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Abstract

Many dynamic graph algorithms have an amortized update time, rather than a stronger

worst-case guarantee. But amortized data structures are not suitable for real-time systems,

where each individual operation has to be executed quickly. For this reason, there exist many

recent randomized results that aim to provide a guarantee stronger than amortized expected.

The strongest possible guarantee for a randomized algorithm is that it is always correct (Las

Vegas), and has high-probability worst-case update time, which gives a bound on the time for

each individual operation that holds with high probability.

In this paper we present the �rst polylogarithmic high-probability worst-case time bounds

for the dynamic spanner and the dynamic maximal matching problem.

1. For dynamic spanner, the only knowno(n)worst-case bounds wereO(n3/4) high-probability

worst-case update time for maintaining a 3-spanner and O(n5/9) for maintaining a 5-

spanner. We give aO(1)k log3(n) high-probability worst-case time bound for maintaining

a (2k − 1)-spanner, which yields the �rst worst-case polylog update time for all constant

k . (All the results above maintain the optimal tradeo� of stretch 2k − 1 and Õ(n1+1/k )
edges.)

2. For dynamic maximal matching, or dynamic 2-approximate maximum matching, no

algorithm with o(n) worst-case time bound was known and we present an algorithm with

O(log5(n)) high-probability worst-case time; similar worst-case bounds existed only for

maintaining a matching that was (2 + ϵ)-approximate, and hence not maximal.

Our results are achieved using a new approach for converting amortized guarantees to

worst-case ones for randomized data structures by going through a third type of guarantee,

which is a middle ground between the two above: an algorithm is said to haveworst-case expected
update time α if for every update σ , the expected time to process σ is at most α . Although

stronger than amortized expected, the worst-case expected guarantee does not resolve the

fundamental problem of amortization: a worst-case expected update time of O(1) still allows

for the possibility that every 1/f (n) updates requires Θ(f (n)) time to process, for arbitrarily

high f (n). In this paper we present a black-box reduction that converts any data structure with

worst-case expected update time into one with a high-probability worst-case update time: the

query time remains the same, while the update time increases by a factor of O(log2(n)).
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Thus we achieve our results in two steps: (1) First we show how to convert existing dynamic

graph algorithms with amortized expected polylogarithmic running times into algorithms with

worst-case expected polylogarithmic running times. (2) Then we use our black-box reduction to

achieve the polylogarithmic high-probability worst-case time bound. All our algorithms are

Las-Vegas-type algorithms.

1 Introduction

A dynamic graph algorithm is a data structure that maintains information in a graph that is being

modi�ed by a sequence of edge insertion and deletion operations. For a variety of graph properties

there exist dynamic graph algorithms for which amortized expected time bounds are known and

the main challenge is to de-amortize and de-randomize these results. Our paper addresses the �rst

challenge: de-amortizing dynamic data structures.

An amortized algorithm guarantees a small average update time for a “large enough” sequence

of operations: dividing the total time forT operations byT leads to the amortized time per operation.

If the dynamic graph algorithm is randomized, then the expected total time for a sequence of

operations is analyzed, giving a bound on the amortized expected time per operation. But in real-time

systems, where each individual operation has to be executed quickly, we need a stronger guarantee

than amortized expected time for randomized algorithms. The strongest possible guarantee for a

randomized algorithm is that it is always correct (Las Vegas), and has high-probability worst-case
update time, which gives an upper bound on the time for every individual operation that holds

with high probability. (The probability that the time bound is not achieved should be polynomially

small in the problem size.) There are many recent results which provide randomized data structures

with worst-case guarantees (see e.g. [San04, KKM13, Gib
+
15, Abr

+
16, BK16, ACK17, NSW17, CS18,

Ara
+
18]), often via a complex “deamortization” of previous results.

In this paper we present the �rst algorithms with worst-case polylog update time for two

classical problems in the dynamic setting: dynamic spanner, and dynamic maximal matching. In

both cases, polylog amortized results were already known, but the best worst-case results required

polynomial update time.

Both results are based on a new de-amortization approach for randomized dynamic graph

algorithms. We bring attention to a third possible type of guarantee: an algorithm is said to have

worst-case expected update time α if for every update σ , the expected time to process σ is at most α .

On it’s own this guarantee does not resolve the fundamental problem of amortization, since a

worst-case expected update time of O(1) still allows for the possibility that every 1/f (n) updates

requires Θ(f (n)) time to process, for arbitrarily high f (n). But by using some relatively simple

probabilistic bootstrapping techniques, we show a black-box reduction that converts any algorithm

with a worst-case expected update time into one with a high-probability worst-case update time.

This leads to the following deamortization approach: rather than directly aiming for high-

probability worst-case, �rst aim for the weaker worst-case expected guarantee, and then apply the

black-box reduction. Achieving such a worst-case expected bound can involve serious technical

challenges, in part because one cannot rely on the standard charging arguments used in amortized

analysis. We nonetheless show how to achieve such a guarantee for both dynamic spanner and

dynamic maximal matching, which leads to our improved results for both problems.

Details of the New Reduction. We show a black-box conversion of an algorithm with worst-

case expected update time into one with worst-case high-probability update time: the worst-case
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query time remains the same, while the update time increases by a log
2(n) factor. Our reduction is

quite general, but with our applications to dynamic graph algorithms in mind, we restrict ourselves

to dynamic data structures that support only two types of operations: (1) update operations, which

manipulate the internal state of the data structure, but do not return any information, and (2) query
operations, which return information about the internal state of the data structure, but do not

manipulate it. We say the data structure has update time α if the maximum update time of any type

of update (e.g. insertion or deletion) is α .

Theorem 1.1. Let A be an algorithm that maintains a dynamic data structure D with worst-case
expected update time α for each update operation and let n be a parameter such that the maximum
number of items stored in the data structure at any point in time is polynomial in n. We assume that for
any set of elements S such that |S | is polynomial in n, a new version of the data structure D containing
exactly the elements of S can be constructed in polynomial time. If this assumption holds, then there
exists an algorithm A′ with the following properties:

1. For any sequence of updates σ1,σ2, . . . , A′ processes each update σi in O(α log
2(n)) time with

high probability. The amortized expected update time of A′ is O(α log(n)).

2. A′ maintains Θ(log(n)) data structures D1,D2, ...,DΘ(log(n)), as well as a pointer to some Di that
is guaranteed to be correct at the current time. Query operations are answered with Di .

The theorem applies to any dynamic data structure, but we will apply it to dynamic graph

algorithms. Due to its generality, however, we expect that the theorem will prove useful in other

settings as well. When applied to a dynamic graph algorithm, n denotes the number of vertices, and

at most n2 elements (the edges) are stored at any point in time. Note that our assumption about

polynomial preprocessing time for any polynomial-size set of elements S is satis�ed by the vast

majority of data structures, and is in particular satis�ed by all dynamic graph algorithms that we

know of.

Observe that a high-probability worst-case update time bound of O(α log
2(n)) allows us to stop

the algorithm whenever its update time exceeds the O(α log
2(n)) bound and in this way obtain an

algorithm that is correct with high probability.

Remark 1.2. By Item 2, the converted algorithm A′ stores a slightly di�erent data structure than the

original algorithm A, because it maintains O(log(n)) copies Di of the data structure in A. The data

structure in A′ is equally powerful to that in A because it can answer all the same queries in the

same asymptotic time: A′ always has a pointer to some Di that is guaranteed to be �xed, so it can

use Di to answer queries. The main di�erence is that the answers produced by A′ may have less

“continuity” then those produced by A: for example, in a dynamic maximal matching algorithm,

if each query outputs the entire maximal matching, then a single update may change the pointer

in A′ from some Di to some D j , and A′ will then output a completely di�erent maximal matching

before and after the update. Note that this issue does not arise in our dynamic spanner algorithm,

as the spanner is formed by the union of the spanners of all copies.

First Result: Dynamic Spanner Maintenance. Given a graph G, a spanner H with stretch α
is a subgraph of G such that for any pair of vertices (u,v), the distance between u and v in H is at

most an α factor larger than their distance in G. In the dynamic spanner problem the main goal is

to maintain, for any given integer k ≥ 2, a spanner of stretch 2k − 1 with Õ(n1+1/k ) edges; we focus

on these particular bounds because spanners of stretch 2k − 1 and O(n1+1/k ) edges exist for every
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graph [Awe85], and this trade-o� is presumed tight under Erdős’s girth conjecture. The dynamic

spanner problem was introduced by Ausiello, Franciosa, and Italiano [AFI06] and has been improved

upon by [Elk11, BKS12, BK16]. There currently exist near-optimal amortized expected bounds: a

(2k − 1)-spanners can be maintained with expected amortized update time O(1)k [BKS12] or time

O(k2 log2(n)) [GK18]. The state-of-the-art for high-probability worst-case lags far behind: O(n3/4)
update time for maintaining a 3-spanner, and O(n5/9) for a 5-spanner [BK16]; no o(n) worst-case

update time was known for larger k . All of these algorithms exhibit the stretch/space trade-o�

mentioned above, up to polylogarithmic factors in the size of the spanner
1
.

We give the �rst dynamic spanner algorithm with polylog worst-case update time for any

constant k , which signi�cantly improves upon the result of [BK16] both in update time and in

range of k . Our starting point is the earlier result of Baswana, Khurana, and Sarkar [BKS12] that

maintains a (2k − 1) spanner with O(n1+1/k log2(n)) edges with update time O(1)k . We show that

while their algorithm is amortized expected, it can be modi�ed to yield worst-case expected bounds:

this requires a few changes to the algorithm, as well as signi�cant changes to the analysis. We then

apply the reduction in Theorem 1.1.

Theorem 1.3. There exists a fully dynamic (Las Vegas) algorithm for maintaining a (2k − 1) spanner
with O(n1+1/k log6(n) log log (n)) edges that has worst-case expected update time O(1)k log(n).

Theorem 1.4. There exists a fully dynamic (Las Vegas) algorithm for maintaining a (2k − 1) spanner
withO(n1+1/k log7(n) log log (n)) edges that has high-probability worst-case update timeO(1)k log3(n).

The proof follows directly from Theorem 1.3 and Theorem 1.1. In the case of maintaining

a spanner, the potential lack of continuity discussed in Remark 1.2 does not exist, as instead of

switching between the O(log(n)) spanners maintained by the conversion in Theorem 1.1, we can

just let the �nal spanner be the union of all of them. This incurs an extra log(n) factor in the size of

the spanner.

Second Result: Dynamic Maximal Matching. A maximum cardinality matching can be main-

tained dynamically in O(n1.495) amortized expected time per operation [San07]. Due to conditional

lower bounds of Ω(
√
m) on the time per operation for this problem [AW14, Hen

+
15], there is a

large body of work on the dynamic approximate matching problem [OR10, BGS18, NS16, GP13,

BHI18, BHN16, Sol16, BHN17, BCH17, Gup
+
17, CS18, Ara

+
18]. Still the only algorithms with

polylogarithmic (amortized or worst-case) time per operation require a 2 or larger approximation

ratio.

A matching is said to be maximal if the graph contains no edges between unmatched vertices.

A maximal matching is guaranteed to be a 2-approximation of the maximum matching, and is

also a well-studied object in its own right (see e.g. [HKP01, GKP08, Lat
+
11, BGS18, NS16, Sol16,

Fis17]). The groundbreaking result of Baswana, Gupta, and Sen [BGS18] showed how to maintain

a maximal matching (and so 2-approximation) with O(log(n)) expected amortized update time.

Solomon [Sol16] improved the update time to O(1) expected amortized. There has been recent

work on either deamortizing or derandomizing this result [BHN16, BCH17, BHN17, CS18, Ara
+
18].

Most notably, the two independent results in [CS18] and [Ara
+
18] both present algorithms with

1
A standard assumption for the analysis of randomized dynamic graph algorithms is that the “adversary” who supplies

the sequence of updates is assumed to have �xed this sequence σ1,σ2, ... before the dynamic algorithm starts to operate,

and the random choices of the algorithm then de�ne a distribution on the time to process each σi . This is called an

oblivious adversary. Our dynamic algorithms for spanners and matching share this assumption, as does all prior work.
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polylog high-probability worst-case update time that maintain a (2 + ϵ)-approximate matching.

Unfortunately, all these results comes at the price of increasing the approximation factor from 2

to (2 + ϵ), and in particular no longer ensure that the matching is maximal. One of the central

questions in this line of work is thus whether it is possible to maintain a maximal matching without

having to use both randomization and amortization.

We present the �rst a�rmative answer to this question by removing the amortization require-

ment, thus resolving an open question of [Ara
+
18]. Much like for dynamic spanner, we use an

existing amortized algorithm as our starting point: namely, the O(log(n)) amortized algorithm of

[BGS18]. We then show how the algorithm and analysis can be modi�ed to achieve a worst-case

expected guarantee, and then we apply our reduction.

Theorem1.5. There exists a fully dynamic (Las Vegas) algorithm formaintaining amaximalmatching
with worst-case expected update time O(log3(n)).

Theorem 1.6. There exists a fully dynamic (Las Vegas) algorithm that maintains a maximal matching
with high-probability worst-case update time O(log5(n)).

The proof follows directly from Theorem 1.5 and Theorem 1.1. As in Remark 1.2 above, we note

that our worst-case algorithm in Theorem 1.6 stores the matching in a di�erent data structure than

the original amortized algorithm of Baswana et al. [BGS18]: while the latter stores the edges of the

maximal matching in a single list D, our algorithm stores O(log(n)) lists Di , along with a pointer to

some speci�c list D j that is guaranteed to contain the edges of a maximal matching. In particular,

the algorithm always knows which D j is correct. The pointer to D j allows our algorithm to answer

queries about the maximal matching in optimal time.

Discussion of Our Contribution. We present the �rst dynamic algorithms with worst-case

polylog update times for two classical graph problems: dynamic spanner, and dynamic maximal

matching. Both results are achieved with a new de-amortization approach, which shows how

the concept of worst-case expected time can be a very fruitful way of thinking about dynamic

graph algorithms. From a technical perspective, the conversion from worst-case expected to high-

probability worst-case (Theorem 1.1) is relatively simple. The main technical challenge lies in

showing how the existing amortized algorithms for dynamic spanner and maximal matching can

be modi�ed to be worst-case expected. The changes to the algorithms themselves are not too major,

but a very di�erent analysis is required, because we can no longer rely on charging arguments and

potential functions. We hope that our tools for proving worst-case expected guarantees can be used

to de-amortize other existing dynamic algorithms. For example, the dynamic coloring algorithm

of [Bha
+
18], the dynamic spectral sparsi�er algorithm of [Abr

+
16], the dynamic distributed maximal

independent set algorithm of [CHK16], and the dynamic distributed spanner algorithm of [BKS12]

(all amortized) seem like natural candidates for our approach.

Section 2 provides a proof of the back-box reduction in Theorem 1.1. Section 4 presents our

dynamic matching algorithm, and Section 3 presents our dynamic spanner algorithm.

2 ConvertingWorst-Case Expected toHigh-ProbabilityWorst-Case

In this section we give the proof of Theorem 1.1. To do so, we �rst prove the following theorem

that restricts the length of the update sequence and then show how to extend it.

5



Theorem 2.1. Let A be a algorithm that maintains a dynamic data structure D with worst-case
expected update time α , let n be a parameter such that the maximum number of items stored in the
data structure at any point in time is polynomial in n, and let ` be a parameter for the length of the
update sequence to be considered. Then there exists an algorithm A′ with the following properties:

1. For any sequence of updates σ1,σ2, . . . , A′ processes each update σi in O(α log
2(n)) time with

high probability. The amortized expected update time of A′ is O(α log(n)).

2. A′ maintains Θ(log(n)) data structures D1,D2, . . . ,DΘ(log(n)), as well as a pointer to some Di
that is guaranteed to be correct at the current time. Query operations are answered with Di .

Proof. Let q = c log(n) for a su�ciently large constant c . The algorithm runs q = Θ(log(n)) versions

of the algorithm A, denoted A1, . . . ,Aq , each with their own independently chosen random bits.

This results in q data structures Di . Each Di maintains a possibly empty bu�er Li of uncompleted

updates. If Li is empty, Di is marked as �xed, otherwise as broken. The algorithm maintains a list of

all the �xed data structures, and a pointer to the Di of smallest index that is �xed.

Let r = 4α log(`) = O(α log(`)). Given an update σj the algorithm adds σj to the end of each Li
and then allows each Ai to run for r steps. Each Ai will work on the uncompleted updates in Li ,
continuing where it left o� after the last update, and completing the �rst uncompleted update

before starting the next one in the order in which they appear in Li . If within these r steps all

uncompleted updates in Li have been completed, Ai marks itself as �xed; otherwise it marks itself

as broken. If at the end of update σj all of the q data structures Di are broken then the algorithm

performs a Flush, which simply processes all the updates in all the versions Ai : this could take

much more than r work, but our analysis will show that this event happens with extremely small

probability. The Flush ensures Property 2 of Theorem 2.1: at the end of every update, some Di is

�xed.

By linearity of expectation, the expected amortized update time is O(αq) = O(α log(n)), and

the worst-case update time is rq = O(α log
2(n)) unless a Flush occurs. All we have left to show is

that after every update the probability of a Flush is at most (1/2)q = 1/nc . We use the following

counter analysis:

De�nition 2.2. We de�ne the dynamic counter problem with positive integer parameters α (for

average), r (for reduction), and ` (for length) as follows. Given a �nite sequence of possibly dependent
random variables X1,X2, . . . ,X` such that for each t , E[Xt ] ≤ α , we de�ne a sequence of counters Ct
which changes over a �nite sequence of time steps. Let C0 = 0 and let Ct = max(Xt +Ct−1 − r , 0).

Lemma 2.3. Given a dynamic counter problem with parameters α , r , and `, if r ≥ 4α log(`) and
α ≥ 1 then for every t we have Pr[Ct = 0] ≥ 1/2.

Lemma 2.3 implies that for any version Ai and any time t , Pr[Di is �xed after time t] ≥ 1/2. To

see this, note that each Di exactly mimics the dynamic counter of De�nition 2.2: X j corresponds to

the time it takes forAi to process update σj ; by the assumed properties ofA, we have E[X j ] = α . The

counterCj then corresponds to the amount of work thatAi has left to do after the j-th update phase;

in particular, Cj = 0 corresponds to Di being �xed after time j, which by Lemma 2.3 occurs with

probability at least 1/2. Since all the q versions Ai have independent randomness, the probability

that all the Di are broken and a Flush occurs is at most (1/2)q = 1/nc . �

Proof of Lemma 2.3. Let us focus on someCt , and say that k is the critical moment if it is the smallest

index such that Cj > 0 for all k ≤ j ≤ t . Note that there is exactly one critical moment if Ct > 0
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(possibly k = t ) and none otherwise. De�ne Bi (B for bad) for 0 ≤ i ≤ log(t) to be the event that

the critical moment occurs in interval (t + 1 − 2i+1, t + 1 − 2i ]. Thus,

Pr[Ct > 0] = Pr[B0 ∨ B1 ∨ B2 . . . ∨ Blog(t )] ≤
∑

0≤i≤log(t )
Pr[Bi ] . (1)

We now need to bound Pr[Bi ]. Note that if Bi occurs, then Cj > 0 for t + 1 − 2i ≤ j ≤ t . Thus the

counter reduces by r at least 2
i

times between the critical moment and time t (2
i

and not 2
i − 1

because the counter reduces at time t as well). Furthermore, the counter is always non-negative.

Thus,

Bi →
∑

t+1−2i+1≤j≤t
X j ≥ r2i ,

meaning that the event Bi implies the event

∑
t+1−2i+1≤j≤t X j ≥ r2i . Plugging in for r = 4α log(`)

and recalling that if event E1 implies E2 then Pr[E1] ≤ Pr[E2] we have that

Pr[Bi ] ≤ Pr


∑
t+1−2i+1≤j≤t

X j ≥ 2 · log(`) · α · 2i+1
 . (2)

Now observe that, by linearity of expectation,

E


∑

t+1−2i+1≤j≤t
X j

 =
∑

t+1−2i+1≤j≤t
E[X j ] = α · 2i+1 . (3)

Combining the Markov inequality with Equations 2 and 3 yields Pr[Bi ] ≤ 1/(2 log(`)) for any i . Plug-

ging that into Equation 1, and recalling that t ≤ `, we get Pr[Ct > 0] ≤ ∑
0≤i≤log(t ) 1/(2 log(`)) ≤

1/2. �

Note that the log(`) factor is necessary, even though intuitively r = O(α) should be enough,

since at each step the counter only goes up by α (in expectation) and goes down by r > α , so we

would expect it to be zero most of the time. And that is in fact true: with r = 4α one could show

that for any `, the probability that Ct = 0 for at least half the values of t ∈ [0, `] is at least 1/2. But

this claim is not strong enough because it still leaves open the possibility that even if the counter is

usually zero, there is some particular time t at which Pr[Ct = 0] is very small.

To exhibit this bad case, consider the following sequence X1,X2, . . .X` , where each Xt is chosen

independently and is set to 2r (` + 1 − t) with probability
α

2r (`+1−t ) and to 0 otherwise. It is easy

to see that for each t ≤ ` we have E[Xt ] = α . Now, what is Pr[C` = 0]? For each t ≤ ` if

Xt , 0, the counter will reduce by r (` + 1 − t) from time t to time `, which still leaves us with

C` ≥ 2r (` + 1− t) − r (` + 1− t) > 0. Let Yt be the indicator variable for the event that Xt , 0. Then,

Pr[C` > 0] = Pr[Y1 ∨ Y2 . . . ∨ Y`]. This probability is hard to bound exactly, but note that since

the Yt are independent random variables between 0 and 1 and we can apply the following Cherno�

bound.

Lemma 2.4 (Cherno� Bound). Let Y1,Y2, . . . ,Yk be a sequence of independent random variables
such that 0 ≤ Yt ≤ U for all t . Let Y =

∑
1≤t ≤k Yt and µ = E[Y ]. Then the following two properties

hold for all δ > 0:

Pr[Y ≤ (1 − δ )µ] ≤ e−
δ 2µ
2U (4)

Pr[Y ≥ (1 + δ )µ] ≤ e−
δ µ
3U . (5)
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Formulation 1 with δ = .74 yields that if

∑
1≤t ≤` E[Yt ] ≥ 4, then

Pr[C` = 0] = Pr[
∑

1≤t ≤`
Yt < 1] < .34 < 1/2 .

Thus, to have Pr[C` = 0] ≥ 1/2 we certainly need

∑
1≤t ≤` E[Yt ] < 4. Now observe that∑

1≤t ≤`
E[Yt ] =

α

2r

∑
1≤t ≤`

1

` + 1 − t =
α · Ω(log `)

r

Thus, to have

∑
1≤t ≤` E[Yt ] ≤ 4, we indeed need r = Ω(α log(`)).

Finally, we observe the restriction to an update sequence of �nite length is mainly a technical

constraint, which can easily be eliminated. This completes the proof of Theorem 1.1.

Proof of Theorem 1.1. Note that if the data structure does not allow any updates then Theorem 2.1

gives the desired bound. Otherwise the data structure allows either insertions or deletions or both.

In this case we use a standard technique to enhance the algorithm A′ from Theorem 2.1 providing

worst-case high probability update time for a �nite number of updates to an algorithm A′′ providing

worst-case high probability update time for an in�nite number of updates. Recall that we assume

that the maximum number of items that are stored in the data structure at any point in time as

well as the preprocessing time to build the data structure for any set S of size polynomial in n is

polynomial in n. Let this polynomial be upper bounded by nc for some constant c. We break the

in�nite sequence of updates into non-overlapping phases, such that phase i consists of all updates

between update i × nc to update (i + 1) × nc − 1.

During each phase the algorithm uses two instances of algorithm A′, one of them being called

active and one being called inactive. For each instance the algorithm has a pointer that points

to the corresponding data structure. Our new algorithm A′′ always points to the data structures

D1,D2, . . . ,Dlog(1/p) of the active instance. In particular it also points to the Di for which the active

instance ensures correctness. At the end of a phase the inactive data structure of the current phase

becomes the active data structure for the next phase and the active one becomes the inactive one.

Additionally, A′ keeps a list L of all items (e.g. edges in the graph) that are currently stored in

the data structure, stored in a balanced binary search tree, such that adding and removing an item

takes time O(logn) and the set of items that are currently in the data structure can be listed in time

linear in their number.

We now describe how each of the two instances is modi�ed during a phase. In the following

when we use the term update we mean an update in the (main) data structure.

(1) Active instance. All updates are executed in the active instance and these are the only

modi�cations performed on the active data structure.

(2) Inactive instance. During the �rst nc/2 updates in a phase, we do not allow any changes

to L, but record all these updates. Additionally during the �rst nc/4 updates in the phase, we

enumerate all items in L and store them in an array by performing a constant amount of work

of the enumeration and copy algorithm for each update. Let S denote this set of items. During

the next nc/4 updates we run the preprocessing algorithm for S to build the corresponding data

structure, again by performing a constant amount of work per update. This data structure becomes

our current version of the inactive instance.

We also record all updates of the second half of the phase. During the third nc/4 updates in the

phase, we forward to the inactive instance and to L all nc/2 updates of the �rst half of the current
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phase, by performing two recorded updates to the inactive instance and to L per update in the

second half of the phase. Finally, during the �nal nc/4 updates, we forward to the inactive instance

and to L all nc/2 updates of the second half of the current phase, again performing two recorded

update per update. This process guarantees that at the end of a phase the items stored in the active

and the inactive instance are identical.

The correctness of this approach is straightforward. To analyze the running time, observe that

each update to the data structure will result in one update being processed by the active instance

and at most two updates being processed in the inactive instance. Additionally maintaining L
increases the time per update by an additive amount of O(logn). By the union bound, our new

algorithm A′′ spends worst-case time 2 ·O(α log(n) log(1/p)) with probability 1 − 2/p. By linearity

of expectation, A′′ has amortized expected update time 2 ·O(α log(1/p)). By initializing the instance

in preparation with the modi�ed probability parameter p ′ = p/2 we obtain the desired formal

guarantees. �

3 Dynamic Spanner with Worst-Case Expected Update Time

In this section, we give a dynamic spanner algorithm with with worst-case expected update time

that, by our main reduction, can be converted to a dynamic spanner algorithm with high-probability

worst-case update time with polylogarithmic overheads. We heavily build upon prior work of

Baswana et al. [BKS12] and replace a crucial subroutine requiring deterministic amortization by a

randomized counterpart with worst-case expected update time guarantee. In Subsection 3.1, we

�rst give a high-level overview explaining where the approach of Baswana et al. [BKS12] requires

(deterministic) amortization and how we circumvent it. We then, in Subsection 3.2, give a more

formal review of the algorithm of Baswana et al. together with its guarantees and isolate the

dynamic subproblem we improve upon. Finally, in Subsection 3.3, we give our new algorithm for

this subproblem and work out its guarantees.

3.1 High-Level Overview

Recall that in the dynamic spanner problem, the goal is to maintain, for a graph G = (V ,E) with

n = |V | vertices that undergoes edge insertions and deletions, and a given integer k ≥ 2, a subgraph

H = (V , F ) of size |F | = Õ(n1+1/k ) such that for every edge (u,v) ∈ E there is a path from u to v
in H of length at most 2k − 1. If the latter condition holds, we also say that the spanner has stretch

2k − 1.

The algorithm of Baswana et al. emulates a “ball-growing” approach for maintaining hierarchical

clusterings. In each “level” of the construction, we are given some clustering of the vertices and each

cluster is sampled with probability p = 1/n1/k . The sampled clusters are grown as follows: Each

vertex in a non-sampled cluster that is incident on at least one sampled cluster, joins one of these

neighboring sampled cluster. Thus, for each unclustered vertex, there might be a choice as to which

of its neighboring sampled clusters to join. Furthermore, the algorithm distinguishes the edge that

a non-sampled vertex uses to “hook” onto the sampled cluster it joins. All sampled clusters together

with the edges between them move to the next level of the hierarchy and in this way the growing of

clusters is repeated k − 1 times. With the help of sophisticated data structures this hierarchy is more

or less maintained in a straightforward way with some crucial applications of randomization to

keep the expected update time low. In such a hierarchical approach, this in particular needs to take

into account the potentially exponentially growing blow-up in the propagation of updates: updates
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to the input graph might lead to changes in the clustering of the �rst level of the hierarchy, which

might have to be propagated as induced updates to the second level of the hierarchy, and so on.

Baswana et al. show that the amortized expected number of induced updates at level i per update

to the input graph is at most O(1)i . Our contribution in this section is to remove the amortization

argument, i.e., to give a bound of O(1)i with worst-case expected guarantee

In the �rst level of the hierarchy, each vertex is a singleton cluster and each non-sampled vertex

picks, among all edges going to neighboring sampled vertices, one edge uniformly at random as

its hook. Now consider the deletion of some edge e = (u,v). If e was not the hook of u, then the

clustering does not need to be �xed. However, if e was the hook, then the algorithm spends time

up to O(deg(u)) for picking a new hook, possibly joining a di�erent cluster, and if so informing all

neighbors about the cluster change. If the adversary deleting e is oblivious to the random choices

of the algorithm, then one can argue that the probability of e being the hook of u is
1

deg(u) . Thus,

the expected update time is
1

deg(u) · deg(u) = O(1).
The situation is more complex at higher levels, when the clusters are not singleton anymore.

While the time spent upon deleting the hook is still O(degi (u)), where degi (u) is the degree of u at

level i , one cannot argue that the probability of the deleted edge being the hook is O( 1

degi (u)
). To see

why this could be the case, Baswana et al. provide the following example of a “skewed” distribution

of edges to neighboring clusters: Suppose u has has ` = Θ( 1p log(n)) neighboring clusters such that

there are Θ(n) edges from u into the �rst neighboring cluster and each remaining neighboring

cluster has only one edge incident onu. Now there is a quite high probability (namely 1−p ≈ 1) that

the �rst cluster is not sampled and with high probability O(log(n)) of the remaining clusters will

be sampled, as follows from the Cherno� bound. Thus, if u picked the hook uniformly at random

from all edges into neighboring sampled clusters, it would join one of the single-edge clusters with

high-probability. As there are ` edges incident on u from these single-edge clusters, this gives a

probability of approximately 1/` for some deleted edge (u,v) being the hook, which is much larger

than
1

degi (u)
. This problem would not appear if among all edges going to neighboring clusters a p-th

fraction would be sampled ones. Then, intuitively speaking, one could argue that the probability

of some edge e = (u,v) being the hook edge of u is at most p · 1

p degi (u)
, the probability that the

cluster of u is a sampled one times the probability that a particular edge among all edges to sampled

clusters was selected.

This is why Baswana et al. introduce an edge �ltering step to their algorithm. By making a

sophisticated selection of edges going to the next level of the hierarchy, they can ensure that (a)

among all such selected edges going to neighboring clusters a p-th fraction go to sampled clusters

and (b) to compensate for edges not being selected for going to the next level, each vertex only

needs to add O( 1p log
2(n)) = O(n1/k log2(n)) edges to neighboring clusters to the spanner. The

�ltering boils down to the following idea: For each vertex u, group the neighboring non-sampled

clusters into O(log(n)) buckets such that clusters in the same bucket have approximately the same

number of edges incident on u. For buckets that are large enough (containing Θ( 1p log(n)) edges), a

standard Cherno� bound for binary random variables guarantees that a p-th fraction of all clusters

in the respective range for the number of edges incident on u go to sampled clusters. As all these

clusters have roughly the same number of edges incident on u, a Cherno� bound for positive

random variables with bounded aspect ratio also guarantees that a p-th fraction of the edges of

these clusters will go to sampled clusters. Therefore, one gets the desired guarantee if all edges

incident on clusters of small buckets are prevented from going to the next level in the hierarchy. To

compensate for this �ltering, it is su�cient to add one edge – picked arbitrarily – from u to each
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cluster in a small bucket to the spanner. As there are at most O(log(n)) small buckets containing

O( 1p log(n)) clusters each, this step is a�ordable without blowing up the asymptotic size of the

spanner too much.

Maintaining the bucketing is not trivial because whenever a cluster moves from one bucket

to the other it might �nd itself in a small bucket coming from a large bucket, or vice versa. In

order to enforce the �ltering constraint, this might cause updates to the next level of the hierarchy.

One way of controlling the number of induced updates is amortization: Baswana et al. use soft

thresholds for the upper and lower bounds on the number of edges incident on u for each bucket.

This ensures that updates introduced to the next level can be charged to updates in the current

level, and leads to an amortized bound of O(1) on the number of induced updates. Note that the

�ltering step is the only part in the spanner algorithm of Baswana et al. where this deterministic

amortization technique is used. If it were not for this speci�c sub-problem, the dynamic spanner

algorithm would have worst-case expected update time.

Our contribution is a new dynamic �ltering algorithm with worst-case expected update time,

which then gives a dynamic spanner algorithm with worst-case expected update time. Roughly

speaking, we achieve this as follows: whenever the number of edges incident on u for a cluster c in

some bucket j (with 0 ≤ j ≤ O(log(n))) exceeds a bucket-speci�c threshold of α j , we move c up

to the appropriate bucket with probability Θ( 1α j ) after each insertion of an edge between u and c .

This ensures that, with high probability, the number of edges to u for clusters in bucket j is at

most O(α j log(n)). Such a bound immediately implies that the expected number of induced updates

to the next level per update to the current level is O( 1α j · α j log(n)) = O(log(n)), which is already

non-trivial but also unsatisfactory because it would lead to an overall update time of O(log(n))k/2
for a (2k − 1)-spanner, instead of O(1) as in the case of Baswana et al. By a more careful analysis

we do actually obtain the O(1)-bound. By taking into account the diminishing probability of not

having moved up previously, we argue that the probability to exceed the threshold by a factor of 2
t

is proportional to 1/e(2t ). This bounds the expected number of induced updates by

∑
t ≥1 2

t/e(2t ),
which converges to a constant. A similar, but slightly more sophisticated approach, is applied for

clusters moving down to a lower-order bucket. Here we essentially need to adapt the sampling

probability to the amount of deviation from the threshold because in the analysis we have fewer

previous updates available for which the cluster has not moved, compared to the case of moving up.

3.2 The Algorithm of Baswana et al. at a Glance

In the following, we review the algorithm of Baswana et al. [BKS12] for completeness and isolate

the �ltering procedure we want to modify. We deviate from the original notation only when it is

helpful for our purposes.

3.2.1 Spanner Construction

Given an integer parameter k ≥ 2, their algorithm maintains clusterings C0,C1, . . . ,Ck−1 of sub-

graphs G0 = (V0,E0),G1 = (V1,E1), . . . ,Gk−1 = (Vk−1,Ek−1), both to be speci�ed below, where

G0 = G and, for each 0 ≤ i ≤ k − 2, Gi+1 is a subgraph of Gi (i.e.,Vi+1 ⊆ Vi and Ei+1 ⊆ Ei ). For each

0 ≤ i ≤ k −1, a cluster ofGi is a connected subset of vertices ofGi and the clustering Ci is a partition

ofGi into disjoint clusters. To control the size of the resulting spanner, the clusterings are guided by

a hierarchy of randomly sampled subsets of vertices S0 ⊇ S1 ⊇ · · · ⊇ Sk in the sense that each cluster

c in Ci contains a designated vertex of Si called the center of c . The sampling is performed a priori
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at the initialization of the algorithm by setting S0 = V , Sk = ∅, and, for 1 ≤ i ≤ k − 1, forming Si by

selecting each vertex from Si−1 independently with probability n−1/k . The sets S0, . . . , Sk remain the

same during the course of the algorithm. In addition to the clusterings, the algorithm will maintain

for each cluster ofCi a forest (V , Fi ) consisting of a spanning tree for each cluster ofCi rooted at its

center such that each vertex in the cluster has a path to the root of length at most i . Additionally,

the algorithm maintains edge sets Xi and Yi for every 0 ≤ i ≤ k − 1 to be speci�ed below. The

spanner H will consist of the edge set

⋃
0≤i≤k−1(Fi ∪ Xi ∪ Yi ).2 Informally, level i of this hierarchy

denotes all algorithms and data structures used to maintain the sets indexed with i de�ned above.

Initially, G0 = G and the clustering C0 consists of singleton clusters {v} for all vertices v ∈ S0 = V .

We now review how to obtain, for every 0 ≤ i ≤ k − 1, the graph Gi+1 = (Vi+1,Ei+1), the

clusteringCi+1 of Gi+1, and the edges sets Fi+1, Xi+1, and Yi+1, based on the graph Gi = (Vi ,Ei ), the

clustering Ci , the edge set Fi , and the sets Si and Si+1. Let Ri be the set of all “sampled” clusters in

the clustering Ci i.e., all clusters in Ci whose cluster center is contained in Si+1. Furthermore, let

Vi+1 be the set consisting of all vertices of Vi that belong to or are adjacent to clusters in Ri and let

Ni be the set consisting all vertices of Vi that are adjacent to, but do not belong to, clusters in Ri .
Finally, for every u ∈ Vi , let Ei (u) denote the set of edges of Ei incident on u and some other vertex

in Vi , and, for every u ∈ Vi and every c ∈ Ci , let Ei (u, c) denote the set of edges of Ei incident on u
and any vertex of c .

For each vertex u ∈ Ni , the algorithm maintains some edge (u,v) ∈ Ei (u) as the hook of u at

level i , called hook(u, i), guaranteeing the following “hook invariant”:

(HI) For every edge (u,v) ∈ Ei (u) such thatv is contained in a cluster ofRi , Pr[(u,v) = hook(u, i)] =
1

|Ri (u) | , where Ri (u) is the set of edges of Ei incident on u and any vertex in a cluster of Ri .

Now, the clustering Ci+1 is obtained by adding each vertex u ∈ Ni to the cluster of the other

endpoint of its hook and the forest Fi+1 is obtained from Fi by extending the spanning trees of the

clusters by the respective hooks. To compensate for vertices that cannot hook onto any cluster

in Ri , let Xi be a set of edges containing for each vertex v ∈ Vi \Vi+1 exactly one edge of Ei (u, c) –

picked arbitrarily – for each non-sampled neighboring cluster c ∈ Ci \ Ri .
Additionally, for each u ∈ Ni , the algorithm maintains, for certain parameters λ ≥ д > 1,

0 < ϵ < 1 and a > 1, a partition of the non-sampled neighboring clusters of u into dlogд(n)e subsets

called “buckets”, a set of edges Fi (u) ⊆
⋃

c ∈Ci \Ri Ei (u, c) and a set of clusters Ii (u) ⊆ Ci \ Ri such

that:
3

(F1) For every 0 ≤ j ≤ blogд(n)c and every cluster c in bucket j,
д j

λ ≤ |Ei (u, c)| ≤ λдj .

(F2) For every edge (u,v) ∈ Fi (u), the bucket containing the cluster of v contains at least ` :=

4γaλ2 1

ϵ 3n
1/k

ln(n) ln(λ) clusters (where γ ≤ 80 is a given constant).

(F3) For every edge (u,v) ∈ ⋃
c ∈Ci \Ri Ei (u, c) \ Fi (u), the (unique) cluster of v in Ci is contained

in Ii (u).

Intuitively, the set Fi (u) is a �lter on the edges from u to non-sampled neighboring clusters and

only edges in Fi (u) will be passed on to the next level in the hierarchy. The clusters in Ii (u) are

those for which not all edges incident on u are contained in Fi (u) and thus the algorithm has

2
In [BKS12], the set

⋃
0≤i≤k−1 Xi was called ES and the sets Yi did not have an explicit name.

3
Here we slightly deviate from the original presentation of Baswana et al. by making the �ltering process more

explicit and also by giving the set Ii (u) a name.
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to compensate for these missing edges to keep the spanner intact. In the following, we call an

algorithm maintaining Fi (u) and Ii (u) satisfying (F1), (F2), and (F3) for a given vertex u a dynamic
�ltering algorithm with parameters ϵ and a. To compensate for the �ltering of edges, let Yi be a

set of edges containing, for each vertex u ∈ Vi+1 and each cluster c ∈ Ii (u), exactly one edge from

Ei (u, c) – picked arbitrarily.

For every vertexu, let Ei (u) = Fi (u)∪
⋃

c ∈Ri Ei (u, c) (where the latter is the set of edges incident

on u from sampled clusters). Now, the edge set Ei+1 is de�ned as follows. Every edge (u,v) ∈ Ei
with u,v ∈ Vi+1 belongs to Ei+1 if and only if u and v belong to di�erent clusters inCi+1 and one of

the following conditions holds:

• At least one of u and v belongs to a sampled cluster (in Ri ) at level i , or

• (u,v) belongs to Ei (u) as well as Ei (v).

3.2.2 Analysis

As mentioned above, the spanner of Baswana et al. is the graph H = (V ,⋃
0≤i≤k−1(Fi ∪ Xi ∪ Yi )).

It follows from standard arguments that |Fi ∪ Xi | ≤ O(n1+1/k ) for each 0 ≤ i ≤ k − 1. The stretch

bound of 2k − 1 follows from the clusters having radius at most k − 1 together with an argument

that for each edge e = (u,v) not moving to the next level u has an edge to the cluster of v (or

vice versa) in one of the Xi ’s or one of the Yi ’s. Finally, the fast amortized update time of the

algorithm is obtained by the random choice of the hooks. Roughly speaking, the algorithm only

has to perform signi�cant work when the oblivious adversary hits a hook upon deleting some edge

(u,v) from Ei ; this happens with probability Ω( 1

|Ei (u) | ) and incurs a cost of O(|Ei (u)|), yielding

constant expected cost per update to Ei . More formally, the �ltering performed by the algorithm

together with invariant (HI) guarantees the following property.

Lemma 3.1 ([BKS12]). For every 0 ≤ i ≤ k − 1 and every edge (u,v) ∈ E, Pr[(u,v) = hook(u, i)] ≤
1+2ϵ
|Ei (u) | for any constant 0 < ϵ ≤ 1

4
.

The main probabilistic tool for obtaining this guarantee is a Cherno� bound for positive random

variables. Compared to the well-known Cherno� bound for binary random variables, the more

general tail bound needs a longer sequence of random variables to guarantee a small deviation

from the expectation with high probability: the overhead is a factor of b log(b), where b is the ratio

between the largest and the smallest value of the random variables.

Theorem 3.2 ([BKS12]). Let o1, . . . ,o` be ` positive numbers such that the ratio of the largest to the
smallest number is at most b, and let X1, . . . ,X` be ` independent random variables such that Xi takes
value oi with probability p and 0 otherwise. Let X = ∑

1≤i≤` Xi and µ = E[X] = ∑
1≤i≤` oip. There

exists a constant γ ≤ 80 such that if ` ≥ γab 1

ϵ 3p ln(n) log(b) for any 0 < ϵ ≤ 1

4
, a > 1, and a positive

integer n, then the following inequality holds:

Pr[X < (1 − ϵ)µ] < 1

na

The running-time argument sketched above only bounds the running time of each level “in

isolation”. For every 0 ≤ i ≤ k − 1, one update to Gi could lead to more than one induced update

to Gi+1. Thus, the hierarchical nature of the algorithm leads to an exponential blow-up in the

number of induced updates and thus in the running time. Baswana et al. further argue that the
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hierarchy only has to be maintained up to level b k
2
c by using a slightly more sophisticated rule for

edges to enter the spanner from the top level. Together with a careful choice of data structures that

allows constant expected time per atomic change, this analysis gives the following guarantee.

Theorem 3.3 (Implicit in [BKS12]). Assume there is a fully dynamic edge �ltering algorithm F
that, in expectation, generates at mostU (n) changes to Fi (u) per update to Ei (u) and, in expectation,
has an update time of U (n) · T (n). Then, for every k ≥ 2, there is a fully dynamic algorithmS for
maintaining a (2k − 1)-spanner of expected size O(kn1+1/k + knmaxi,u |Ii (u)|) with expected update
time O((3 + 4ϵ +U (n))k/2 ·T (n)). If the bounds on F are amortized (worst-case), then so is the update
time ofS.

3.2.3 Summary of Dynamic Filtering Problem

As we focus on the dynamic �ltering in the rest of this section, we summarize the most important

aspects of this problem in the following. In a dynamic �ltering algorithm we focus on a speci�c

vertex u ∈ Vi at a speci�c level i of the hierarchy
4
, i.e., there will be a separate instance of the

�ltering algorithm for each vertex in Vi . The algorithm takes parameters λ ≥ д > 1, 0 < ϵ < 1 and

a > 1, and operates on the subset of edges of Ei incident on u and any vertex v in a non-sampled

cluster c ∈ C \ Ri . These edges are given to the �ltering algorithm as a partition

⋃
c ∈Ci \Ri Ei (u, c),

where Ci \ Ri , the set of non-sampled clusters at level i , will never change over the course of the

algorithm.
5

The dynamic updates to be processed by the algorithm are of two types: insertion of

some edge (u,v) to some Ei (u, c), and deletion of some edge (u,v) from some Ei (u, c). The goal of

the algorithm is to maintain a partition of the clusters into dlogд(n)e buckets 0, . . . , blogд(n)c, a set

of clusters Ii (u) and a set of edges Fi (u) such that conditions (F1), (F2) and (F3) are satis�ed.

Condition (F1) states that clusters in the same bucket need to have approximately the same

number of edges incident on u. The “normal” size of |Ei (u, c)| for a cluster in bucket j would be дj

and the algorithm makes sure that
д j

λ ≤ |Ei (u, c)| ≤ λдj . Thus, ratio between the largest and the

smallest value of |Ei (u, c)| among clusters c in the same bucket is at most λ2. This value corresponds

to the parameter b in Theorem 3.2. The edges in Fi (u) serve as a �lter for the dynamic spanner

algorithm in the sense that only edges in this set are passed on to level i + 1 in the hierarchy.

Condition (F2) states that an edge (u,v) may only be contained in Fi (u) if the bucket containing

the cluster of v contains at least ` := 4γaλ2 1

ϵ 3n
1/k

ln(n) ln(λ) clusters Here the choice of ` comes

from Theorem 3.2; a is a constant that controls the error probability, ϵ controls the amount of

deviation from the mean in the Cherno� bound, andγ is a constant from the theorem. Condition (F3)

states that clusters c for which some edge incident on u and c is not contained in Fi (u) need to be

contained in Ii (u) (called inactive clusters in [BKS12]). Intuitively this is the case because for such

clusters the spanner algorithm cannot rely on all relevant edges being present at the next level and

thus has to deal with these clusters in a special way.

The goal is to design a �ltering algorithm with a small value of λ that has small update time.

An additional goal in the algorithm is to keep the number of changes performed to Fi (u) small.

A change to Fi (u) after processing an update to Ei (u, c) is also called an induced update as, in the

overall dynamic spanner algorithm, such changes might appear as updates to level i + 1 in the

4
As explained above, the spanner algorithm only applies the �ltering to vertices u ∈ Ni , but we actually run a

dynamic �ltering algorithm for each vertex inVi . The arguments of Baswana et al. for Theorem 3.3 take into account the

induced updates occurring whenever some vertex u joins or leaves the set Ni .
5
Note if vertices join or leave clusters the dynamic �ltering algorithm only sees updates for the corresponding edges.
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hierarchy, i.e., the insertion (deletion) of an edge (u,v) to (from) Fi (u)might show up as an insertion

(deletion) at level i + 1. As this update propagation takes place in all levels of the hierarchy, we

would like have a dynamic �ltering algorithm that only performs O(1) changes to Fi (u) per update

to its input.

3.2.4 Filtering Algorithm with Amortized Update Time

The bound of Baswana et al. follows by providing a dynamic �ltering algorithm with the following

guarantees.

Lemma 3.4 (Implicit in [BKS12]). For any a > 1 and any 0 < ϵ ≤ 1

4
, there is a dynamic �ltering

algorithm with amortized update timeO(1/ϵ) for which the amortized number of changes performed to
Ei (u) per update to Ei (u) is at most 4+ 10ϵ such that Ii (u) ≤ O( aϵ 7n

1/k
log

2(n)), i.e.,U (n) = 4+ 10ϵ =
O(1) and T (n) = O(1/ϵ).

Note that the dynamic �ltering algorithm is the only part of the algorithm by Baswana et al.

that requires amortization. Thus, if one could remove the amortization argument from the dynamic

�ltering algorithm, one would obtain a dynamic spanner algorithm with worst-case expected

guarantee on the update time, which in turn could be strengthened to a worst-case high-probability

guarantee. This is exactly how we proceed in the following.

To facilitate the comparison with our new �ltering algorithm, we shortly review the amortized

algorithm of Baswana et al. Their algorithm usesд = λ = 1

ϵ where ϵ is a constant that is optimized to

give the fastest update time for the overall spanner algorithm. This leads to O(logд(n)) overlapping

buckets such that all clusters in bucket j have between дj−1 and дj edges incident on u.

The algorithm does the following: Every time the number of edges incident on u of some

cluster c in bucket j grows to дj+1, c is moved to bucket j + 1, and every time this number falls

to дj−1, c is moved to bucket j − 1. The algorithm further distinguishes active and inactive buckets

such that active buckets contain at least ` clusters and all inactive buckets contain at most κ`
clusters for some constant κ. An active bucket will be inactivated if its size falls to ` and an inactive

bucket will be activated if its size grows to κ`. Additionally, the algorithm makes sure that Fi (u)
consists of all edges incident on clusters from active buckets and that Ii consists of all clusters in

inactive buckets.

By employing soft thresholds for maintaining the buckets and their activation status, Baswana

et al. make sure that for each update to Ei (u) the running time and the number of changes made

to Fi (u) is constant. For example, every time a cluster c is moved from bucket j to bucket j + 1
with a di�erent activation status, the algorithm incurs a cost of at most O(дj+1) – i.e., proportional

to |Ei (u, c)| – for adding or removing the edges of Ei (u, c) to Fi (u). This cost can be amortized over

at least дj+1 −дj = Θ(дj+1) insertions to Ei (u, c), which results in an amortized cost of O(д) = O( 1ϵ ),
i.e., constant when

1

ϵ is constant. Similarly, the work connected to activation and de-activation

is O(д) when amortized over Θ(`) clusters joining or leaving the bucket, respectively.

3.3 Modi�ed Filtering Algorithm

In the following, we provide our new �ltering algorithm with worst-case expected update time, i.e.,

we prove the following theorem.
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Theorem 3.5. For every 0 ≤ i ≤ k − 1 and every u ∈ Ni , there is a �ltering algorithm that has worst-
case expected update timeO(log(n)) and per update performs at most 16 changes to Fi (u) in expectation,
i.e.,U (n) = 16 and T (n) = O(log(n)). The maximum size of Ii (u) is O(n1/k log6(n) log log(n)).

Together with Theorem 3.3 the promised result follows.

Corollary 3.6 (Restatement of Theorem 1.3). For every k ≥ 2, there is a fully dynamic algorithm
for maintaining a (2k − 1)-spanner of expected size O(kn1+1/k log6(n) log log(n)) that has expected
worst-case expected update time O(20k/2 log(n)).

We now apply the reduction of Theorem 1.1 to maintain O(log(n)) instances of the dynamic

spanner algorithm and use the union of the maintained subgraphs as the resulting spanner. The

reduction guarantees that, at any time, one of the maintained subgraphs, and thus also their union,

will indeed be a spanner and that the update-time bound holds with high probability.

Corollary 3.7 (Restatement of Theorem 1.4). For every k ≥ 2, there is a fully dynamic algorithm
for maintaining a (2k − 1)-spanner of expected size O(kn1+1/k log7(n) log log(n)) that has worst-case
update time O(20k/2 log3(n)) with high probability.

3.3.1 Design Principles

Our new algorithm uses the following two ideas. First, we observe that it is not necessary to keep

only the edges incident from clusters of small buckets out of Fi (u). We can also, somewhat more

aggressively, keep away the edges incident from the �rst ` clusters of large buckets out of Fi (u).
This is a bit similar to the idea in [BK16] of keeping the �rst edges of each vertex in the spanner.

In this way, we avoid that many updates are induced if the size of a bucket changes from small to

large or vice versa. Our modi�ed �ltering is done in a deterministic way based only on the current

partitioning of the clusters into buckets and on an arbitrary, but �xed ordering of vertices, clusters,

and edges.

Second, we employ a probabilistic threshold technique where, after exceeding a certain threshold

on the size of the set Ei (u, c), a cluster c changes its bucket with probability roughly inverse to

this size threshold. Moving a cluster is an expensive operation that generates changes to the set

of �ltered edges, which the next level in the spanner hierarchy has to process as induced updates.

The idea behind the probabilistic threshold approach is that by taking a sampling probability that

is roughly inverse to the number of updates induced by the move, there will only be a constant

number of changes in expectation. A straightforward analysis of this approach shows that in

each bucket the size threshold will not be exceeded by a factor of more than O(log(n)) with high

probability, which immediately bounds the expected number of changes to the set of �ltered edges

by O(log(n)). By a more sophisticated analysis, taking into account the diminishing probability of

not having moved up previously, we can show that exceeding the size threshold by a factor of 2
t

happens with probability O(1/et ). Thus, the expected number of induced updates is bounded by

an exponentially decreasing series converging to a constant. A similar, but slightly more involved

algorithm and analysis is employed for clusters changing buckets because of falling below a certain

size threshold.

We remark that a deterministic deamortization of the �ltering algorithm by Baswana et al.

might be possible in principle without resorting to the probabilistic threshold technique, maybe

using ideas similar to the deamortization in the dynamic matching algorithm of Bhattacharya et

al. [BHN17]. However, such a deamortization needs to solve non-trivial challenges and we believe
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that the probabilistic threshold technique leads to a simpler algorithm. Similarly it might be possible

to use the probabilistic threshold technique to emulate the less aggressive �ltering of Baswana et al.

that only �lters away edges incident on large buckets. Here, not using the probabilistic threshold

technique seems the simpler choice.

3.3.2 Setup of the Algorithm

In our algorithm, described below for a �xed vertex u, we work with an arbitrary, but �xed,

order on the vertices of the graph. The order on the vertices induces an order on the edges, by

lexicographically comparing the ordered pair of incident vertices of the edges, and an order on the

clusters, by comparing the respective cluster centers. For each 0 ≤ j ≤ blog(n)c and also for j = −∞,

we maintain a bucket by organizing the clusters in bucket j in a binary search tree Bj , employing

the aforementioned order on the clusters. Similarly, for 0 ≤ j ≤ blog(n)c and also for j = −∞,

we organize the edges incident on u and each bucket j in a binary search tree Tj , i.e., a search

tree ordering the set of edges

⋃
c ∈Bj Ei (u, c), where these edges are compared lexicographically as

cluster-edge pairs. The bucket −∞ has the special role of organizing all clusters c that currently

have no edges incident on u. In this section we will use the conventions log(0) = −∞ and
1

0
= ∞ to

minimize the e�ort for handling this special case in the description of the algorithm.

We set λ = 2
dlog(4+ln(n))e = O(log(n)), ` = 4γaλ2 1

ϵ 3n
1/k

ln(n) ln(λ) = O(n1/k log3(n) log log(n))
and, for every 0 ≤ j ≤ blog(n)c we set α j = 2

j
and for j = −∞ we set α−∞ = 0. Our algorithm will

maintain the following invariants for every 0 ≤ j ≤ blog(n)c:

(B1) For each cluster c in bucket j,
α j
λ ≤ |Ei (u, c)| ≤ λα j .

(B2) The edges of the �rst ` · λα j cluster-edge pairs of Tj (or all cluster-edge pairs of Tj if there

are less than ` · λα j of them) are not contained in Fi (u) and the remaining edges of Tj are

contained in Fi (u).

(B3) The �rst 1 + λ2` clusters of Bj are contained in Ii (u) and the remaining clusters of Bj are not

contained in Ii (u).

Additionally it will maintain the following invariant:

(B4) For each cluster c in bucket −∞, |Ei (u, c)| = 0.

Observe that invariant (B1) is equal to condition (F1) and that invariant (B3) immediately implies

the claimed bound on Ii (u) as there are O(log(n)) buckets, each contributing O(λ2`) clusters.

Furthermore, the invariants also imply correctness in terms of conditions (F2) and (F3) because of

the following reasoning: For condition (F2), let (u,v) ∈ Fi (u) and let c denote the cluster of v . Then,

by invariant (B2), there are at least ` ·λα j cluster-edge pairs contained inTj that are lexicographically

smaller than the pair consisting of c and (u,v). As each cluster in bucket j has at most λα j edges

incident on u by invariant (B1), it follows that there are at least ` clusters contained in bucket j as

otherwise Tj could not contain at least ` · λα j cluster-edge pairs.

For condition (F3), let (u,v) ∈ Ei (u) \ Fi (u) and let c denote the cluster of v . Then the pair

consisting of c and (u,v) must be among the �rst ` · λα j entries of Tj by invariant (B2). As each

cluster in bucket j has at least
α j
λ edges incident on u by invariant (B1), there are thus at most

λα j
α j /λ ` = λ2` clusters in bucket j that are smaller than c in terms of the chosen ordering on the

clusters. It follows that c must be among the �rst 1 + λ2` clusters of Bj and by invariant (B3) is thus

contained in Ii (u) as required by condition (F1).
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3.3.3 Modi�ed Bucketing Algorithm

The algorithm after an update to some edge (u,v) is as follows:

• If the edge (u,v) was inserted and if now |Ei (u, c)| ≥ 2α j , where c is the cluster of v and j is

the number c’s bucket, do the following: Flip a biased coin that is “heads” with probability

min( 1α j , 1). If the coin shows “heads” or if |Ei (u, c)| = λ · α j , then move cluster c up to

bucket j ′ = dlog(|Ei (u, c)|)e by performing the following steps:

1. Remove c from Bj and add it to Bj′ .

2. Remove all edges of Ei (u, c) from Tj and add them to Tj′ .

• If the edge (u,v) was deleted and if now |Ei (u, c)| ≤ α j
2

, where c is the cluster of v and j is

the number c’s bucket, do the following: Flip a biased coin that is “heads” with probability

min( 22t+1α j
, 1) for the maximum t ≥ 1 such that |Ei (u, c)| ≤ α j

2
t . If the coin shows “heads” or if

|Ei (u, c)| = α j
λ , then move cluster c down to bucket j ′ = blog(|Ei (u, c)|)c by performing the

following steps:

1. Remove c from Bj and add it to Bj′ .

2. Remove all edges of Ei (u, c) from Tj and add them to Tj′ .

Additionally, invariants (B2) and (B3) are maintained in the trivial way by making the necessary

changes to Fi (u) after a change to Tj and to Ii after a change to Bj , respectively. Observe that

the algorithm handles the corner cases for invariant (B4) correctly. Furthermore, invariant (B1)

is satis�ed because the following invariant (B1’) holds as well for every 0 ≤ j ≤ blog(n)c by the

design of the algorithm:

(B1’) Whenever a cluster c moves to bucket j,
α j
2
< |Ei (u, c)| < 2α j .

3.3.4 Analysis of Induced Updates and Running Time

We now analyze the number of changes to Fi (u) per update to Ei (u). These changes are also called

induced updates. When multiplying this number by a factor of O(log(n)) – the worst-case time per

operation for self-balancing binary search trees – this also bounds the update time of our algorithm.

Observe that each update to Ei (u) causes at most one move of a cluster c from one bucket to another

bucket. For each such move we incur at most 3|Ei (u, c)| changes to Fi (u). For technical reasons, we

go on by giving slightly di�erent analyses for the cases of moving up and moving down.

Moving Up. For every integer 1 ≤ t ≤ log(λ) − 1, let pt be the probability that 2
tα j ≤ |Ei (u, c)| <

2
t+1α j when c is moved up and let q be the probability that |Ei (u, c)| = λ · α j when c is moved up.

Note that this covers all events for c being moved up. As observed above, each move induces at

most 3|Ei (u, c)| updates, where |Ei (u, c)| < 2
t+1

with probability pt and |Ei (u, c)| ≤ n in any case.

Thus, by the law of total expectation, the expected number of induced updates per insertion to

Ei (u, c) is at most ∑
1≤t ≤log(λ)−1

pt · 3 · 2t+1α j + q · 3n .

We now bound pt , the probability that 2
tα j ≤ |Ei (u, c)| < 2

t+1α j when c is moved up. As soon

as |Ei (u, c)| exceeds the threshold 2α j , each insertion makes c move up with probability
1

α j
(when
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the biased coin shows “heads”). For t = 1, we clearly have pt ≤ 1

α j
. For 2 ≤ t ≤ log(λ) − 1, pt

is determined by one “heads” preceded by at least 2
tα j − 2α j “tails” in the coin �ips of previous

insertions to Ei (u, c), i.e., pt is bounded by

pt ≤
1

α j
·
(
1 − 1

α j

) (2t−2)·α j
≤ 1

α j
· 1

e2t−2
.

Here we use the inequality (1− 1

x )x ≤
1

e , where e is Euler’s constant. Similarly, q, the probability that

|Ei (u, c)| = λα j with λ = 2
dlog(4+ln(n))e

when c is moved up, is determined by α j (da ln(n)e + 2) − 2α j
“tails”. Thus, q is bounded by

q ≤ 1

e2dlog(4+ln(n))e−2
≤ 1

e2+ln(n)
=

1

e2n
.

We can now bound the expected number of induced updates by∑
1≤t ≤log(λ)−1

pt · 3 · 2t+1α j + q · 3n =
1

α j
· 3 · 22α j +

∑
1≤t ≤log(λ)−1

1

α j
· 1

e2t−2
· 3 · 2t+1α j +

1

e2n
· 3n

≤ 12 + 6 ·
∑

2≤t ≤∞

2
t

e2t−2
+ 0.41

≤ 12 + 6 · 0.57 + 0.41
≤ 16 .

Moving Down. For every 1 ≤ t ≤ log(λ) − 1, let pt be the probability that
α j
2
t+1 < |Ei (u, c)| ≤

α j
2
t

when c is moved down and let q be the probability that |Ei (u, c)| = α j
λ when c is moved down.

As observed above, each move induces at most 3|Ei (u, c)| updates and thus, by the law of total

expectation, the expected number of induced updates per deletion from Ei (u, c) is at most∑
1≤t ≤log(λ)−1

pt · 3
α j

2
t + q · 3n .

We now bound pt , the probability that
α j
2
t+1 < |Ei (u, c)| ≤

α j
2
t . For t = 1, we clearly have

p1 ≤ 2
3

α j
= 8

α j
as this is the probability that just a single coin �ip made the cluster move down. For

2 ≤ t ≤ log(λ) − 1, observe that for |Ei (u, c)| ≤ α j
2
t to hold, there must have been at least t − 1

subsequences of deletions such that after every deletion in subsequence s we had
α j
2
s+1 < |Ei (u, c)| ≤

α j
2
s (where 1 ≤ s ≤ t − 1). Observe that the s-th subsequence consists of ms :=

α j
2
s − α j

2
s+1 =

α j
2
s+1

many deletions. Remember that during the s-th subsequence the probability of c moving down is

min( 22s+1α j
, 1). If α j ≤ 2

2s+1
for any subsequence s , then c moves down certainly in subsequence s

and thus pt = 0. Otherwise, pt is determined by one “heads” preceded by at leastms “tails” for each
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subsequence s , it is bounded by

pt ≤
2
2t+1

α j
·

∏
1≤s≤t−1

(
1 − 2

2s+1

α j

)ms

=
2
2t+1

α j
·

∏
1≤s≤t−1

(
1 − 2

2s+1

α j

) αj
2
s+1

≤ 2
2t+1

α j
·

∏
1≤s≤t−1

1

e2s

=
2
2t+1

α j
· 1

e
∑

1≤s≤t−1 2s

=
2
2t+1

e2t−2α j
.

Similarly, q, the probability that |Ei (u, c)| = α j
λ with λ = 2

dlog(4+ln(n))e
when c is moved down, is

bounded by

q ≤ 1

e2dlog(4+ln(n))e−2
≤ 1

e2+ln(n)
=

1

e2n
.

We can now bound the expected number of induced updates by∑
1≤t ≤log(λ)−1

pt · 3 ·
α j

2
t + q · 3n = p1 · 3 ·

α j

2

+
∑

2≤t ≤log(λ)−1
pt · 3 ·

α j

2
t + q · 3n

≤ 12 +
∑

2≤t ≤log(λ)−1

2
2t+1

e2t−2α j
· 3 ·

α j

2
t +

1

e2n
· 3n

≤ 12 + 6 ·
∑

1≤t ≤∞

2
t

e2t−2
+ 0.41

≤ 12 + 6 · 0.57 + 0.41
≤ 16 .

This concludes the proof that the expected number of induced updates is at most 16.

4 Dynamic Maximal Matching with Worst-Case Expected Update
Time

In this section we turn to proving Theorem 1.5. We achieve our result by modifying the algorithm

of Baswana et al. [BGS18], which achieves amortized expected time O(log(n)). We start by de-

scribing the original algorithm of Baswana et al., and then discuss why their algorithm does not

provide a worst-case expected guarantee, and the modi�cations we make to achieve this guarantee.

Throughout this section, we de�ne a vertex to be free if it is not matched, and we de�ne matev ,

for matched v , to the vertex that v is matched to.
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4.1 The Original Matching Algorithm of Baswana et al.

High-Level Overview. Let us consider the trivial algorithm for maintaining a maximal matching.

Insertion of an edge (u,v) is easy to handle in O(1) time: if u and v are both free then we add the

edge to the matching; otherwise, we do nothing. Now consider deletion of an edge (u,v). If (u,v)
was not in the matching then the current matching remains maximal, so there is nothing to be done

and the update time is only O(1). If (u,v) was in the matching, then both u and v are now free and

must scan all of their neighbors looking for a new neighbor to match to. The update time is thus

max {degree(u),degree(v)}. This is the only expensive operation.

At a very high level, the idea of the Baswana et al. is to create a hierarchy of the vertices (loosely)

according to their degrees. High degree vertices are more expensive to handle. To counterbalance

this, the algorithm ensures that a when a high degree vertex v picks a new mate, it chooses that

mate at random from a large number of neighbors of v . Thus, although the deletion of the matching

edge (v,mate(v)) will be expensive, there is a high probability that the adversary will �rst have to

delete many non-matching (v,w) (which are easy to process) before it �nds (v,mate(v)). (Recall

that the algorithm of Baswana et al. and our modi�cation both assume an oblivious adversary).

Setup of the Algorithm.

• Each edge (u,v)will be owned by exactly one of its endpoints. Let Ov contain all edges owned

by v . Loosely speaking, if (u,v) ∈ Ov then v is responsible for telling u about any changes in

its status (e.g. v becomes unmatched or changes levels in the hierarchy), but not vice versa.

• The algorithm maintains a partition of the vertices into blog
4
(n)c + 2 levels. The levels are

numbered from −1 to l0 = blog4(n)c. During the algorithm, when a vertex moves to level i , it

owns at least 4
i

edges. Level −1 then contains the vertices that own no edges. The algorithm

always maintains the invariant that if level(u) < level(v) then edge (u,v) ∈ Ov .

• For every vertex u, the algorithm stores a dynamic hash table of the edges in Ou . The

algorithm also maintains the following list of edges for u: for each i ≥ level(u), let Eiu be the

set of all those edges incident on u from vertices at level i that are not owned by u. The set Eiu
will be maintained in a dynamic hash table. However, the onus of maintaining Eiu will not be

on u, because these edges are by de�nition not owned by u. For example, if a neighbor v of u
moves from level i > level(u) to level j > i , then v will remove (u,v) from Eiu and insert it

to E ju .

Invariants and Subroutines. De�ne N<j (v) to contain all neighbors of v strictly below level j
and N=j (v) to contain all neighbors of v at level exactly j. The key invariant of the hierarchy is

that a vertex moves up to a higher level whenever it can guarantee that by doing so it will have

su�ciently many neighbors below it. For j > level(v), de�ne ϕv (j) = |N<j (v)|, and ϕv (j) = 0

otherwise. We can equivalently de�ne ϕv (j) in terms of the Ov and Eiv structures: For a vertex v
with level(v) = i ,

ϕv (j) =
{
|Ov | +

∑
i≤k<j |Ekv | if j > i

0 otherwise.

We now describe some guarantees of the Baswana et al. algorithm. Note that the hierarchy

only imposes an upper bound on N<j (v) (Invariant 3); a lower bound on N<j (v) only comes into

play when v picks a new matching edge (Matching Property).
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• Invariant 1: Each edge is owned by exactly one endpoint, and if the endpoints of the edge

are at di�erent levels, the edge is owned by the endpoint at higher level. (If the two endpoints

are at the same level, then the tie is broken appropriately by the algorithm.)

• Invariant 2: Every vertex at level ≥ 0 is matched and every vertex at level −1 is free.

• Invariant 3: For each vertex v and for all j > level(v), ϕv (j) < 4
j

holds true. Note

that ϕv (j) = |N<j (v)| by de�nition. Combined with Invariant 1 this implies that |Ov | ≤
4

level(v)+1 = O(4level(v)) and N=level(v)(v) ≤ 4
level(v)+1 = O(4level(v)) if level(v) < l0. For

level(v) = l0, 4
l0+1 ≥ n, so trivially |Ov | = O(4level(v)) and N=level(v)(v) = O(4level(v)).

• Invariant 4: Both the endpoints of a matched edge are at the same level.

• Matching Property: If a vertex v at level j > −1 is (temporarily) unmatched, the algorithm

proceeds as follows: if |N<j (v)| ≥ 4
j
, v picks a new mate uniformly at random from N<j (v);

If |N<j (v)| < 4
j
, then v falls to level j − 1 and is recursively processed there (i.e. depending

on the size of N<j−1(v), v either picks a random mate from N<j−1(v) or continues to fall.)

Remark 4.1. Observe that if we maintain these invariants then we always have a maximal matching:

By Invariant 1, each edge e is owned by exactly one endpoint v . As by Invariant 3 a vertex at

level −1 owns no edges, v is at level ≥ 0, and by Invariant 2, v must be matched. Thus, every edge

has an endpoint that is matched.

We now consider the procedures used by the algorithm of Baswana et al. to maintain the

hierarchy and the maximal matching. The bulk of the work is in maintaining Ov , E jv , and ϕv (j),
which change due to external additions and deletions of edges, and also due to the algorithm

internally moving vertices in the hierarchy to satisfy the invariants above. We largely stick to the

notation of the original paper, but we omit details that remain entirely unchanged in our approach.

See Section 4 in [BGS18] for the original algorithm description (and its analysis).

• Increment-ϕ(v, i) increases ϕv (i) by one, whereas Decrement-ϕ(v, i) decreases it.

• Rise(v, i, j) (new notation) moves a vertex from level i to j. This results in changes to many

of the O and E lists. In particular, v takes ownership of all edges (v,w) with w ∈ N<j (v).
Moreover, for any vertex w ∈ N<i (v), edge (v,w) is removed from Eiw , and for every w ∈
N<j (v), edge (v,w) is added to E jw . As a result, the algorithm runs Decrement-ϕ(w,k) for

every w ∈ N<j (u), and every i < k ≤ j. A careful analysis bounds the total amount of

bookkeeping work at O(4j ) (see Lemma 4.3).

• Fall(v, i) (new notation) movesv from level i to level i−1. As above this leads to bookkeeping

work: Ow , E jw , and E j−1w change for many neighbors of w of v . Note that only vertices w
previously owned by v are a�ected, so by Invariant 3, the total amount of bookkeeping work

is at most |Ov | = O(4i ).
The algorithm must also do Increment-ϕ(w, i) for every w that was previously in N<i (v).
Such an increment might result in w violating Invariant 3 (if ϕw (i) goes from 4

i − 1 to 4
i
), in

which case the algorithm executes Rise(w, level(w), i)). Moreover, if w ′ was the previous

mate of w , then edge (w,w ′) is removed from the matching to preserve invariant 4, so the

algorithm must also execute FixFreeVertex(w) and FixFreeVertex(w ′) (see below), which

can in turn lead to more calls to Fall and Rise. One of the main tasks of the analysis will be

to bound this cascade.
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• FixFreeVertex(v) handles the case when a vertex v is unmatched; this can happen because

the matching edge was deleted, or because v newly rose/fell to level i , where i = level(v).
Following the Matching Property, if |N<i (v)| < 4

i
, then the algorithm executes Fall(v, i),

followed by FixFreeVertex(v). On the other hand, if |N<i (v)| ≥ 4
i
, then v remains at level i

and picks a new mate by executing GenericRandomSettle(v, i).

• GenericRandomSettle(v, i) Finds a new mate w for a vertex v at level i assuming that

|N<i (v)| ≥ 4
i
. The algorithm picksw uniformly at random from N<i (v). Let ` = level(w) < i .

The algorithm �rst does Rise(w, `, i) (to satisfy Invariant 4), and then matches v to w . Note

that if ` , −1, then w had a previous mate w ′ which is now unmatched, so the algorithm

now does FixFreeVertex(w ′).

Handling Edge Updates. We now show how the algorithm maintains the invariants under edge

updates. First consider the insertion of edge (u,v). Say w.l.o.g that level(v) ≥ level(u). Then

(u,v) is added to Ov and to Elevel(v)
u . The algorithm must then execute Increment-ϕ(u, j) and

Increment-ϕ(v, j) for every j > level(v). This takes time O(log(n)) and might additionally result

in some level ` for which ϕv (`) ≥ 4
`

(or ϕu (`) ≥ 4
`
), in which case Invariant 3 is violated so the

algorithm performs Rise(v, level(v), `) (or Rise(u, level(u), `)). (If ϕv (`) ≥ 4
`

for multiple levels `,

then v rises to the highest such `.)

Now consider the deletion of an edge (u,v) with level(v) ≥ level(u). The algorithm �rst does

O(log(n)) work of simple bookkeeping: it removes (u,v) from Ov and Elevel(v)
u , and executes the

corresponding calls to Decrement-ϕ. If (u,v) was not a matching edge, the work ends there: unlike

with Increment-ϕ, the procedure Decrement-ϕ cannot lead to the violation of any invariants.

By contrast, the most expensive operation is the deletion of a matched edge (u,v), because the

algorithm must execute FixFreeVertex(u), and FixFreeVertex(v).

Analysis Sketch. Whereas our �nal algorithm is very similar to the original algorithm of

Baswana et al., our analysis is quite di�erent, so we only provide a brief sketch of their origi-

nal analysis. The basic idea is that because a vertexv is only responsible for edges in Ov , processing

a vertex at level i takes timeO(4i+1) (Invariant 3). The crux of the analysis is in arguing that vertices

at high level are processed less often. There are two primary ways a vertex v can be processed at

level i . 1) v rises to level i because ϕv (i) goes from 4
i − 1 to 4

i
. This does not happen often because

many Increment-ϕ(v, i) are required to reach such a high ϕv (i). 2) the matching edge (v,mate(v))
is deleted from the graph. This does not happen often because by Matching Property, v originally

picks its mate at random from at least 4
i

options, so since the adversary is oblivious, it will in

expectation delete many non-matching edges (v,w) (which are easy to process) before it hits upon

(v,mate(v)).

4.2 Our Modi�cation of the Baswana et al. Algorithm

There are two reasons why the original algorithm of Baswana et al. does not guarantee a worst-case

expected update time.

1: The algorithm uses a hard threshold for ϕv (i): the update which increases ϕv (i) from 4
i − 1

to 4
i

is guaranteed to lead to the expensive execution of Rise(v, level(v), i). Thus, while their

algorithm guaranteed that overall few updates lead to this expensive event, it is not hard to construct

an update sequence which forces one particular update to be an expensive one. To overcome this,
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we use a randomized threshold, where every time ϕv (i) increases, v rises to level i with probability

Θ(log(n)/4i ).
2: Consider the deletion of an edge (u,v) where i = level(v) ≥ level(u). Baswana et al.

showed that this deletion takes time O(log(n)) if u , mate(v), and time O(4i ) if u = mate(v). At

�rst glance this seems to lead to an expected-worst-case guarantee: we know by the Matching

Property that v picked its mate at random from a set of at least 4
i

vertices, so if we could argue that

for any edge (u,v) we always have Pr[mate(v) = u] ≤ 1/4i , then the expected time to process any
deletion would be just O(log(n)).

Unfortunately, in the original algorithm it is not the case that Pr[mate(v) = u] ≤ 1/4i . To see

this, consider the following sequence of updates to a vertex v , in which v will be always at level i ,
every updated edge (u,v) will have level(u) < level(v), and |N<i (v)| will always be between

4
i

and 2 · 4i . The other vertices in the sequence are be v ′, x1,x2, ...,x4i−1 and y1,y2, ...,y4i−1. At

the beginning, v has an edge to v ′ and to all the xi . The update sequence repeats the following

cyclical process for very many rounds: insert an edge to every yi , delete the edge to every xi ,
insert an edge to every xi , delete the edge to every yi , insert the edge to every yi , and so on. Note

that the edge from v to v ′ is never deleted. We claim that as we continue this process for a long

time, Pr[mate(v) = v ′] → 1. The reason is that the algorithm of Baswana et al. only picks a new

mate for v when the previous matching edge was deleted. But the process repeatedly deletes all

edges except (v,v ′), so it will continually pick a new matching edge at random until it eventually

picks (v,v ′), at which point v ′ will remain the mate of v throughout the process. The original

algorithm of Baswana et al. is thus not worst-case expected: if the adversary starts with the above

(long) sequence and then deletes (v,v ′), this deletion is near-guaranteed to be expensive because

Pr[mate(v) = v ′] ∼ 1.

One way to overcome this issue is to give v a small probability of resetting its matching edge

every time a new vertex enters or is removed from N<i (v); this would ensure that even if (v,v ′)
becomes the matching edge at some point during the process, it will not stick forever. In fact we

will show that it is enough to have a small reset probability only for edges added to N<i (v), not for

edges removed.

4.2.1 List of Changes to the Baswana et al. Algorithm

The algorithm maintains the same lists Ov and Eiv , as well as the counters ϕv (i).

• Invariants 1-4 are exactly the same as above.

• De�ne C to be a su�ciently large constant used by the algorithm.

• Whenever the algorithm executes Increment-ϕ(v, i) for a vertex v with level(v) < i , the

algorithm: 1) performs Rise(v, level(v), i) with probability prise = C log(n)/4i . We call this

a probabilistic rise. 2) always performs Rise(v, level(v), i) if ϕv (i) increases from 4
i − 1 to

4
i
; we call this a threshold rise. (The original algorithm of Baswana et al. only performed

threshold rises. Our new version modi�es line 13 in the pseudocode of Procedure process-

free-vertices of [BGS18], as well as the paragraph “Handling insertion of an edge” in Section

4.2.)

• Matching Property* If a vertexv at level i > −1 is (temporarily) unmatched and |N<i (v)| ≥
4
i/(32C log(n)), then v will pick a new mate uniformly at random from N<i (v). If |N<i (v)| <
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4
i/(32C log(n)), then v falls to level i − 1 and is recursively processed from there. Note that

Matching Property* is identical to Matching Property above, but with 4
i/(32C log(n)) instead

of 4
i
. This leads to the following change in procedure FixFreeVertex(v). Let i = level(v):

if |N<i (v)| ≥ 4
i/(32C log(n)), then the algorithm executes GenericRandomSettle(v, i), and

if |N<i (v)| < 4
i/(32C log(n)), then it executes Fall(v, i). (Our version modi�es line 5 of

Procedure falling of [BGS18]).

• We make the following change to procedure Fall(v, i). Recall that as a result of v falling to

level i − 1, v now belongs to N<i (u) for every neighbor u of v at level i . Each such neighbor u
then executes ResetMatching(u, i) with probability preset = 1/4i+3. ResetMatching(u, i)
simply picks a new matching edge for u by removing edge (u,mate(u)) from the matching

and then calling FixFreeVertex(u) and FixFreeVertex(mate(u)). (Our version modi�es

lines 3 and 4 in Procedure falling of [BGS18]).

Pseudocode. We give the pseudocode for the whole modi�ed algorithm in Algorithms 1 and 2.

The pseudocode shows how the basic procedures of the algorithm (e.g. Rise, Fall, FixFreeVertex)

call each other. We note that in addition to the work shown in the pseudocode, each change of the

level of a vertex in the hierarchy is also accompanied by straightforward “bookkeeping” work that

changes the corresponding sets Ov and Eiv ; the bookkeeping work maintains the invariant that

every edge is owned by the endpoint at higher level (ties can be broken arbitrarily), and that Eiv
contains all edges (v,w) such that level(w) = i and (v,w) < Ov . For example, if a vertex falls from

level i to level i − 1, then for every edge (v,w) ∈ Ov we do the following: if level(w) < i then we

transfer (v,w) from Eiw to Ei−1w ; if level(w) = i , then we transfer (v,w) from Ov to Ow , we remove

(v,w) from Eiw , and we add (v,w) to Eiv . To avoid clutter, we omit this bookkeeping work from

the pseudocode. Note that the bookkeeping only requires to process the edges owned by v and

can thus be done in time O(4level(v)). Similarly, we sometimes explicitly need to compute the sets

N<level(v)(v) and N=level(v)(v), which can also be done in time O(4level(v)).
The matching maintained by the algorithm in the pseudocode is denoted byM. Note that

for technical reasons calls of FixFreeVertex(v) for vertices v in our algorithm are no executed

immediately. Instead, we maintain a global queue Q of vertices v for which we still need to perform

FixFreeVertex(v). We avoid adding the same call to the queue twice by additionally managing the

elements in the queue in a dynamic hash table.

4.2.2 Correctness of the Modi�ed Algorithm

To show the correctness of the modi�ed algorithm we need to show that it ful�lls Invariants 1–4 and

that Matching Property* holds. We will do so in this subsection. Termination is guaranteed in the

next section, which shows that the expected time to process an adversarial edge insertion/deletion

is �nite.

Lemma 4.2. Invariants 1–4, and the MatchingProperty* hold before and after each edge insertion.

Proof. Invariant 1: Invariant 1 is automatically ensured by the “bookkeeping work” described above,

since whenever a vertex v changes level, the bookkeeping work modi�es Ov accordingly.

Invariant 2: To show invariant 2 we need to show that (a) every vertex on a level larger than −1
is matched and (b) every vertex on level −1 is free. We show the claim by induction on the number

of updates. Initially the graph is empty and every vertex is unmatched and on level −1. Thus, the
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Algorithm 1: Fully Dynamic Maximal Matching Algorithm

1 Procedure Delete(u, v) // Process deletion of edge (u,v)
2 if (u,v) ∈ M then
3 Initialize empty queue Q
4 Perform bookkeeping work for deletion of (u,v)
5 Add u toQ (if it is not already contained inQ) // Execute FixFreeVertex(u) later

6 Add v to Q (if it is not already contained in Q) // Execute FixFreeVertex(v)

later

7 Process�eue()

8 else
9 Perform bookkeeping work for deletion of (u,v)

10 Procedure Insert(u, v) // Process insertion of edge (u,v)
11 Initialize empty queue Q
12 Perform bookkeeping work for insertion of (u,v)
13 foreach j > level(v) do Increment-ϕ(u, j)
14 foreach j > level(u) do Increment-ϕ(u, j)
15 if level(u) < level(v) then
16 With probability preset do ResetMatching(v)

17 if level(v) < level(u) then
18 With probability preset do ResetMatching(u)

19 Process�eue()

20 Procedure Process�eue()

21 while Q is not empty do
22 Pick arbitrary vertex v from Q
23 FixFreeVertex(v)
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Algorithm 2: Fully Dynamic Maximal Matching Algorithm

24 Procedure ResetMatching(v) // Called only if level(v) > −1
25 w = mate(v)
26 M ←M \ {(v,w)} // Unmatch v and w
27 Add v to Q (if it is not already contained in Q) // Execute FixFreeVertex(v) later

28 Add w to Q (if it is not already contained in Q) // Execute FixFreeVertex(w) later

29 Procedure FixFreeVertex(v)

30 i ← level(v)
31 if i > −1 and v is unmatched then
32 if |N<i (v)| ≥ 4

i/(32C log (n)) then
33 Compute N<i (v)
34 GenericRandomSettle(v , i)
35 else
36 Fall(v , i)

37 Procedure GenericRandomSettle(v , i) // Called only if |N<i (v)| ≥ 4
i/(32C log (n)

38 Pick w ∈ N<i (v) uniformly at random

39 Perform bookkeeping work to move w to level i
40 if ∃(w,x) ∈ M then // Check if w is matched with some neighbor x
41 M ←M \ {(w,x)} // Unmatch w and x
42 Add x toQ (if it is not already contained inQ) // Execute FixFreeVertex(x ) later

43 M ←M ∪ (v,w) // Match v and w

44 Procedure Fall(v , i)
45 Compute N<i (v) and N=i (v)
46 Perform bookkeeping work to to move v from level i to level i − 1
47 foreachw ∈ N<i (v) do
48 Increment-ϕ(w , i)

49 foreachw ∈ N=i (v) do
50 With probability preset do ResetMatching(w)

51 Add v to Q (if it is not already contained in Q) // Execute FixFreeVertex(v) later

52 Procedure Increment-ϕ(v , i)
53 Perform bookkeeping work

54 With probability prise do Rise(v , level(v), i) // Probabilistic rise

55 if ϕv (i) ≥ 4
i then Rise(v , level(v), i) // Threshold rise

56 Procedure Rise(v , i , j)
57 Perform bookkeeping work to move v from level i to level j
58 if ∃(v,w) ∈ M then // Check if v is matched with some neighbor w
59 M ←M \ {(v,w)} // Unmatch v and w
60 Add w to Q (if it is not already contained in Q) // Execute FixFreeVertex(w)

later

61 Add v to Q (if it is not already contained in Q) // Execute FixFreeVertex(v) later
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claim holds. Assume now that the claim holds before an edge insertion or deletion. We will show

that it holds also after the edge insertion or deletion was processed.

We �rst show (a). A vertex v on level larger than −1 can violate Invariant 2 if (1) its matched

edge was deleted or (2) it became unmatched in procedure GenericRandomSettle or Rise. In both

cases v is placed on the queue (if it is not already there). Then the current procedure completes and

then other calls to FixFreeVertex might be executed before the call FixFreeVertex(v) is started.

Thus, it is possible that the hierarchy has changed between the time when v was placed on the

queue and the time when its execution starts. This is the reason why FixFreeVertex(v) �rst checks

whether v is still on a level larger than −1 and whether it is still unmatched. If this is not the case,

v ful�lls Invariant 2. If this is still the case, then the main body of FixFreeVertex(v) is executed,

which either matches v with GenericRandomSettle(v ,level(v)) or it decreases the level of v (if v
does not have “enough” neighbors on levels below level(v)) and then places v on the queue. As

the update algorithm does not terminate until the queue is empty, it is guaranteed that all vertices

ful�ll (a) at termination of the update.

To show (b) note that a vertex u is only matched in procedure GenericRandomSettle and in

this case it needs to be on a level i such that either the vertex u itself or its newly matched partner v
ful�ll the property that there is at least one neighbor in a level below level i . As −1 is the lowest

level, it follows that i > −1, which shows (b).

Invariant 3: For Invariant 3 we need to show for all j > level(v) that |N<j (v)| < 4
j
. We show

the claim by induction on the number of updates. The property certainly holds at the beginning of

the algorithm when there are no edges. Assume it was true before the current edge update. We will

show that then it also holds after the current edge update. Let v be a vertex. The set N<j (v) only

increases if a neighbor w drops from a level above j to a level below j . Since each execution of Fall

decreases the level of a vertex only by one, the set N<j (v) can only increase if a neighbor w drops

from j to j − 1. As a consequence it follows that the sets N<k (v) for all k , j are unchanged, and,

thus, |N<k (v)| < 4
k

for all k , j, i.e., there is only one set N< ·(v) that might reach its threshold

value, namely N<j (v). The fall of w from level j calls Increment-ϕ(v, j), which in turn immediately

calls Rise(v ,level(v),j) if |N<j (v)| = 4
j
. After v has moved up to level j, it holds that for all k > j

that |N<k (v)| < 4
k

as this was also true before the rise. Thus, Invariant 3 holds again for v .

Invariant 4: For Invariant 4 we have to show that the endpoints of every matched edge are at

the same level. Note that two vertices v and w only become matched in procedure GenericRan-

domSettle and right before that the vertex (out of the two) on the lower level is “pulled up” to the

level of the higher vertex. Thus, both are at the same level when they are matched.

MatchingProperty*: Finally MatchingProperty* holds for every vertexv for the following reason:

As soon as a vertex becomes unmatched, v is placed on the queue. Whenever this call is executed,

it checks whether |N<i (v)| ≥ 4
i/(32C log(n)), where i = level(v), is ful�lled and if so, it calls

GenericRandomSettle(v ,i), which in turn picks a random neighbor of N<i (v) and matches v with

it. If, however, |N<i (v)| < 4
i/(32C log(n)), then FixFreeVertex(v) calls the procedure Fall(v ,i).

The procedure Fall checks again whether it still holds that |N<i (v)| < 4
i/(32C log(n)), and if so

v is moved one level down. Since in this case the vertex is still unmatched, Fall(v ,i) also inserts

v into the queue, which later on results in a call to FixFreeVertex(v) executed on v’s new level

i − 1. Thus, v continues to fall until it either reaches a level i where |N<i (v)| ≥ 4
i/(32C log(n)) (in

which case it is matched there) or until it reaches level −1, in which case |N<i (v)| = 0 < 1. Hence,

in either case MatchingProperty* holds. �
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4.2.3 Analysis of the Modi�ed Algorithm

Note that each procedure used by the algorithm (e.g. Fall or FixFreeVertex) incurs two kinds of

costs:

• Bookkeeping work: As discussed above, if the procedure changes the level of a vertex, the

algorithm must do bookkeeping work to maintain the various Ov and Eiv data structures .

• Recursive work: a change in the hierarchy could lead other vertices to violate one of the

invariants, and so lead to the execution of further procedures.

We start with the easier task of analyzing the bookkeeping work. The Fall, GenericRandom-

Settle, and FixFreeVertex procedures all require O(4i ) time to process a vertex v at level i: this

is because the bookkeeping work only requires us to look at Ov , which by Invariant 3 contains at

most O(4i ) edges. We now analyze the bookkeeping required for procedure Rise:

Lemma 4.3. Rise(v, i, j) requires time O(4j ).

Proof. Although they do not state it as such, this lemma holds for the original Baswana et al.

algorithm as well. When v rises from level i to level j, the algorithm performs bookkeeping of two

sorts. Firstly, every vertex u that is owned by v after the rise must update Eiu and E ju ; by Invariant 3

there are at mostO(4j ) neighbors to update. Secondly, every neighboru ofv in N<j (v)must execute

Decrement-ϕ(u,k) for every max {i, level(u)} < k ≤ j. The total cost is upper bounded by

O(N<j (v) · (j − i) +
j−1∑

k=i+1

|N=k (v)| · (j − k)), (6)

where N=k (v) is the number of neighbors of v at level k . But note that for k > i , |N=k (v)| < 4
k + 1,

since otherwise v would violated Invariant 3 for level k even before the procedure call that led to

Rise(v, i, j). Similarly, |N<i (v)| < 4
i+1+ 1. Plugging these bounds into Equation 6 yields a geometric

sum totalling O(4j ). �

Before analyzing the recursive work, we bound the probability that Increment-ϕ(v, i) calls

Rise. The chance of a probabilistic rise is always the same prise = Θ(log(n)/4i ). We now bound

threshold-rises:

Lemma 4.4. The sequence of oblivious updates prede�ned by the adversary gives some probability
distribution on the point in time (in the sequence of updates) to process the �rst call to Increment-ϕ, the
second call to Increment-ϕ, the third one, and so on. Claim: for any k , it holds with high probability
that the kth call to Increment-ϕ does not lead to a threshold rise.

Proof. Let Bv,i be the bad event that the kth call to Increment-ϕ increments ϕv (i) from 4
i − 1 to

4
i
. It is enough to show that ¬Bv,i occurs with high probability; we can then union bound over

all pairs (v, i). Let tk be the time at which this kth call to Increment-ϕ occurs, and note that at

the beginning of time tk we have level(v) < i , since otherwise we would have ϕv (i) = 0 and

no threshold rise would occur. Now, let t be the earliest point in time such that level(v) < i in

the entire time interval from t to tk . It is not hard to see that because Matching Property* only

allows a vertex to fall to below level i when |N<i (v)| < 4
j/(32C log(n)), it must be the case that at

time t we have ϕi (v) < 4
i/(32C log(n)) < 4

i/2. Thus, there must have been at least 4
i/2 calls to
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Increment-ϕ(v, i) in time interval (t , tk ), and by the assumption that level(v) < i in this entire

time interval, none of these 4
i/2 calls to Increment-ϕ(v, i) led to a probabilistic rise. But each

probabilistic rise occurs independently with probability C log(n)/4i (for a su�ciently large C), so a

simple Cherno� bound shows us that with high probability this event does not occur. �

We now turn to bounding the recursive work incurred by a procedure. Let us �rst de�ne this

more formally. Bringing attention to the pseudocode, we note that each procedure is either directly

called by some previous procedure, or, in the case of FixFreeVertex, it is added to the queue by

a previous procedure; we say that the called procedure is caused by the calling procedure. For

example, a procedure Fall leads to many calls to Increment-ϕ, and so can potentially cause many

calls to procedure Rise. We can thus construct a causation tree, where the parent procedure causes

all the children procedure calls. We then say that the total work of a procedure is the bookkeeping

work of that procedure, plus the total work of all of its children in the causation tree; equivalently,

the total work of a procedure is the total bookkeeping work required to process all of its descendants

in the causation tree.

We now show that for any vertex v at level i = level(v), the expected total work of Fall(v, i),
GenericRandomSettle(v, i), or FixFreeVertex(v) is at most O(4i ). (We handle the procedure

Rise later.) To this end, we need the following notation. When we refer to the vertex hierarchy H
at time t , this includes the level assigned to each vertex at time t , as well as the set of edges in the

matching at time t . The vertex hierarchy thus fully captures the current state of the algorithm.

Note that the time to process any procedure at time t depends on two things: the vertex hierarchy

at time t , and the random coin �ips made after time t . Thus, we can de�ne Efalli (v,H ) to be the

expected total work to process Fall(v, i) given that the state of the current hierarchy is H , where

the expectation is taken over all coin �ips made after time t . (We assume that in the hierarchy H
vertex v has level i , since otherwise Fall(v, i) is not a valid procedure call.) We de�ne Ese�lei (v,H )
and Efreei (v,H ) analogously. We say that some hierarchy H is valid if it satis�es all of the hierarchy

invariants above; note that our dynamic algorithm always maintains a valid hierarchy.

We are now ready to introduce our key notation. We let Efalli be the maximum of all Efalli (v,H ),
where the maximum is taken over all vertices v , and all valid hierarchies H in which v has level i .
De�ne Ese�lei and Efreei accordingly. De�ne Emax

i = max{Efalli ,E
se�le

i ,Efreei }. Note that because Emax

i
takes the maximum over all valid hierarchies, it is an upper bound on the expected time to process

any update at level i . We now prove a recursive formula for bounding Emax

i .

Lemma 4.5. Emax

i ≤ O(4i ) + 2Emax

i−1

Proof. We �rst show that Ese�lei ≤ O(4i ) + Emax

i−1 . GenericRandomSettle(v, i) picks some random

matev ′ forv with level(v ′) < i , performsO(4i ) bookkeeping work to movew to level i (Lemma 4.3),

and then causes a single other procedure call, namely, FixFreeVertex(old-mate(v ′)); this caused

procedure call occurs at some level less than i , so the expected total work can be upper bounded

by Emax

i−1 .

Now consider FixFreeVertex(v), where i = level(v). As discussed above, the bookkeeping

work of this procedure is at most O(|Ov |) = O(4i ). The algorithm then causes one other procedure

call: either GenericRandomSettle(v, i) or Fall(v, i), depending on the size of N<i (v). We have

already bounded Ese�lei , so all that remains is to bound Efalli .

Recall that the algorithm only executes Fall(v, i) whenN<i (v) < 4
i/(32C log(n)). The procedure

Fall requires the standardO(|Ov |) = O(4i ) bookkeeping work, and it also causes a call to FixFreeV-

ertex(v) at level i−1, which has Emax

i−1 expected total work. But unlike the other procedure, Fall(v, i)
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can also cause additional procedure calls at level i . This can happen in two ways: 1) Each neighboru
ofv at level i executes ResetMatching(u,i) with probability 1/4i+3. 2) Each neighbor u ofv at level

i − 1 or less executes Increment-ϕ(u, i). This has a small chance of resulting in Rise(u, level(u), i),
followed by FixFreeVertex(u), where level(u) = i , and FixFreeVertex(old-mate(u)), where

level(old-mate(u)) ≤ i − 1.

LetX reset
be the number of ResetMatching(u,i) triggered by the fall ofv , and let LetX rise

be the

number of Rise(u, level(u), i) triggered by the fall. Note that E[X reset] = 1/16 because by Invariant 3,

v has at most 4
i+1

neighbors at level i , and each of them has a preset = 1/4i+3 probability of being

reset. We now argue that E[X rise] = 1/16. By Matching Property*, v has at most 4
i/(32C log(n))

neighbors u at lower level before the fall, each of which executes Increment-ϕ(u, i). Our modi�ca-

tion to the original algorithm ensures that this increment has aprise = C log(n)/4i chance of inducing

a probability-rise, and by Lemma 4.4 the probability of a threshold-rise is negligible, so for simplicity

we upper bound it by C log(n)/4i . Thus: E[X rise] = [4i/(16C log(n))][2C log(n)/4i ] = 1/16.

We now consider the total work to process a fall. Firstly, the fall automatically triggers O(4i )
bookkeeping work plus it causes a procedure call at level i − 1; by de�nition, the expected total

work to process this additional procedure call can be upper bounded with Emax

i−1 . We also have to

do additional work for each matching call to ResetMatching or Rise. Each reset triggers two

additional procedure calls at level i; the expected time to process each of these procedure calls can

be upper bounded with Emax

i . Note that this upper bound allows to achieve a crucial probabilistic

independence: although the value of X rise
might be correlated with the time to process these calls to

Rise (both depend on the current hierarchy), the value of X rise
is completely independent from Emax

i ,

since the latter takes the maximum over all possible hierarchies, and so does not depend on the

current hierarchy. Similarly, each procedure requires O(4i ) bookkeeping work, plus it causes a call

to a procedure at level i and another at level less than i , both of which we upper bound with Emax

i .

Putting it all together, we can write a recursive formula for Emax

i .

Emax

i ≤ O(4i ) + Emax

i−1 + (2Emax

i +O(4i ))
∞∑
k=1

kPr[X reset + X rise = k]

≤ O(4i ) + Emax

i−1 + (2Emax

i +O(4i ))(E[X rise + X reset])
= O(4i ) + Emax

i−1 + (2Emax

i +O(4i ))(1/8) < O(4i ) + Emax

i−1 + E
max

i /2. �

Corollary 4.6. The expected total work for a call to FixFreeVertex, Fall, GenericRandomSettle,
Rise, or ResetMatching at level is O(4i ), where Rise(v, i, j) is said to be a procedure call at level j.

Proof. Solving the recurrence relation in Lemma 4.5 yields Emax

i = O(4i ), which gives us the desired

bound for FixFreeVertex, Fall, and GenericRandomSettle. Procedure ResetMatching simply

makes two calls to FixFreeVertex, so the same O(4i ) bound applies. Procedure Rise requires O(4i )
bookkeeping work (Lemma 4.3), and then causes at most two other calls to procedures other than

Rise, each of which we know has expected total work O(4i ). �

Now that we have analyzed the time to process the individual procedure calls, we turn our

attention to the time work required to process an adversarial edge insertion/deletion. Note that the

most direct reason the algorithm might have to perform a procedure call at level i is the deletion of

matching edge (v,mate(v)) at level i . Our modi�cations to the algorithm allow us to do without

the charging argument of Baswana et al., and instead directly bound the probability that a deleted
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edge (u,v) is a matching edge. Note that for (u,v) to be a matching edge, it must have been chosen

by a GenericRandomSettle(u, i) or GenericRandomSettle(v, i) for some level i . There are thus

O(2 log(n)) possible procedure calls that could have created this matching edge: we bound the

probability of each separately.

Lemma 4.7. Let (u,v) be any edge at any time during the update sequence, and let 0 ≤ ` ≤⌊
log

4
(n)

⌋
be any level in the hierarchy. Then: Pr[(u,v) is a matching edge that was chosen by

GenericRandomSettle(v, `)] = O(log2(n)/4`), where the probability is over all random choices
made by the algorithm.

Proof. Let t∗ be the current time when edge (u,v) is deleted. Let Ematching
be the event that (u,v) is

a matching edge that was chosen by GenericRandomSettle(v ,`). We assume that level(v) = `
at time t∗, since otherwise Pr[Ematching] = 0. Recall that GenericRandomSettle(v ,`) can be

called for three reasons: 1: v moves to level ` from another level OR 2: The algorithm executes

ResetMatching: this can either be a ResetMatching(v, `) due to an addition to N<`(v), or a Re-

setMatching(mate(v), `) due to an addition to N<`(mate(v)). 3: the matching edge (v,mate(v))
is deleted by the adversary. Let t crit

level
be the last update before t∗ where v changed levels, and note

that at time t crit

level
v was assigned to level `. Let t crit

rematch
be the last update before t∗ at which Generi-

cRandomSettle(v ,`) was called as a result of some ResetMatching. Let t crit = max

{
t crit

level
, t crit

rematch

}
be the later of these two times. Note that at all times t after t crit

and before t∗: level(v) = `, and the

only possible cause for GenericRandomSettle(v ,`) is that the current matching edge (v,mate(v))
is deleted at time t .

Before continuing with the proof, we brie�y discuss the naive approach to the proof, and why

it fails to work. Note that if we focus on any single call to GenericRandomSettle(v ,`) in the

time interval (t crit, t∗), Matching Property* guarantees that the probability of the particular edge

(u,v) being picked as the matching edge is very small: O(log(n)/4`). Now, let t be the last time

before t∗ that GenericRandomSettle(v ,`) is called, and note that the matching edge at time t∗

is precisely the matching edge picked at time t . It is tempting to (falsely) argue that at time t
the probability that GenericRandomSettle(v ,`) picked edge (u,v) is at most O(log(n)/4`). But

this might not be true, because although GenericRandomSettle(v ,`) picks an edge uniformly at

random from many options, the fact that we condition on t being the last random settle before t∗

can greatly skew the distribution. Consider, for illustration, the update sequence at the beginning

of Section 4.2: the sequence repeatedly deletes all edges other than (u,v), so any edge other than

(u,v) is unlikely to be the last matching edge, since it will soon be deleted. To overcome this issue,

we now present a more complex analysis that (loosely speaking) bounds the total number of times

GenericRandomSettle(v ,`) is called in the time interval (t crit, t∗).
Whenever a neighbor u is added to N<`(v), we call this a rematch opportunity for v . We say

that t crit
has gap γ , for a non-negative integer γ , if the number of rematch opportunities after t crit

and before t∗ is in the interval [γ4`, (γ + 1)4`). Let E
gap

γ be the event that t crit
has gap γ . Clearly

Pr[Ematching] =
∞∑
γ=0

Pr[Egap

γ ] · Pr[Ematching |Egap

γ ]. (7)

We �rst upper bound Pr[Egap

γ ]. For this event to occur, there must be at least γ4` rematch oppor-

tunities in the time interval (t crit, t∗), but by de�nition of t crit
none of these rematch opportunities

can actually result in a ResetMatching(v, `). Recall that each rematch opportunity independently

executes a rematch with probability 1/4`+3. Thus:
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Pr[Egap

γ ] ≤ (1 −
1

4
`+3
)γ 4` < e−γ /64 . (8)

We now bound Pr[Ematching | Egap

γ ]. Note that for Ematching
to occur, (u,v) must be chosen as a

matching edge sometime in time interval [t crit, t∗); any matching choices made before time t crit

are irrelevant because the matching is changed at time t crit
. Let X settle

be the variable for the

number of times GenericRandomSettle(v ,`) is called in time interval [t crit, t∗). There is one

GenericRandomSettle(v ,`) possibly executed at time t crit
. (Technical note: there might also

not be one if v is pulled to level ` by the GenericRandomSettle of another vertex). All other

GenericRandomSettle(v ,`) are caused by the deletion of the matching edge (v,mate(v)). Now,

by Matching Property*, each GenericRandomSettle(v ,`) picks the particular target edge (u,v)
with probability 1/|N<`(v)| ≤ 32C log(n)/4` . We thus have:

Pr[Ematching | Egap

γ ] ≤
32C log(n)

4
`

∞∑
k=1

k · Pr[X settle = k | Egap

γ ]. (9)

It now remains to upper bound E[X settle | Egap

γ ]. We say that v undergoes a deletion whenever

we delete an edge (u,v) with u ∈ N<`(v) (recall: ` = level(v)). We claim that v undergoes a

total of at most (γ + 5)4` deletions in time interval [t crit, t∗). This is because at time t crit
we have

level(v) = `, so by Invariant 3 |N<`(v)| ≤ 4
`+1

, and because we are conditioning on t crit
having

gapγ , we know that there are at most (γ +1)4` insertions into |N<`(v)| during time interval [t crit, t∗).
Let D = (γ + 5)4` be the upper bound on this total number of deletions. Now, whenever we execute

GenericRandomSettle(v ,`) during time interval [t crit, t∗), let the span of this procedure call be

the number of edges in N<`(v) that are deleted before the matching edge chosen by the procedure

is deleted. Note that the sum of spans of all the GenericRandomSettle(v ,`) is at most D. We

say that a GenericRandomSettle(v ,`) has a big span if it has span at least 4
`/(64C log(n)). By

Matching Property* each GenericRandomSettle(v ,`) chooses a matching edge at random from

at least 4
`/(32C log(n)) choices, so it has a big span with probability at least 1/2. Let Bj (B for

big) be the binary random variable that is 1 if the jth instance of GenericRandomSettle(v ,`)
in time interval [t crit, t∗) has a big span and 0 otherwise. Note that summing over all instances

of GenericRandomSettle(v ,`) in time interval [t crit, t∗) we have

∑
j Bj ≤ D/ 4

`

64C log(n) = (γ +
5)64C log(n). We thus have:

∞∑
k=1

k · Pr[X settle = k | Egap

γ ] ≤
∞∑
k=1

k · Pr[B1 + B2 + ... + Bk ≤ (γ + 5)64C log(n)] (10)

Recall that for each Bi we have E[Bi ] ≥ 1/2, independently of all the other Bi . Thus, E[B1 +

... + Bk ] ≥ k/2, so a simple application of the Cherno� bound tells us that the tail-end of the

right-most summation in Equation 10 converges to a constant after k > (γ + 5)256C log(n), since

the probability in the summation decreases exponentially. We thus have an upper bound of

E[X settle | Egap

γ ] = O((γ + 1) log(n)). Plugging this into Equation 9 yields Pr[Ematching | Egap

γ ] =
O((γ + 1) log

2(n)
4
` ). Combining this with Equation 8 and plugging into Equation 7 yields the desired

Pr[Ematching] = O( log
2(n)
4
`

∑∞
γ=0

1+γ
eγ /64
) = O( log

2(n)
4
` ). �

Proof ofTheorem 1.5. Let us �rst consider the insertion of a new edge (u,v). The algorithm has

to update some subset of Ou ,Ov , Elevel(v)
u , Elevel(u)

v , and then it has to perform O(log(n)) calls
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to Increment-ϕ(u, i) and Increment-ϕ(v, i). Each Increment-ϕ(v, i) has a prise = Θ(log(n)/4i )
chance of leading to a probability-rise, and a negligible probability of leading to a threshold-rise

(Lemma 4.4), so plugging in the cost of a call to Rise from Lemma 4.3, the expected time to process

the insertion of (u,v) is O(∑blog4(n)ci=0 (log(n)/4i ) · 4i = O(log2(n)).
Let us now consider the deletion of an edge (u,v). If (u,v) is a non-matching edge, then

as in the case of insertion, the algorithm only needs to perform O(1) bookkeeping work and

O(log(n)) calls to Decrement-ϕ(u, i); calls to Decrement-ϕ do not lead to changes in the hierarchy,

so the algorithm stops there. Thus the only case left to consider is the deletion of a matching

edge (u,v). By Invariant 4 level(u) = level(v), so let us say they are both equal to `. The

deletion of (u,v) requires the algorithm to execute FixFreeVertex(u) and FixFreeVertex(v),

which by Corollary 4.6 requires time O(4`). By Lemma 4.7, the total expected update time is thus

O(∑blog4(n)c
`=0

4
` · (log2(n)/4`)) = O(log3(n)). �

Explicitly Maintaining a List of the Edges in the Matching. Both the amortized expected

algorithm of Baswana et al. [BGS18], as well as our worst-case expected modi�cation in Theorem 1.5,

store the matching in the simplest possible data structure D: they are both able to maintain a single

list containing all the edges of a maximal matching. By Remark 1.2, the high-probability worst-case

result in 1.6 stores the matching in a slightly di�erent data structure: it stores O(log(n)) lists Di ,

along with a pointer to some D j such that D j is guaranteed to contain the edges of a maximal

matching. Dynamic algorithms are typically judged by update and query time, and from this

perspective our data structure is equivalently powerful, since we can use the correct D j to answer

queries about the matching.

However, in some applications, it is desirable to maintain the matching as a single list. The

reason is that this way one ensures “continuity” between the updates: for example, the O(log(n))
update time of Baswana et al. guarantees that every update only changes the underlying maximal

matching by O(log(n)) edges (amortized). This is no longer true of our high-probability worst-case

algorithm in Theorem 1.6, because a single update might cause the algorithm to switch the pointer

from some Di to some D j : this still results in a fast update time, but the underlying maximal

matching can change by Θ(n) edges.

As discussed in Remark 1.2, if we insist on maintaining a single list of edges in the matching, we

can do so with almost the same high-probability worst-case update time as stated in Theorem 1.6,

but the resulting matching is only (2 + ϵ)-approximate, and no longer maximal. This (2 + ϵ)-
approximation is achieved as follows. The algorithm of Theorem 1.6 stores O(log(n)) lists Di , one

of which is guaranteed to be a maximal matching. In particular, this algorithm maintains a fully

dynamic data structure with query access to a 2-approximate matching that can output ` arbitrary

edges of the matching in time O(`). The very recent black-box reduction in [SS18] takes such a

“discontinuous” algorithm for dynamic maximum matching and turns it into a “continuous” one at

the cost of an extra (1 + ϵ) factor in the approximation. By applying this reduction with ϵ ′ = ϵ/2
we obtain a fully dynamic algorithm for maintaining a matching with an approximation factor

of 2(1 + ϵ/2) = (2 + ϵ) and a high-probability worst-case update time of O(log5(n) + 1/ϵ). The

reduction of [SS18] also applies to the dynamic (2 + ϵ)-approximate matching algorithms of Arar et

al. [Ara
+
18] and Charikar and Solomon [CS18], whose update times we can beat for certain regimes

of ϵ .
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