possible to contract more
edges if we manage to lower λ̂ beforehand.

A trivial upper bound λ̂ for the minimum cut is the
minimum vertex degree, as it represents the trivial cut which
separates the minimum degree vertex from all other vertices.
We run VieCut to lower λ̂ in order to allow us to find more
edges to contract. Although VieCut is an inexact algorithm,
in most cases it already finds the minimum cut [14] of the
graph. As there are by definition no cuts smaller than the
minimum cut, the result of VieCut is guaranteed to be
at least as large as the minimum cut λ. As we set λ̂ to
the result of VieCut when running NOI, we can therefore
guarantee a correct result.

A similar idea is employed by the linear time (2 + ε)-
approximation algorithm of Matula [24], which initializes the
algorithm of Nagamochi et al. [26] with λ̂ = ( 1

2 − ε)×min
degree.

2) Bounded Priority Queues: Whenever we visit a vertex,
we update the priority of all of its neighbors inQ by adding the
respective edge weight. Thus, in total we perform |E| priority
queue increase-weight operations. In practice, many vertices
reach priority values much higher than λ̂ and perform many
priority increases until they reach their final value. We limit
the values in the priority queue by λ̂, i.e. we do not update
priorities that are already λ̂. Lemma 1 shows that this does
not affect correctness of the algorithm.

Let q̃G(e) be the value q(e) assigned to e in the modified
algorithm on graph G and let r̃G(x) be the r-value of a node
x in the modified algorithm on G.

Lemma 1. Limiting the values in the priority queue Q used in
the CAPFOREST routine to a maximum of λ̂ does not interfere
with the correctness of the algorithm. For every edge e =
(v, w) with q̃G(e) ≥ λ̂, it holds that λ(G, e) ≥ λ̂. Therefore
the edge can be contracted.

Proof. Proof can be found in [13].

Lemma 1 allows us to considerably lower the number
of priority queue operations, as we do not need to update
priorities that are bigger than λ̂. This optimization has even

more benefit in combination with running VieCut to lower
the upper bound λ̂, as we further lower the number of priority
queue operations.

3) Priority Queue Implementations: Nagamochi et al. [26]
use an addressable priority queue Q in their algorithm to find
contractible edges. In this section we now address variants for
the implementation of the priority queue. As the algorithm
often has many elements with maximum priority in practice,
the implementation of this priority queue can have major
impact on the order of vertex visits and thus also on the edges
that will be marked contractible.

a) Bucket Priority Queue: As our algorithm limits the
values in the priority queue to a maximum of λ̂, we observe
integer priorities in the range of [0, λ̂]. Hence, we can use a
bucket queue that is implemented as an array with λ̂ buckets.
In addition, the data structure keeps the id of the highest non-
empty bucket, also known as the top bucket, and stores the
position of each vertex in the priority queue. Priority updates
can be implemented by deleting an element from its bucket and
pushing it to the bucket with the updated priority. This allows
constant time access for all operations except for deletions
of the maximum priority element, which have to check all
buckets between the prior top bucket and the new top bucket,
possibly up to λ̂ checks. We give two possible implementations
to implement the buckets so that they can store all elements
with a given priority.

The first implementation, BStack uses a dynamic array
(std::vector) as the container for all elements in a bucket.
When we add a new element to the array, we add it to the end
of the array. Q.pop_max() returns the last element of the
top bucket (i.e. the element that was added last). Thus, our
algorithm will always visit the element next whose priority
was just increased. It thus does not fully explore all vertices
in a region and instead behaves more similar to a depth-first
search.

The other implementation, BQueue uses a double ended
queue (std::deque) as the container instead. A new ele-
ment is pushed to the back of the queue and Q.pop_max()
returns the first element of the top bucket. This results in a
variant of our algorithm, which behaves more similar to a
breadth-first search in that it first explores the vertices that
have been discovered earlier, i.e. are closer to the source vertex
in the graph.

b) Bottom-Up Binary Heap: A binary heap [35] is a
binary tree (implemented as an array, where element i has its
children in index 2i and 2i+1) which fulfills the heap property,
i.e. each element has priority that is not lower than either of its
children. Thus the element with highest priority is the root of
the tree. The tree can be made addressable by using an array of
indices, in which we save the position of each vertex. We use
a binary heap using the bottom-up heuristics [34], in which
we sift down holes that were created by the deletion of the top
priority vertex. Priority changes are implemented by sifting the
addressed element up or down in the tree. Operations have a
running time of up to O(log n) to sift an element up or down
to fix the heap property.



Algorithm 1 Parallel CAPFOREST

Input: G = (V,E, c)← undirected graph λ̂← upper bound for minimum cut, T ← shared array of vertex visits
Output: U ← union-find data structure to mark contractible edges

1: Label all vertices v ∈ V “unvisited”, blacklist B empty
2: ∀v ∈ V : r(v)← 0
3: ∀e ∈ E : q(e)← 0
4: Q ← empty priority queue
5: Insert random vertex into Q
6: while Q not empty do
7: x← Q.pop max() . Choose unvisited vertex with highest priority
8: Mark x “visited”
9: if T (x) = True then . Every vertex is visited only once

10: B(x)← True
11: else
12: T (x)← True
13: α← α+ c(x)− 2r(x)
14: λ̂← min(λ̂, α)
15: for e = (x, y)← unscanned edge, where y 6∈ B do
16: if r(y) < λ̂ ≤ r(y) + c(e) then
17: U .union(x,y) . Mark edge e to contract
18: end if
19: r(y)← r(y) + c(e)
20: q(e)← r(y)
21: Q(y)← min(r(y), λ̂)
22: end for
23: end if
24: end while

In Q.pop_max(), the Heap priority queue does not favor
either old or new elements in the priority queue and therefore
this implementation can be seen as a middle ground between
the two bucket priority queues.

B. Parallel CAPFOREST.

We modify the algorithm in order to quickly find con-
tractible edges using shared-memory parallelism. The pseu-
docode can be found in Algorithm 1. The proofs in this section
show that the modifications do not violate the correctness of
the algorithm. Detailed proofs for the original CAPFOREST
algorithm and the modifications of Nagamochi et al. for
weighted graphs can be found in [26].

The idea of the our algorithm is as follows: We aim to find
contractible edges using shared-memory parallelism. Every
processor selects a random vertex and runs Algorithm 1, which
is a modified version of CAPFOREST [25, 26] where the
priority values are limited to λ̂, the current upper bound of
the size of the minimum cut. We want to find contractible
edges without requiring that every process looks at the whole
graph. To achieve this, every vertex will only be visited by
one process. Compared to limiting the number of vertices each
process visits, this algorithm has the advantage that we also
scan the vertices in sparse regions of the graph which might
otherwise not be scanned by any process.

Fig. 1. Example run of Algorithm 1. Every process starts at a random vertex
and scans region around the start vertex. These regions do not overlap.

Figure 1 shows an example run of Algorithm 1 with p = 5.
Every process randomly chooses a start vertex and performs
Algorithm 1 on it to “grow a region” of scanned vertices.

As we want to employ shared-memory parallelism to speed
up the algorithm, we share an array T between all processes
to denote whether a vertex has already been visited. If a vertex
v has already been visited by a process, it will not be visited
by any other processes. Additionally, every process keeps a
local blacklist B for vertices that the process attempted to
visit but that were already visited by another process before
and were thus ignored by this process. Note that B is not
shared between processes. We need this blacklist to ensure
correctness, as a process may only contract edges that are



not adjacent to a vertex previously blacklisted by that process
(proof in Lemma 2). For every vertex v we keep a value
r(v), which denotes the total weight of edges connecting v
to already scanned vertices. Over the course of a run of the
algorithm, every edge e = (v, w) is given a value q(e) (equal
to r(w) right after scanning e) which is a lower bound for the
smallest cut λ(G, v, w). We mark an edge e as contractible
(more accurately, we union the incident vertices in the shared
concurrent union-find data structure [1]), if q(e) ≥ λ̂. Note
that this does not modify the graph, it just remembers which
nodes to collapse. The actual node collapsing happens in a
postprocessing step. Nagamochi and Ibaraki showed [26] that
contracting only the edges that fulfill the condition in line 16
is equivalent.

As the set of disconnected edges is different depending on
the start vertex, we looked into visiting every vertex by a
number of processes up to a given parameter to find more
contractible edges. However, this did generally result in higher
total running times and thus we only visit every vertex once.

After all processes are finished, every vertex was visited
exactly once (or possibly zero times, if the graph is dis-
connected). On average, every process has visited roughly n

p
vertices and all processes finish at the same time. We do not
perform any form of locking of the elements of T , as this
would come with a running time penalty for every write and
the worst that can happen with concurrent writes is that a
vertex is visited more often, which does not affect correctness
of the algorithm.

However, as we terminate early and no process visits every
vertex, we can not guarantee anymore that the algorithm
actually finds a contractible edge. However, in practice, this
only happens if the graph is already very small (< 50 vertices
in all of our experiments). We can then run the (sequential)
CAPFOREST routine which is guaranteed to find at least one
edge to contract.

In line 13 and 14 of Algorithm 1 we compute the value
of the cut between the scanned and unscanned vertices and
update λ̂ if this cut is smaller than it. For more details on this
we refer the reader to [26].

In practice, many vertices reach values of r(y) that are much
higher than λ̂ and therefore need to update their priority in Q
often. As previously detailed, we limit the values in the priority
queue by λ̂ and do not update priorities that are already greater
than or equal to λ̂. This allows us to considerably lower the
number of priority queue operations per vertex.

Theorem 1. Algorithm 1 is correct.

As Algorithm 1 is a modified variant of CAPFOREST [25,
26], we use the correctness of their algorithm and show that
our modifications can not result in incorrect results. In order
to show this we need the following lemmas:

Lemma 2. 1) Multiple instances of Algorithm 1 can be run
in parallel with all instances sharing a parallel union-
find data structure.

2) Early termination does not affect correctness.

3) For every edge e = (v, w), where neither v nor w are
blacklisted, q(e) is a lower bound for the connectivity
λ(G, v, w), even if the set of blacklisted vertices B is
not empty.

4) When limiting the priority of a vertex in Q to λ̂, it still
holds that the vertices incident to an edge e = (x, y)
with q(e) ≥ λ̂ have connectivity λ(G, x, y) ≥ λ̂.

Proof. A run of the CAPFOREST algorithm finds a non-
empty set of edges that can be contracted without contracting
a cut with value less than λ̂ [25]. We show that none of our
modifications can result in incorrect results:

1) The CAPFOREST routine can be started from an ar-
bitrary vertex and finds a set of edges that can be
contracted without affecting the minimum cut λ. This
is true for any vertex v ∈ V . As we do not change
the underlying graph but just mark contractible edges,
the correctness is obviously upheld when running the
algorithm multiple times starting at different vertices.
This is also true when running the different iterations in
parallel, as long as the underlying graph is not changed.
Marking the edge e = (u, v) as contractible is equivalent
to performing a Union of vertices u and v. The Union
operation in a union-find data structure is commutative
and therefore the order of unions is irrelevant for the
final result. Thus performing the iterations successively
has the same result as performing them in parallel.

2) Over the course of the algorithm we set a value q(e)
for each edge e and we maintain a value λ̂ that never
increases. We contract edges that have value q(e) ≥ λ̂
at the time when q(e) is set. For every edge, this value
is set exactly once. If we terminate the algorithm prior
to setting q(e) for all edges, the set of contracted edges
is a subset of the set of edges that would be contracted
in a full run and all contracted edges e fulfill q(e) ≥ λ̂
at termination. Thus, no edge contraction contracts a cut
that is smaller than λ̂.

3) Let e = (v, w) be an edge and let Be be the set of
nodes blacklisted at the time when e is scanned. We
show that for an edge e = (v, w), q(e) ≤ λ(Ḡ, v, w),
where Ḡ = (V̄ , Ē) with vertices V̄ = V \Be and edges
Ē = {e = (u, v) ∈ E : u 6∈ Be and v 6∈ Be} is the
graph G with all blacklisted vertices and their incident
edges removed. As the removal of vertices and edges can
not increase edge connectivities qḠ(e) ≤ λ(Ḡ, v, w) ≤
λ(G, v, w) and e is a contractible edge.
Whenever we visit a vertex b, we decide whether we
blacklist the vertex. If we blacklist the vertex b, we
immediately leave the vertex and do not change any
values r(v) or q(e) for any other vertex or edge. As
vertex b is marked as blacklisted, we will not visit the
vertex again and the edges incident to b only affect r(b).
As edges incident to any of the vertices in Be do not
affect q(e), the value of q(e) in the algorithm with the
blacklisted in G is equal to the value of q(e) in Ḡ,
which does not contain the blacklisted vertices in Be



and their incident edges. On Ḡ this is equivalent to a run
of CAPFOREST without blacklisted vertices and due to
the correctness of CAPFOREST [26] we know that for
every edge e ∈ Ē : qḠ(e) ≤ λ(Ḡ, v, w) ≤ λ(G, v, w).
Note that in Ḡ we only exclude the vertices that are in
Be. It is possible that a node y that was unvisited when
e was scanned might get blacklisted later, however, this
does not affect the value of q(e) as the value q(e) is set
when an edge is scanned and never modified afterwards.

4) Proof in Lemma 1.
We can combine the sub-proofs (3) and (4) by creating the

graph Ḡ′, in which we remove all edges incident to blacklisted
vertices and decrease edge weights to make sure no q(e) is
strictly larger than λ̂. As we only lowered edge weights and
removed edges, for every edge between two not blacklisted
vertices e = (u, v), qG(e) ≤ λ(Ḡ′, x, y) ≤ λ(G, x, y) or
qG(e) > λ̂ and thus we only contract contractible edges. As
none of our modifications can result in the contraction of edges
that should not be contracted, Algorithm 1 is correct.

Parallel Graph Contraction: After using Algorithm 1 to
find contractible edges, we use a concurrent hash table [23] to
generate the contracted graph GC = (VC , EC), in which each
block in U is represented by a single vertex: first we assign
each block a vertex ID in the contracted graph in [0, |VC |).
For each edge e = (u, v), we compute a hash of the block
IDs of u and v to uniquely identify the edge in EC . We use
this identifier to compute the weights of all edges between
blocks. If there are two blocks that each have many vertices,
there might be many edges between them and if so, the hash
table spends considerable time for synchronization. We thus
compute the weight of the edge connecting the two heavy
blocks locally on each process and sum them up afterwards to
reduce synchronization overhead. If the collapsed graph GC
has a minimum degree of less than λ̂, we update λ̂ to the
value of this cut.

C. Putting Things Together.

Algorithm 2 shows the overall structure of the algorithm.
We first run VieCut to find a good upper bound λ̂ for
the minimum cut. Afterwards, we run Algorithm 1 to find
contractible edges. In the unlikely case that none were found,
we run CAPFOREST [26] sequentially to find at least one
contractible edge. We create a new contracted graph using
parallel graph contraction, as shown in Section III-B. This

Algorithm 2 Parallel Minimum Cut
Input: G = (V,E, c)

1: λ̂← VieCut(G), GC ← G
2: while GC has more than 2 vertices do
3: λ̂← Parallel CAPFOREST(GC , λ̂)
4: if no edges marked contractible then
5: λ̂← CAPFOREST(GC , λ̂)
6: end if
7: GC , λ̂← Parallel Graph Contract(GC)
8: end while
9: return λ̂

process is repeated until the graph has only two vertices left.
Whenever we encounter a collapsed vertex with a degree of
lower than λ̂, we update the upper bound. We return the
smallest cut we encounter in this process.

If we also want to output the minimum cut, for each
collapsed vertex vC in GC we store which vertices of G are
included in vC . When we update λ̂, we store which vertices
are contained in the minimum cut. This allows us to see which
vertices are on one side of the cut.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup and Methodology.

We implemented the algorithms using C++-17 and compiled
all codes using g++-7.1.0 with full optimization (-O3). Our
experiments are conducted on a machine with two Intel Xeon
E5-2643 v4 with 3.4GHz with 6 CPU cores each and hyper-
threading enabled, and 1.5 TB RAM in total. We perform five
repetitions per instance and report average running time.

Performance plots relate the fastest running time to the
running time of each other algorithm on a per-instance basis.
For each algorithm, these ratios are sorted in increasing order.
The plots show the ratio tbest/talgorithm on the y-axis. A point
close to zero indicates that the running time of the algorithm
was considerably worse than the fastest algorithm on the
same instance. A value of one therefore indicates that the
corresponding algorithm was one of the fastest algorithms
to compute the solution. Thus an algorithm is considered to
outperform another algorithm if its corresponding ratio values
are above those of the other algorithm. In order to include
instances that were too big for an algorithm (as HO-CGKLS
and NOI-CGKLS are limited to 32bit integers) we set the
corresponding ratio below zero.
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Algorithms.: There have been multiple experimental studies
that compare exact algorithms for the minimum cut prob-
lem [6, 14, 16]. All of these studies report that the algo-
rithm of Nagamochi et al. [25, 26] and the algorithm of
Hao and Orlin [12] outperform other algorithms, such as
the algorithms of Karger and Stein [18] or the algorithm of
Stoer and Wagner [32], often by multiple orders of mag-
nitude. Among others, we compare our algorithms against
two available implementations of the sequential algorithm of
Nagamochi et al. [25, 26]. Henzinger et al. [14] give an
implementation of the algorithm of Nagamochi et al. [25, 26],
written in C++ (NOI-HNSS) that uses a binary heap. We use
this algorithm with small optimizations in the priority queue
as a base of our implementation. Chekuri et al. [6] give an
implementation of the flow-based algorithm of Hao and Orlin
using all optimizations given in the paper (variant ho in [6]),
implemented in C, in our experiments denoted as HO-CGKLS.
They also give an implementation of the algorithm of Nag-
amochi et al. [25, 26], denoted as NOI-CGKLS, which uses
a heap as its priority queue data structure (variant ni-nopr
in [6]). As their implementations use signed integers as edge
ids, we include their algorithms only for graphs that have fewer
than 231 edges. Most of our discussions focus on comparisons
to the NOI-HNSS implementation as this outperforms the
implementations by Chekuri et al.

Gianinazzi et al. [9] give an MPI implementation of the
algorithm of Karger and Stein [18]. We performed prelimi-
nary experiments on small graphs which can be solved by
NOI-HNSS, NOI-CGKLS and HO-CGKLS in less than 3
seconds. On these graphs, their implementation using 24
processes took more than 5 minutes, which matches other
studies [6, 14, 16] that report bad real-world performance

of (other implementations of) the algorithm of Karger and
Stein. Gianinazzi et al. report a running time of 5 seconds
for RMAT graphs with n = 16000 and an average degree of
4000, using 1536 cores. As NOI can find the minimum cut on
RMAT graphs [20] of equal size in less than 2 seconds using
a single core, we do not include the implementation in [9] in
our experiments.

As our algorithm solves the minimum cut problem exactly,
we do not include the (2+ε)-approximation algorithm of Mat-
ula [24] and the inexact algorithm VieCut in the experiments.

Instances.: We use a set of graph instances from the exper-
imental study of Henzinger et al. [14]. The set of instances
contains k-cores [3] of large undirected real-world graphs
taken from the 10th DIMACS Implementation Challenge [2] as
well as the Laboratory for Web Algorithmics [4, 5]. Addition-
ally it contains large random hyperbolic graphs [21, 33] with
n = 220 ∼ 225 and m = 224 ∼ 232. A detailed description
of the graph instances is given in [13]. These graphs are
unweighted, however contracted graphs that are created in the
course of the algorithm have edge weights.

B. Sequential Experiments.

We limit the values in the priority queue Q to λ̂, in order to
significantly lower the number of priority queue operations
needed to run the contraction routine. In this experiment,
we want to examine the effects of different priority queue
implementations and limiting priority queue values have on
sequential minimum cut computations. We also include vari-
ants which run VieCut first to lower λ̂.

We start with sequential experiments using the implementa-
tion of NOI-HNSS. We use two variants: NOIλ̂ limits values
in the priority queue to λ̂ while NOI-HNSS allows arbitrarily
large values in Q. For NOIλ̂, we test the three priority queue
implementations, BQueue, Heap and BStack. As the prior-
ity queue for NOI-HNSS has priorities of up to the maximum
degree of the graph and the contracted graphs can have very
large degrees, the bucket priority queues are not suitable
for NOI-HNSS. Therefore we only use the implementation
of NOI-HNSS [14]. The variants NOI-HNSS-VieCut and
NOIλ̂-Heap-VieCut first run the shared-memory parallel
algorithm VieCut using all 24 threads to lower λ̂ before
running the respective sequential algorithm. We report the total
running time, e.g. the sum of VieCut and NOI.
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a) Priority Queue Implementations: Figure 2 shows the
results for random hyperbolic graphs and Figure 3 shows the
results for real-world graphs, normalized by the running time
of NOIλ̂-Heap-VieCut. Figure 4 gives performance plots
for all graphs. We can see that in nearly all sequential runs,
NOIλ̂-BStack is 5− 10% faster than NOIλ̂-BQueue. This
can be explained as this priority queue uses std::vector
instead of std::deque as its underlying data structure and
thus has lower access times to add and remove elements. As
all vertices are visited by the only thread, the scan order does
not greatly influence how many edges are contracted.

In the random hyperbolic graphs, nearly no vertices in
NOI-HNSS reach priorities in Q that are much larger than
λ̂. Usually, fewer than 5% of edges do not incur an update in
Q. Thus, NOI-HNSS and NOIλ̂-Heap have practically the
same running time. NOIλ̂-BStack is usually 5% slower.

As the real-world graphs are social network and web graphs,
they contain vertices with very high degrees. On these vertices,
NOI-HNSS often reaches priority values of much higher than
λ̂ and NOIλ̂ can actually save priority queue operations.
Thus, NOIλ̂-Heap is up to 1.83 times faster than NOI-HNSS
with an average (geometric) speedup factor of 1.35. Also, in
contrast to the random hyperbolic graphs, NOIλ̂-BStack is
faster than NOI-HNSS on real-world graphs. Due to the low
diameter of web and social graphs, the number of vertices in
Q is very large. This favors the BStack priority queue, as it
has constant access times. The average geometric speedup of
NOIλ̂-BStack compared to NOIλ̂-Heap is 1.22.

b) Reduction of λ̂ by VieCut: Now we reduce λ̂
by VieCut before running NOI. While the other algo-
rithms are slower for denser random hyperbolic graphs,
NOI-HNSS-VieCut and NOIλ̂-Heap-VieCut are faster
in these graphs with higher density. This happens as the
variants without VieCut find fewer contractible edges and
therefore need more rounds of CAPFOREST. The highest
speedup compared to NOIλ̂-Heap is reached in random
hyperbolic graphs with n = 223 and an average density of
28, where NOIλ̂-Heap-VieCut has a speedup of factor 4.

NOIλ̂-Heap-VieCut is fastest on most real-world graphs,
however when the minimum degree is very close to the
minimum cut λ, running VieCut can not significantly lower
λ̂. Thus, the extra work to run VieCut takes longer than
the time saved by lowering the upper bound λ̂. The average
geometric speedup factor of NOIλ̂-Heap-VieCut on all
graphs compared to the variant without VieCut is 1.34.

In the performance plots in Figure 4 we can see that
NOIλ̂-Heap-VieCut is fastest or close to the fastest al-
gorithm in all but the very sparse graphs, in which the
algorithm of Nagamochi et al. [26] is already very fast [14]
and therefore using VieCut cannot sufficiently lower λ̂ and
thus the running time of the algorithm. NOI-CGKLS and
HO-CGKLS are outperformed on all graphs.

C. Shared-memory parallelism.

We run experiments on 5 of the largest graphs in the
data sets using up to 24 threads on 12 cores. These graphs
have 4M ∼ 68M vertices and 670M ∼ 4B edges. First,
we compare the performance of Algorithm 2 using different
priority queues: ParCutλ̂-Heap, ParCutλ̂-BStack and
ParCutλ̂-BQueue all limit the priorities to λ̂, the result of
VieCut. In these experiments, VieCut takes up between
19 − 83% of the total running time with an average of 51%.
Thus, in average half of the total running time was used to
find a good upper bound for the minimum cut using VieCut
and the other half was used to compute a result guaranteed to
be optimal.

Figure 5 shows the results of these scaling experiments. The
top row shows how well the algorithms scale with increased
number of processors. The lower row shows the speedup com-
pared to the fastest sequential algorithm of Section IV-B. On
all graphs, ParCutλ̂-BQueue has the highest speedup when
using 24 threads. On real-world graphs, ParCutλ̂-BQueue
also has the lowest total running time. In the large random
hyperbolic graphs, in which the priority queue is usually
only filled with up to 1000 elements, the worse constants
of the double-ended queue cause the variant to be slightly
slower than ParCutλ̂-Heap also even when running with 24



threads. In the two large real-world graphs that have a mini-
mum degree of 10, the sequential algorithm NOIλ̂-BStack
contracts most edges in a single run of CAPFOREST - due
to the low minimum degree, the priority queue operations
per vertex are also very low. Thus, ParCutλ̂ using only a
single thread has a significantly higher running time, as it
runs VieCut first and performs graph contraction using a
concurrent hash table, as described in Section III-B, which is
slower than sequential graph contraction when using just one
thread. In graphs with higher minimum degree, NOI needs to
perform multiple runs of CAPFOREST. By lowering λ̂ using
VieCut we can contract significantly more edges and achieve
a speedup factor of up to 12.9 compared to the fastest sequen-
tial algorithm NOIλ̂-Heap. On twitter-2010, k = 50,
ParCutλ̂-BQueue has a speedup of 10.3 to NOI-HNSS,
16.8 to NOI-CGKLS and a speedup of 25.5 to HO-CGKLS.
The other graphs have more than 231 edges and are thus too
large for NOI-CGKLS and HO-CGKLS.

V. CONCLUSION

We presented a shared-memory parallel exact algorithm
for the minimum cut problem. Our algorithm is based on
the algorithms of Nagamochi et al. [25, 26] and of Hen-
zinger et al. [14]. We use different data structures and op-
timizations to decrease the running time of the algorithm of
Nagamochi et al. by a factor of up to 2.5. Using additional
shared-memory parallelism we further increase the speedup
factor to up to 12.9. Future work includes checking whether
our sequential optimizations and parallel implementation can
be applied to the (2 + ε)-approximation algorithm of Mat-
ula [24].
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