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Abstract—Despite its development several decades ago and
several very beneficial properties asynchronous logic design,
which is data driven and runs as fast as possible in all situations,
is rarely used nowadays. Reasons are of course its disadvan-
tageous properties such as bad testability but also required
sophisticated knowledge for designers and missing tools. In this
paper we draw a path to tackle the latter points by suggesting
a tool/way to generate multiple circuit implementations from
a single description. We are aiming to convert specifications
written in various input languages, e.g. C or VHDL, to an unified
Internal Representation (IR). This IR is composed of building
blocks (semantic vocabulary) specified through the Abstract State
Machine (ASM) based formal method. The ASM artifact is then
used to generate the circuit in the desired (a)synchronous design
style. As short term goal we aim to train developers by reading
synchronous descriptions and converting them to asynchronous
designs however in the long run we hope to establish a unified
path for circuit development, which only requires an abstract
behavioral description.

Index Terms—Abstract State Machines, Asynchronous Logic

I. INTRODUCTION

In contrast to the broadly used synchronous approach,
which uses a central clock to coordinate the single units,
data-driven asynchronous logic utilizes dedicated signals to
indicate when new data has arrived (request) and when the
old data has been processed (acknowledge). This allows the
circuit (1) to work as fast as possible and (2) to adapt
much better to Process-Voltage-Temperature (PVT) variations.
Where synchronous circuits fail due to timing violations their
asynchronous counterparts still deliver correct results.

Despite these argument and being available for several
decades now, asynchronous logic is still used only marginally
in digital design [1]. Reasons for that are manifold: Since data
is processed immediately after arrival, a very high level of
concurrency is achieved. This leads however also to a huge
amount of possible states and thus bad testability, as all of
them have to verified. Furthermore, tool support is still lacking.
At the moment this seems to be a chicken-egg problem: Com-
panies are not ready to develop new tools until the demand
is high, which does however not grow due to the lacking tool
support. Please note that, albeit with increased effort, it is
actually possible to design asynchronous logic with available
tools assumed that the designer has sophisticated knowledge
about the asynchronous design style, which differs in certain
points significantly from the synchronous one. For example
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one has to make sure that the communication protocol (request
and acknowledge) can be fully executed, which sometimes
requires the introduction of additional memory elements [2].
Thus switching to asynchronous logic means retraining the
designer which results in high risk for a company.

Generating asynchronous circuits systematically from Data
Flow Graph (DFG)s, i.e., models that show how data is propa-
gated from one operation to the next but neglects the inherent
timings, is already possible. For this purpose operations and
special constructs such as merge or join are simply replaced
by corresponding asynchronous block as shown e.g. in [3].
In computer architectures similar concepts have already been
implemented successfully, e.g. in data flow processors [4] or
in out-of-order computational units, which essentially generate
a DFG at run time.

In summary, we currently have a very good Intermediate
Representation (IR) for asynchronous logic, namely DFGs,
and various methods to describe the behavior on different
abstraction levels (e.g. C, VHDL, or Verilog). The main issue
is to properly close the gap between them. Of course, we are
aware that available compiler tools, for example Low Level
Virtual Machine (LLVM) [5], are capable to generate data
flow models, which was for example used by Josipović et al.
[3] to develop Elastic Pipelines [6] based on a algorithmic
description in C. While the DFG in this paper could be
converted to asynchronous logic in a straightforward way this
is not valid in general, due to the synchronous or computer
architectural assumptions that are utilized by the compilers.
An example are memory references which are common in
software however hard to convert to hardware. Therefore the
biggest challenge currently in our opinion is the generation of
an IR that can be used as starting point for multiple purposes,
e.g., development of synchronous and asynchronous circuits.

Contribution: We therefore propose a tool that can convert
circuit descriptions in various formats and abstraction levels,
e.g. pseudo code, C, or VHDL, into a single common IR. The
latter is based on the well-known formal method Abstract State
Machine (ASM) [7] which allows exactly what we need: a
unified specification of the circuit behavior independent of the
desired implementation details. The latter are only fixed during
the export to an implementation specific IR, for example
DFG in the case of asynchronous circuits. Overall the task of
the tool is to (a) extract valuable information from different
descriptions and (b) export this information to the desired
format and circuit style.



II. ABSTRACT STATE MACHINES

In 1995 Gurevich [7] described the ASM theory, which is a
well-known formal method based on transition rules, agents,
and mathematical function states that can be used to specify
arbitrary algorithms, applications or even whole systems. The
mathematical function state is defined with a corresponding
type relation. Agents are able to execute rules, which enables
the producing of updates resulting in a change of the global
mathematical function state. Since the appearance of the ASM
theory, several definitions and implementations were create of
ASM-based languages, interpreter, and compilers. However,
all of them focus mainly on the analyzes of ASM specifications
for certain properties or on software-sided simulations. The
Corinthian Abstract State Machine (CASM) language [8] and
project1 focuses on enabling not only to analyze and simulate
ASM-based specifications. One of the main research objectives
is to establish through a model-based transformation approach
[9] a generic transformation of CASM specifications to various
target languages and execution environments including the
software and hardware domain. Important is that in con-
trast to already existing hardware-based languages or IRs
(Chisel [10] or FIRRTL [11]), CASM does not include any
assumptions of the resulting circuit style (synchronous design,
clock etc.). Therefore, the same CASM input specification can
be (re)used and (re)targeted. In order to achieve this goal
multiple compiler IRs [12] were introduced to separate the
languages’ own run-time implementation of a certain target
environment or language. A possible asynchronous hardware
target environment could be the link and joint model by
Roncken et al. [13].

III. ACCELERATING ASYNCHRONOUS LOGIC

In the introduction we stated that asynchronous logic is
only marginally used at the moment. The question is how
we actually can improve this situation with the proposed tool.
Specifying the new IR building blocks (semantic vocabulary)
as well as the implementation of various front-ends and back-
ends can only happen in steps. We are planning to start with
specific front-ends for Verilog and VHDL and, naturally, with
an asynchronous circuit style back-end. In the beginning this
would allow designers to read existing (synchronous) circuit
descriptions and generate asynchronous counterparts, which
gives them the chance to (a) get a quick estimation what
asynchronous logic is capable of and thus support future
asynchronous implementation and (b) learn by comparison
how to properly design asynchronous circuits on the fly.

The proposed tool is also supposed to enhance verification
and validation as the transformation to a formal model enables
the usage of automatic verification methods to proof specific
properties and thus show correct behavior.

Currently, we are still at the very beginning of our re-
search. We already have an ASM implementation, however
the required IR building blocks (semantic vocabulary) are not
specified yet. This is clearly one of the first steps to go. To
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find a proper abstraction, we have to analyze the structure
of asynchronous circuits and systems and based on these
create suitable data structures that are capable to model the
data flow graph appropriately. From that it should be easy
to generate asynchronous logic automatically by using the
already available gates and building blocks.

IV. CONCLUSION

Asynchronous circuits are far less popular than their syn-
chronous counterparts. In this paper we have shown a road-
map of a tool that might change this, as it is capable to generate
from a single (high-level) description both synchronous and
asynchronous circuits. For that purpose we need an IR that
represents through proper building blocks (semantic vocab-
ulary) parsed input descriptions. This IR is specified using
an ASM-based language. Our short term goal is to allow
the user to describe the behavior of the desired circuit in
different formats and automatically generate asynchronous
implementations. Together with an automatic verification this
hopefully makes asynchronous circuits more attractive.
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