
Design of an Executable Specification Language
Using Eye Tracking

Georg Simhandl
University of Vienna, Austria
Faculty of Computer Science

Research Group Software Architecture
georg.simhandl@univie.ac.at

Philipp Paulweber
University of Vienna, Austria
Faculty of Computer Science

Research Group Software Architecture
philipp.paulweber@univie.ac.at

Uwe Zdun
University of Vienna, Austria
Faculty of Computer Science

Research Group Software Architecture
uwe.zdun@univie.ac.at

Abstract—Increasingly complex systems require powerful and
easy to understand specification languages. In course of the
design of an executable specification language based on the
Abstract State Machines formalism we performed eye-tracking
experiments to understand how newly introduced language fea-
tures are comprehended by language users. In this preliminary
study we carefully recruited nine engineers representing a broad
range of potential users. For recording eye-gaze behavior we
used Pupil Labs eye-tracking headset. An example specification
and simple comprehension tasks were used as stimuli. The
preliminary results of the eye-gaze behavior analysis reveal
that the new language feature was understood well, but the
new abstractions were frequently confused by participants. The
foreknowledge of specific programming concepts is crucial how
these abstractions are comprehended. More research is needed
to infer this knowledge from viewing patterns.

Index Terms—Gaze Behavior, Effects of Language Features,
Executable Specification Language, Abstract State Machines

I. INTRODUCTION

Because of the increasing complexity of hardware-software
systems, interdisciplinary teams are needed to specify and
implement them in a robust and especially efficient way. Spec-
ification languages like Systems Modeling Language (SysML)
or Unified Modeling Language (UML) enable communication
across disciplines, but fall short when it comes to executable
models. Executable specification languages try to fill this
gap. A novel formal method based Abstract State Machine
(ASM) [1] specification language is Corinthian Abstract State
Machine (CASM) [2]. Feedback from users, i.e., engineers
with various backgrounds in software and/or hardware design
and development, is of high importance for the design of such
specification languages. As engineers spend more time reading
than writing program code, to enable a flat learning curve,
and as specification tasks require many stakeholders (including
some non-technical stakeholders) to work together, specifica-
tion languages require a high degree of comprehensibility.

Eye tracking has been used frequently in computer sci-
ence [3] to investigate human factors of programs and es-
pecially established programming or modeling languages. To
our knowledge there is no study using eye gaze behavior
as a feedback for designing and improving a specification
language yet. In this study we focus on eye-gaze behavior in
order to investigate recently introduced language concepts of

the executable specification language CASM. Our preliminary
results of the eye-tracking experiment reveal that the syntax of
the language extension is well understood, but surprisingly its
structural and behavioral elements are confused. Furthermore
the evidence becomes apparent that the foreknowledge of
specific programming concepts rather than the programming
experience is decisive how new programming language con-
cepts are comprehended.

II. BACKGROUND

Specification languages support engineers to capture re-
quirements and specify hardware and software systems in
an easy and technology independent way. The ASM theory
and its formal methods provide the foundation to make spec-
ifications executable. The foundational concepts are: (1) an
executable ASM specification language which looks similar to
pseudo code to express rule-based computations over algebraic
functions with arbitrary data structures and type domains; (2)
a ground model serving as a rigorous form of blueprint and
reference model; (3) a step-wise refinement of the reference
model by instantiating more and more concrete models which
uphold the properties of the reference model [4]. Despite
its potential existing ASM modeling languages do not gain
currency. According to Börger [5] there is the need for better
abstractions in existing ASM modeling languages to reach the
characteristic of a programming language without focusing
on class and inheritance concepts. These abstractions should
not come at the cost of increasing complexity but remain
comprehensible on a high level.

The CASM aims to bridge this gap by providing these
language features. Currently we investigate type abstraction
with low implementation overhead on language engineering
side and high understandability on language user side. The pri-
mary intention behind these new type abstractions is to guide
programmers to use exclusive language features and there-
fore make specifications more comprehensible. Concretely we
introduced new syntax definition elements – structure,
feature, and implement – to extend the functionality of
structures and their behavior similar to traits [6], whereas the
syntax is influenced by the Rust [7] programming language1.

1https://doc.rust-lang.org/rust-by-example/trait

https://doc.rust-lang.org/rust-by-example/trait

TABLE I: Participants and Results (JS = JavaScript, PY = Python, VB = Visual Basic)

Experience Task 1 Tasks Total
Participant Years Level Languages Duration Correct Duration Correct Difficulty

P1 3 low Java, JS, PY 22,52s no 164,57s 75% 5
P2 10 medium Java, JS, PY 39,58s no 176,10s 75% 4
P4 19 high Java, VB, JS, PY, PHP, C++, C# 64,51s yes 237,60s 63% 4
P5 1 low Java, C++ 32,14s no 407,42s 13% 5
P6 15 high C, Java, PY, Haskell, VHDL 22,12s yes 164,50s 75% 3
P7 5 medium Java, C++, C#, JS, PHP 26,00s no 190,34s 38% 4
P8 4 medium Java, C, C#, C++, Python 39,04s yes 178,91s 75% 3

In a previous study [8] we compared three different type
abstractions interfaces, mixins, and traits in terms of their
understandability. The understandability was measured by
correctness and response time of the participants performance
processing the survey. The results of this previous paper-and-
pencil experiment indicate that type abstractions based on
interfaces and traits were more comprehensible than mixins.

What is not known so far is how language users com-
prehend these newly introduced structural and behavioral
elements and especially how they come to an understanding
of these abstractions, i.e. which search patterns are performed
while reading and comprehending the specification. In this
study we focus on the traits syntax and prepared a simple but
realistic specification TrafficLight (see Listing 1) as a stimulus
for the eye-tracking experiment. This sample code extends the
basic syntax definition elements from the CASM language2

[2], namely function, derived and rule by the new
structure, feature, and implement definitions.

We hypothesize that eye-gaze behavior can be used to
draw conclusions about the the effort, i.e. the cognitive load,
which is necessary to understand the specification code in
general, and the newly introduced traits syntax in particular.
Especially we are interested in the language users’ effort to
find and distinguish structural and behavioral elements of the
specification. The corresponding research question is: How can
eye-gaze behavior help to identify common search patterns and
reveal the effort to comprehend the introduced traits syntax?

It’s commonly known that engineers learn new language ab-
stractions more efficiently the more language paradigms they
know. In this study we refer to programming experience as a
combination of the time spent with software programming and
also the range of different language paradigms. In the context
of the main research question, we investigate if and to which
extent programming experience influences the effectivity to
spot and distinguish structural and behavioral abstractions. The
related hypothesis is that language users with background in
Object-Oriented Programming (OOP) languages with common
inheritance concepts distinguish less effectively between struc-
tural and behavioral elements, while language users familiar
with various languages paradigms easily spot the structure and
behavior elements.

2https://casm-lang.org/syntax

III. EXPERIMENT

In order to analyze viewing patterns and visual effort during
the process of comprehension of the new language features
we set up an experiment to measure eye-gaze behavior. We
recorded eye movements with a monocular eye-tracking head-
set from Pupil Labs3, equipped with a 200Hz eye camera and
a world camera with a resolution of 1280x720 pixels. The
pupil capture software (version 1.10) was used for recording
eye movements and the front facing camera as well as the
fixation detection and surface mapping. Subsequently eye-
gaze data was mapped to a browser window where stimuli
were presented. In this experiment each participant viewed
a sequence of assignments described below. As the main
stimuli a sample CASM specification was chosen. To let
participants directly interact with the specification code, we
used the browser-based code editor Monaco4 supplemented
with fiducial markers in the corners of the browser window to
facilitate the surface mapping. Instructions and comprehension
tasks, similar to works of [9] were presented to the participant
in addition to the specification code, while eye gaze and world
camera recordings were triggered via the web-socket protocol
and the Pupil Lab API controlled by the experiment server.
Besides eye and world camera raw recordings, we collected
pupil positions, pupil diameter, gaze positions, fixation data
and the fixations on surface mappings.

A. Procedure

The procedure of the experiment included (a) the calibration
of pupil and eye gaze detection, (b) the presentation of a
short introduction to CASM with the basic language features
including the newly introduced traits concept. (c) When par-
ticipants hit the Start button the recording of eye and world
camera was triggered and a brief graphical representation of
a system followed. Subsequent task assignments were shown
on the top of the window. After pressing the next button,
(d) the source code of the corresponding specification was
shown. As the main stimuli of the experiment we have chosen
the TrafficLight example specification (see Listing 1) inspired
by [10]. Participants were asked to (e) fill-in the missing
statements for each of the following tasks: (1) The central
component of this system is structure . . . (2) The rule . . .

3http://pupil-labs.com
4https://microsoft.github.io/monaco-editor/

https://casm-lang.org/syntax
http://pupil-labs.com
https://microsoft.github.io/monaco-editor/

1 enumeration Phase = { Stop, Go }
2 structure Light = {
3 function phase : -> Phase initially { Stop }
4 }
5 implement Light = {
6 derived phase -> Phase = this.phase
7 derived oppositePhase -> =
8 (if phase = Stop then Go else Stop)
9 derived isOn -> Boolean = (phase = Go)

10 derived isOff -> Boolean = (phase = Stop)
11 rule switch = {
12 this.phase := oppositePhase
13 }
14 }
15 feature TrafficController = {
16 derived lights -> [Light]
17 derived phases -> [[Phase]]
18 derived position -> Integer
19 rule nextPosition -> Integer
20 rule control = {
21 let currentPhase = phases[position] in
22 let nextPhase = phases[nextPosition] in {
23 assert(|currentPhase| = |lights|)
24 assert(|currentPhase| = |nextPhase|)
25 forall i in [1 .. |lights|] do {
26 assert(light[i].phase = currentPhase[i])
27 if light[i].phase != nextPhase[i] then
28 light[i].switch
29 }
30 }
31 }
32 }
33 structure OneWayStreet = {
34 function lights : Integer -> Light initially {
35 1 -> Light(), 2 -> Light() }
36 function position : -> Integer initially { 1 }
37 }
38 implement TrafficController for OneWayStreet = {
39 derived lights -> [Light] =
40 [lights(1), lights(2)]
41 derived phases -> [[Phase]] =
42 [[Stop, Stop], [Go, Stop]
43 , [Stop, Stop], [Stop, Go]]
44 derived position -> Integer = this.position
45 rule nextPosition -> Integer =
46 this.position := if position = 1 then 2 else 1
47 }

Listing 1: Executable Specification Code (CASM)

defines the main logic of the traffic light signaling. (3) The
feature . . . is implemented . . . times in this specification. (4)
The structure . . . does not implement a default behavior.

The answers were recorded synchronized with the frame
count of the eye gaze recordings. After completion of the
experiment (f) a post-hoc interview was conducted to eval-
uate task difficulty and perceived cognitive load as a ground
truth of the measured visual effort [11]. The semi-structured
interviews aimed to learn about the participant’s professional
background and programming experience, concluding with a
brief discussion about the experiment and the language itself.

B. Participants

We recruited nine participants (for details, see Table I) with
a broad range of software engineering experience, where low
in the table corresponds to intermediate level, medium to
advanced and high to professional level correspondingly. Four
participants were recruited at a German and five at an Austrian
university. While all have different professional backgrounds
and earned or work towards a computer science degree. All
participants volunteered to take part in the experiment. It’s

Ta
sk

 1
 w

ro
ng

 (A
OI

 T
ra

ffi
cC

on
tro

lle
r)

task

structure Light
implement Light

feature TrafficController

rule control

structure OneWayStreet

implement TrafficController

17

1614 13

12

11 10

9

8

7
6

5 432

1

Scan Path P1

task

structure Light
implement Light

feature TrafficController

rule control

structure OneWayStreet

implement TrafficController

15

14 13 1211

109 87 6

5

4
2 1

Scan Path P2

Ta
sk

 1
 c

or
re

ct
 (A

OI
 O

ne
W

ay
St

re
et

)

task

structure Light
implement Light

feature TrafficController

rule control

structure OneWayStreet

implement TrafficController

22
21 20

19

18
17

16

15

14

12

11
10987

6 5

4

32
1

Scan Path P6

task

structure Light
implement Light

feature TrafficController

rule control

structure OneWayStreet

implement TrafficController

2221 20

19
18

17

16

15

14

12

11

10

9

8

765 432 1

Scan Path P8

0

5

10

15

20

25

30

35

Ti
m

es
ta

m
p

[s
]

Fig. 1: (a) Fixation positions mapped to specification language
elements of participant P1 and P2 whereas the answer is
incorrect (b) Fixations for P7 and P8 where answers are correct

noteworthy that all participants - except one (P6) - were
new to CASM as this preliminary study especially aimed to
investigate the first impression of this specification language.

C. Analysis

Eye-gaze positions and fixation positions mapped to the
browser window were calculated using Pupil Labs capture
software 5. The experiments were conducted in the par-
ticipant’s offices. During two experiments (participants P0
and P3) the front-facing camera of the eye-tracking headset
overexposed the white background of the computer screen
due to changes in light conditions. These two experiments
were excluded from further analysis. Although the calibration
was performed for each participant eye-gaze position data was
skewed and had to be recalculated by using an individual offset
for each participant. Similar to [12] eye gaze positions were
translated into character locations in the web based editor to
identify code elements of interest for the user. In total six
areas representing new language features, i.e. structure,
implement, and feature and the task area above the code
were selected as main Areas of Interest (AOI). In regard to
the research question and to measure the effort to identify
and distinguish between structural and behavioral elements
of the newly introduced language features, we applied scan
path analysis to the eye-gaze data. As shown in Table I four
participants (P1, P2, P6, and P8) answered three out of four
questions correctly, while P1 and P2 didn’t identify the main
component of the system, namely OneWayStreet but chose
the feature TrafficController instead. In a further step we
selected these experiments to contrast the viewing patterns of
incorrectly (a) and correctly answered (b) questions. Figure 1
shows the indexed fixation positions represented in bubbles
whereas the diameter of the circle represents the fixation
length. The color of the fixation marker indicates the start
time of each fixation. Furthermore the fixations were mapped

5https://github.com/pupil-labs

https://github.com/pupil-labs

to the AOIs to facilitate viewing pattern analysis. The analysis
reveals independent of the correctness and completion time
a common eye-gaze pattern, i.e. eye-gazes moved between
the elements feature TrafficController and structure
OneWayStreet forth and back, right after reading the assign-
ment. Furthermore the relation of programming experience
and the comprehension of the traits syntax was investigated.
As shown in Table I, task completion time is not correlated
to the programming experience level. While the eye-gaze
behavior indicate the experience level, i.e. typical line-by-line
reading for novice and source code skimming for professional
engineers, viewing patterns explain - to a certain degree - the
causal relationship between task correctness and proficiency
in language paradigms beyond script languages and OOP.
The interviews were analyzed in two ways. The structured
data is shown in the Table I. The summary of post-hoc open
discussion was processed to cluster inferential information and
compiled in the results section.

IV. RESULTS

Eye-gaze behavior analysis, in general, can not only be used
effectively to conclude about the effort in understanding new
language designs, but reveals specific issues in comprehension
of newly introduced concepts. In particular the preliminary
results of the scan path and fixation analysis indicate that
there is a confusion of feature and structure supported
by the common pattern where participants eye-gaze fixations
alternate between the behavioral and the structural elements,
exemplified by participant P1’s insecurity to choose either
TrafficController or OneWayStreet. The surprising result of
this preliminary study is that feature is understood as a
structural element while it’s designed as a behavioral element.
Language users with experience in OOP languages are com-
monly used to read the interface entirely as structural and
behavioral elements can occur at any point in this type of
abstraction. In contrast the traits syntax clearly distinguishes
between structural and behavioral elements. Hence, partici-
pants familiar with multiple language paradigms spot these
abstractions more effectively, see Figure 1, scan path for
participant 6 for example. The results of the post-hoc interview
complement the findings and act as a ground truth: The
feature abstraction was perceived as a new thing. Further-
more the usage of assert and also enumeration in this
context were somewhat surprising for several participants. The
majority of participants found that the preparation time was too
short, and suggested to provide printed language instructions
or online help to learn about language features. Although we
presented a very simple code editor some participants reported
distractions by the editor itself, e.g. the scroll bar. Finally
the post-hoc interviews revealed that participants particular
familiar with the state machines concept perceived the tasks
as highly comprehensible and easy to complete.

V. CONCLUSION AND FUTURE WORK

While specification language comprehensibility can be eval-
uated by expert interviews, eye-tracking reveals valuable and

deep insights into the new language features and related
distractions resulting in high cognitive load. The viewing
pattern analysis indicates that the traits syntax is understood
well by programmers with at least intermediate programming
skills, but the newly introduced language features feature
and structure are frequently confused. As a consequence
it’s worth to repeat the experiments using a more sounding
keyword for the traits syntax, e.g. behavior instead of
feature. As the preliminary results of the study indicate the
knowledge of specific software engineering concepts such as
state machines of traits syntax seem to be crucial for the com-
prehensibility of a new specification language feature. The un-
derstanding of viewing patterns related to this foreknowledge
can not only help to design programming languages targeted to
a specific user group, but help to improve the learning curve by
e.g. custom tooltips in Integrated Development Environment
(IDE) applications.

The future work, therefore, will not only include the repe-
tition of the experiment with more participants, the extension
of the experiment by introducing code authoring tasks and
the improvement of fixation and surface tracking algorithms,
the gaze-to-code mapping algorithm as well as the experi-
mental setup itself, but also the investigation of (real-time)
viewing pattern analysis as feedback for language designers
and prospectively also as an extension of an IDE to support
engineers to learn and/or apply executable specification lan-
guages effectively.

REFERENCES

[1] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide - Specification and
Validation Methods,” pp. 9–36, New York, NY, USA: Oxford University
Press, Inc., 1995.

[2] P. Paulweber, E. Pescosta, and U. Zdun, “CASM-IR: Uniform ASM-
Based Intermediate Representation for Model Specification, Execution,
and Transformation,” in Abstract State Machines, Alloy, B, TLA, VDM,
and Z - 6th International Conference, ABZ 2018, Lecture Notes in
Computer Science 10817, pp. 39–54, Springer, 2018.

[3] U. Obaidellah, M. Al Haek, and P. C.-H. Cheng ACM.
[4] E. Börger and R. Stärk, Abstract State Machines: A Method for High-

Level System Design and Analysis. Springer Science, 2003.
[5] E. Börger, “Why programming must be supported by modeling and

how,” in International Symposium on Leveraging Applications of Formal
Methods, pp. 89–110, Springer, 2018.

[6] N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black, “Traits: Compos-
able units of behaviour,” in European Conference on Object-Oriented
Programming, pp. 248–274, Springer, 2003.

[7] N. D. Matsakis and F. S. Klock II, “The rust language,” in ACM SIGAda
Ada Letters, vol. 34, pp. 103–104, ACM, 2014.

[8] P. Paulweber and U. Zdun, “On the Understandability of Type Abstrac-
tions in Abstract State Machines: A Controlled Experiment,” in (under
review).

[9] M. Bielikova, M. Konopka, J. Simko, R. Moro, J. Tvarozek, P. Hlavac,
and E. Kuric, “Eye-tracking en masse: Group user studies, lab infras-
tructure, and practices,” Journal of Eye Movement Research, vol. 11,
no. 3, 2018.

[10] E. Börger and A. Raschke, Modeling Companion for Software Practi-
tioners. Springer, 2018.

[11] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope, “The effect of poor
source code lexicon and readability on developers’ cognitive load,” in
Proceedings of the 26th Conference on Program Comprehension - ICPC
’18, (New York, New York, USA), pp. 286–296, ACM Press, 2018.

[12] A. Begel and H. Vrzakova, “Eye movements in code review,” in
Proceedings of the Workshop on Eye Movements in Programming, p. 5,
ACM, 2018.

	Introduction
	Background
	Experiment
	Procedure
	Participants
	Analysis

	Results
	Conclusion and Future Work
	References

