
Model-IntegratedQueries for the Analysis of Runtime Events:
A Controlled Experiment

Michael Szvetits
Software Engineering Group

University of Applied Sciences Wiener Neustadt
Wiener Neustadt, Austria

michael.szvetits@fhwn.ac.at

Uwe Zdun
Software Architecture Research Group

University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

ABSTRACT
Models describe a software system on an abstraction level higher
than its actual implementation. Recent research results show that
bringing models and a running system closer together by estab-
lishing traceability links between recorded runtime events and
corresponding model elements improves the analysis performance
of human observers when assessing the behaviour of the running
system. Despite these results, common techniques for analyzing run-
time events are rarely integrated into the models that are used for
assessing the system behaviour from a high-level perspective. This
paper presents a controlled experiment where model-integrated
analysis facilities are compared with a more traditional analysis
approach based on SQL queries to a system’s database in terms of
correctness and completion time of analysis tasks. The results show
that model-integrated analyses allow analysts to give more correct
answers to questions about the system behaviour, but provide no
improvement of the time spent for completing the analysis tasks.

CCS CONCEPTS
• General and reference → Empirical studies; • Software and
its engineering→ Model-driven software engineering.

KEYWORDS
analysis, events, experiment, models, runtime
ACM Reference Format:
Michael Szvetits and Uwe Zdun. 2019. Model-Integrated Queries for the
Analysis of Runtime Events: A Controlled Experiment. In Evaluation and
Assessment in Software Engineering (EASE ’19), April 15–17, 2019, Copenhagen,
Denmark. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3319008.3319010

1 INTRODUCTION
The level of abstraction in software engineering is steadily in-
creasing, which can be observed in the adoption of model-driven
techniques both in academa and industry [26]. These techniques
promise to improve communication, control, reaction to changing
requirements, productivity and maintainability [11].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE ’19, April 15–17, 2019, Copenhagen, Denmark
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7145-2/19/04. . . $15.00
https://doi.org/10.1145/3319008.3319010

Recent research utilizes models not only during the design phase
of a software project, but also at runtime as additional input for the
running system to allow the system to reflect on its own structure
more effectively [1]. This enables the analysis of running systems
on an abstraction level which is closer to the problem space [1].

A previously conducted experiment provides evidence that link-
ing models to the output of a running system improves the analysis
performance of human observers when assessing the behaviour of
the system [24]: Two groups of people analyzed recorded runtime
events with the help of simple textual search capabilities, whereas
only one group was additionally able to utilize traceability links
between the recorded runtime events and the model elements they
originate from. The group using the traceability links achieved a
higher correctness of answers to questions that target the compre-
hension of the system behaviour.

A post-experiment discussion revealed that the participants
could imagine that they would achieve a higher correctness of the
given answers if they would be able to utilize more powerful search
and filter techniques than the ones provided in the experiment. In
the experiment, using only simple search and filter techniques was
essential in order to measure only the effects of the traceability
links. However, a question that could not be answered is how pro-
viding more powerful search and filter techniques would influence
the results. Hence, we investigate this question in this paper.

That is, this paper complements previous research results by
conducting another controlled experiment where the correctness
and completion time of eight questions concerning recorded run-
time information are assessed. The goal of the experiment was to
find out if traceability links between model elements and runtime
events still improve the analysis capabilities of a human observer if
well-established search and filter techniques are provided.

56 students with solid programming, modeling and design expe-
rience were separated in two groups of equal size and had to analyze
runtime events yielded by a robot system. One group, the control
group, was able to utilize SQL and its well-established filter and
aggregation operations to analyze the runtime events. The other
half of the participants, the experiment group, was able to annotate
graphical model elements with queries and thus directly utilize the
traceability links associated with an annotated model element for
the analysis of its related runtime events. Such model-integrated
queries were formulated in a custom query language inspired by
stream-based processing features of mainstream programming lan-
guages [2, 12, 18]. The results show that the experiment group gives
more correct answers to questions about the system behaviour, but
the results show no significant difference between the two groups
with respect to the completion time of the given analysis tasks.

https://doi.org/10.1145/3319008.3319010
https://doi.org/10.1145/3319008.3319010
https://doi.org/10.1145/3319008.3319010

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Michael Szvetits and Uwe Zdun

2 BACKGROUND: MODEL-BASED ANALYSIS
Consider a scenario where a user wants to analyze some high-
level property of a software system, like the overall runtime that
is spent within a modeled component. The goal of model-based
analysis is to monitor runtime events that are relevant for the model
elements of interest (e.g., the start and end events of operations in
the component) and to perform the desired analysis based on those
events (e.g., calculating the average runtime using the time stamps
of the start and end events).

The actual filtering and aggregation of runtime events is often
done by storing them in a database and using well-established
query languages, most notably the Structured Query Language
(SQL). An alternative is the adoption of complex event processing
which is specialized in handling time series of events and data.
Such complex event processing systems come in three flavours
[5]: Publish-subscribe-based systems with high performance and
scalability [6], stream databases [5, 19] and pattern matching based
systems [28, 29]. These approaches have in common that their
underlying query languages are dialects or extensions of SQL.

Although the runtime events are conceptually tightly integrated
with the model elements they originate from, the mentioned query
techniques to filter and aggregate them are usually not. In other
words, they do not utilize traceability links between the model
element of interest and its associated runtime events, and rather
shift the burden of relating them to the analyst manually or in the
formulated queries (e.g., by joining the relevant information in a
SQL statement). The experiment presented in this paper addresses
this fact: We provided SQL-based access to the runtime events for
the control group, as requested in the discussion that followed
our previous experiment [24], and equipped the experiment group
with a custom language that allowed the participants to formulate
equivalently powerful queries directly based on the models and
utilize the traceability links in a more direct way. Since the common
event analysis techniques are somehow related to SQL, it seemed
only natural to compare the model-integrated query approach with
the SQL-based analysis method.

The custom language used by the experiment group considers
the events related to a certain model element as a stream and al-
lows to filter and aggregate this stream in a concise way that can
directly be integrated into graphical modeling environments. The
provided filter and aggregation operations are inspired by the func-
tional programming paradigm that is gradually integrated into
mainstream object-oriented programming languages (e.g., LINQ in
C# [2], streams and lambda expressions in Java [18] and closures
in C++ [12]). Such a model-integrated query language can be used
to analyze the behaviour of a running system on the model level
independent from the concrete meta-model [23].

An example query formulated with the help of the model-based
query language is shown in Figure 1. In the shown case, the analyst
is interested in the events of type Executed that belong to the UML
action named Backtrack. Events have certain properties that can be
accessed and are used in this case to calculate the runtime of a single
execution of the annotated UML action, measured in milliseconds.
The runtime of all such events is summed up to obtain the overall
runtime that was spent in the annotated UML action while the
observed system was up and running. The result of the query is

Figure 1: Sum of events using a model-integrated query

shown next to the query (not depicted in Figure 1), so the analyst
does not need to leave the modeling environment for the analysis.

The language provides various other operations to consecutively
transform, filter, group and aggregate such event streams to obtain
the desired result. Details of the language (e.g., its grammar defini-
tion) and the materials that were handed to the participants of the
experiment (e.g., the database schema used by the control group)
are openly available, as described in the next section.

3 EXPERIMENT DESCRIPTION
The setup of the experimental conditions is based on the exper-
iment design guidelines of Kitchenham et al. [16] who describe
recommended techniques for participant selection, allocation of
participants to groups and minimization of bias throughout the ex-
periment. For the statistical analysis, we relied on the recommenda-
tions of Wohlin et al. [27] to describe the involved independent and
dependent variables, present the collected data, test our hypothe-
ses and report potential validity concerns. However, we diverge
from the exemplary statistical tests mentioned by Wohlin et al.
[27] and instead apply more robust statistical methods to compare
our results, as advised in the recent guidelines on robust statistical
methods for empirical software engineering by Kitchenham et al
[15]. The resources of the experiment are available online1.

3.1 Goal and Hypotheses
The goal of the experiment was to find out if a direct integration
of concise event query facilities into the models of a system (and
thus, the utilization of its associated traceability links) can improve
the analysis capabilities of human users if manual intervention is
inevitable for investigating runtime phenomena. The improvement
of the analysis capabilities was measured via the correctness of
answers to questions about the observed system whose behaviour
was captured using an event log. The participants of both the control
group and the experiment group were provided with UML models
of different types and abstraction levels of a robot system. UML
was a natural choice for this experiment because it is the de-facto
standard for modeling the structure and behaviour of a system
and the participants were familiar in interpreting the various UML
diagrams. More precisely, the following diagrams were provided:

• A use case diagram with 47 model elements for analyzing
high-level scenarios of the software under observation.

• A component diagram with 19 model elements for analyzing
the high-level architecture of the software.

1see: http://jarvis.fhwn.ac.at/controlled-experiment-minq/

http://jarvis.fhwn.ac.at/controlled-experiment-minq/

Model-IntegratedQueries for the Analysis of Runtime Events EASE ’19, April 15–17, 2019, Copenhagen, Denmark

• A package diagram with 8 model elements to support a fine-
grained analysis of one of the components.

• A class diagram with 122 model elements (15 classes with
an average of 6 child elements and 3 associations per class)
showing the structure of a central part of the software.

• A state diagram with 49 model elements showing the states
the system can remain in during execution.

• An activity diagram with 36 model elements showing a com-
plex process in an implementation-agnostic way.

A second goal of the experiment was to measure the difference
between the control group and experiment group with respect to
the time they spent for analyzing the behaviour of the observed
system. For each analysis task, participants were instructed to write
down the time they spent for the respective task as soon as they
perceive their answers to be complete.

3.1.1 Hypotheses. Based on the goals of the experiment, we formu-
late two null hypotheses and corresponding alternative hypotheses
for the experiment:

• H01: Model-integrated queries do not significantly improve
the correctness of given answers about the system behaviour.

• HA1: Model-integrated queries significantly improve the cor-
rectness of given answers about the system behaviour.

• H02: The times spent for analyzing the system behaviour do
not significantly differ if queries are integrated into models.

• HA2: The times spent for analyzing the system behaviour
significantly differ if queries are integrated into models.

3.1.2 Expectations. We expected that the direct integration of con-
cise query facilities into the models of the observed system enables
the analyst a more direct way of selecting the right model elements
and formulating the necessary query expressions for the analysis
task at hand. As a consequence, we expected the experiment results
to indicate the rejection of the null hypothesis H01 and thus the
acceptance of the alternative hypothesis HA1, i.e. model-integrated
queries significantly improve the correctness of given answers
about the system behaviour.

Moreover, we expected that the direct integration of queries
into the models of the observed system allows the analysts of the
experiment group to complete the analysis tasks faster than the
analysts of the control group who utilize more traditional methods.
As a consequence, we expected the experiment results to indicate
the rejection of the null hypothesis H02 and thus the acceptance of
the alternative hypothesisHA2, i.e. the times spent for analyzing the
system behaviour significantly differ if queries are integrated into
models. Note that the second pair of hypotheses is formulated in a
two-sided way, which means that the alternative hypothesis is also
accepted if the experiment group actually performs worse than the
control group with respect to the completion time of analysis tasks.
This allows us to detect the effect if our provided query facilities
are not as accessible as we thought they are.

3.2 Parameters and Variables
Table 1 gives an overview of the observed variables and describes
their scales, units and value ranges. Independent variables were
observed once per participant. Dependent variables were observed
once for each question per participant.

Table 1: Observed Variables of the Experiment

Description Scale Unit Range

Dependent Variables

Correctness Interval Points [0, 1]
Time Interval Minutes [0, 150]

Independent Variables

Group affiliation Nominal N/A Control group,
Experiment group

Programming expe-
rience

Ordinal Years 4 classes:
0, 1-3, 3-7, >8

Programming expe-
rience in industry

Ordinal Years 4 classes:
0, 1-3, 3-7, >8

Software design ex-
perience

Ordinal Years 4 classes:
0, 1-3, 3-7, >8

3.2.1 Dependent Variables. We created eight questions about the
observed system for which the correctness of given answers is
assessed. Each question instructs the participant to create a list of
distinct elements (e.g., a list of error messages) which constitute the
answer. We intentionally avoided open-ended questions because
the assessment of free text answers inherently introduces a certain
amount of bias based on the researcher who actually performs the
assessment. Collecting a distinct list of elements per answer allowed
us to objectively apply metrics from information retrieval systems
which rely on the set of mentioned elements (the answer of the
participant) and the set of expected elements (the preferred solution)
per question [20]. Let Rp,q be the set of elements mentioned by
participant p for question q, and Cq be the expected elements in
the solution for question q, then these metrics are:

Precisionp,q =
|Rp,q ∩Cq |

|Rp,q |
Recallp,q =

|Rp,q ∩Cq |

|Cq |

Precision is the fraction of mentioned elements that are correct.
Recall is the fraction of expected elements that were actually found
[20]. These two metrics are combined using the harmonic mean to
compute the so-called F-measure, our metric for the correctness
whose value range is [0, 1] where 0 denotes the worst and 1 the
best quality of an answer:

Correctnessp,q = Fp,q = 2 ∗
Precisionp,q ∗ Recallp,q

Precisionp,q + Recallp,q

Beside answering the questions, participants were instructed to
write down the start time when beginning to tackle a question, as
well as the end time when they feel that their answer is complete.
They were allowed to write down multiple pairs of start and end
times per questions so they can return to a question at a later time.
The spent time per question can then be calculated by summing up
the differences between such paired start and end time entries. The
maximum time for the overall experiment was 150 minutes.

3.2.2 Independent Variables. Table 1 shows the four independent
variables which were captured during the experiment and poten-
tially influence the outcome of the dependent variables. We mit-
igated the influence of the different types of experiences on the

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Michael Szvetits and Uwe Zdun

dependent variables by conducting the experiment with partici-
pants that have similar education. We also formulated the questions
in a way such that a potential domain experience of participants
provides no significant advantage for answering the questions.

3.3 Experiment Design
We conducted the experiment in a course concerning software
architectures and adaptive software systems at the University of
Applied Sciences Wiener Neustadt in the winter semester 2018.

3.3.1 Subjects. The subjects of the experiment were 56 students
with solid programming experience and knowledge in software and
data(base) modeling. The subjects were randomly assigned to two
groups of equal size, a control group and an experiment group.

3.3.2 Object. The participants of the experiments had to analyze
the events of a robot system that was designed and implemented
independently by five novice software architects two years before
the idea of the experiment emerged. The robot is able to calibrate
itself, follow a user-defined path, receive directions from an exter-
nal operator, solve tasks with predefined strategies and discover its
environment on its own to build a grid-based map of its surround-
ings. The researchers of the experiment were not directly involved
in the construction of the system, but merely adjusted the formats
and representations of the produced project artefacts so they can be
used for the experiment (e.g., the models that were created during
the realization of the system were converted into the format of the
modeling environment where the query facilities are integrated). A
more detailed description of the system and the produced artefacts
can be found in the aforementioned online resources. The system
was chosen for various reasons:

• We had access to the produced artefacts (including trace-
ability links) of the project, thus allowing us to convert and
distribute the required artefacts.

• With 4195 lines of code, the project is small enough for partic-
ipants to comprehend in an experimental setting. However,
the participants were not aware of the simple complexity
because the source code was not provided to them.

• The system can easily be explained during the experiment.
• We considered a robot and its physical interactions as a
motivating system under observation for the participants.

• The project provided six models created with UML, a mod-
eling language the participants had experience with. Since
the models were not created entirely by the researchers,
potential bias could be reduced as much as possible.

3.3.3 Instrumentation. The participants of both the control and
the experiment group received a prepared Eclipse instance showing
the six UML models of the robot system using the Obeo UML
Designer. Participants of the experiment group were able to directly
annotate the elements of those models with the desired queries
using the language presented in Section 2 and observe the results.
This feature was disabled in the Eclipse instances of the control
group. Instead, the control group was provided with a browser-
based interface which allowed the typing of arbitrary SQL queries
in a text box, submitting the queries and observing the results. The
query editors of both groups provided similar features in terms of
syntax highlighting, code completion and error reporting.

Before the experiment started, the participants were introduced
for an hour to their available materials to perform queries on the
events (including using the browser-based interface for the control
group, and formulatingmodel-integrated queries for the experiment
group). Example queries presented during this training phase were
not related to the upcoming experiment in any way.

The queries of both groups operated on the same set of runtime
events. These events were recorded before the experiment by let-
ting the robot perform its functions and writing 154.797 events
to an event log. The large amount of log file entries ensures that
the asked questions could not be answered by exhaustively going
through the log entries, but instead by cleverly applying the pro-
vided filtering and aggregation capabilities. Regarding the types of
recorded events, we relied on a set of reusable event types [23] and
stored the events as serialized Java objects in the event log. We then
inserted the recorded events into a MySQL database whose schema
was a normalized relational equivalent to the object-oriented Java
meta-model of the recorded events, which is shown in Figure 2.
Figure 3 shows an example SQL query that demonstrates how some
elements of the meta-model were mapped to database (cross-)tables
who must be joined together to perform an analysis. Note that
the demonstrated SQL query is equivalent to the model-integrated
query shown in Figure 1. The exact database schema used by the
control group can be found in the aforementioned online resources.
The control group accessed the database for their queries, while
the experiment group accessed the events of the event log directly.

Each participant received a questionnaire to be answered during
the experiment. The first two pages of the questionnaire contained
questions regarding the independent variables (programming expe-
rience, programming experience in industry, and software design
experience) and a short summary of the provided query facilities.
For the control group, this summary contained a database schema
diagram of the stored events. Although the participants of the
control group were proficient in SQL and other database-related
technologies, they were permitted to make use of the online MySQL
language reference to look up the available SQL expressions. For
the experiment group, the summary contained the event meta-
model and the grammar of the query language. The summaries
contained no information that has not already been presented dur-
ing the training phase and were merely designed as reminder for
the participants of how to formulate queries. The third page of
the questionnaire contained the actual questions to be assessed for
correctness and completion time, as summarized in Table 2.

Question Q1 requires the participants to count a specific set of
events. The challenge for the control group was to join the required
tables and filter only the calls that originate from the component
lego.robot and target elements of the component lego.path. The
challenge for the experiment group was to identify the dependency
relationship between the communicating components in the com-
ponent diagram and annotate the respective query.

Question Q2 has similar complexity to question Q1 but requires
both groups to integrate arithmetic operations into their queries
(more precisely, the difference of timestamps between start and
end events of operations to calculate the average runtime). The
annotated model element could be found in the package diagram.

Questions Q3 requires the participants to concatenate data from
multiple filtered events. While SQL provides concatenation out of

Model-IntegratedQueries for the Analysis of Runtime Events EASE ’19, April 15–17, 2019, Copenhagen, Denmark

Figure 2: Meta-model of the events that were recorded and analyzed by the participants of the experiment

SELECT SUM(TIMESTAMPDIFF(SECOND, se.timestamp, ee.timestamp))
FROM EventModelElement eme
 INNER JOIN ModelElement me ON eme.modelElementID = me.ID
 INNER JOIN Event e ON eme.eventID = e.ID
 INNER JOIN Executed ex ON e.ID = ex.eventID
 INNER JOIN Started st ON ex.startedID = st.ID
 INNER JOIN Ended en ON ex.endedID = en.ID
 INNER JOIN Event se ON st.eventID = se.ID
 INNER JOIN Event ee ON en.eventID = ee.ID

WHERE me.name = "backtrack"

Figure 3: Example SQL query that is equivalent to Figure 1

Table 2: Self-developed Questions of the Experiment

ID Description

Q1 Analyze the coupling of the components lego.robot and
lego.path by measuring the count of calls between them.

Q2 Measure the average runtime of methods within package
lego.robot.behaviour.

Q3 What exceptions did occur in package lego.robot.behaviour
(give a comma-separated list of all the exception messages).

Q4 Calculate the average amount of cells per grid. You can
achieve this by dividing the respective instantiation counts.

Q5 Measure how often the class Arbiter is accessing each sub-
type of the interface Behaviour (hint: use grouping).

Q6 What was the rightmost cell of a grid? Give the column
index and the timestamp when the cell got its highest
column value.

Q7 How many percent of the given tasks could the robot solve
automatically?

Q8 Measure the percentage of time that backtracking takes in
relation to the whole discovery activity.

the box, the experiment group had to fold over the filtered data and
concatenate the error messages in a programmatic way.

Questions Q4, Q7 and Q8 are challenging for both groups since
they require the participants to relate filtered events that belong
to multiple model elements. For the experiment group, this means
to annotate multiple model elements and carefully formulate the
query on multiple streams of events.

Question Q5 requires the participants to perform grouping in
their queries according to the receiver type of data exchanges be-
tween two classes. Like in question Q3, participants of the experi-
ment group must fold over the resulting groups to get the answer.

Question Q6 requires the participants to filter events that de-
scribe the change of values and aggregate them according to the
desired property that has been changed. The property must be iden-
tified using the class diagram that was provided to the participants.

3.4 Experiment Execution
The participants were randomly assigned to the control and experi-
ment group. After assignment, the groups consisted of 28 partici-
pants each. The robot system, the available query techniques and
the upcoming tasks (but not the experiment questions themselves)
were explained to the participants in the aforementioned training
phase. The training phase also included a time slot of 15 minutes for
the participants to get familiar with the provided query facilities.
None of the participants knew the observed system.

After the training phase, the questionnaires were handed to the
participants and the questions explained. The time limit of 150 min-
utes was communicated to the participants after the explanation
of the questionnaire. All participants had exactly the same type
of computer on which the modeling environments were prepared
before the experiment. The usage of private computers was prohib-
ited during the experiment. The questionnaire had to be filled out
directly on the questionnaire paper.

The experiment was completed without deviations from the
experiment design. No participants dropped out prematurely before
the end of the experiment. The experiment was conducted in two
lecture rooms containing the prepared computer systems. One
experimenter was stationed per room to prevent participants from
using forbidden materials and resolve potential questions.

After the time limit, the experimenters collected the question-
naires and offered the participants an informal discussion about
the conducted experiment to obtain additional feedback. The dis-
cussion had no influence on the results presented in this paper, but
helped us to track down potential weaknesses in the experiment
design and to understand the various solution strategies used by the
participants which were not written down on the questionnaires.

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Michael Szvetits and Uwe Zdun

Programming Programming (Industry) Software Design

0 1−3 3−7 >8 0 1−3 3−7 >8 0 1−3 3−7 >8

0

2

4

6

8

10

12

14

16

18

20

22

24

N
um

be
r

of
 P

ar
tic

ip
an

ts

Figure 4: Experiences of the control group (left bars, blue)
and the experiment group (right bars, red) in year intervals.

4 EXPERIMENT RESULTS
4.1 Descriptive Statistics
Figure 4 shows the level of experience as declared by the partici-
pants in the questionnaire. The random assignment of the partici-
pants to the control and experiment groups led to an almost perfect
separation with respect to their experience levels. Based on this
data, we believe that none of the groups could draw a significant
advantage from the random assignment of the participants. Note
that the software design experience also encompasses database
design experience, which is important for the control group.

Figure 5 shows the correctness of answers and the completion
times that were achieved by the participants. Since questionsQ1,Q2,
Q4, Q7 and Q8 required the participants to give a single answer, the
F-measure for the correctness is effectively either 0 (wrong answer)
or 1 (correct answer). As a consequence, we reported the number of
correct answers per group instead of the mean F-measures for those
questions. The figure shows that the experiment group achieved
a higher correctness for all questions except Q3, although not sig-
nificantly for all questions. The control group especially struggled
with questions Q2 and Q8 compared to the experiment group.

A comparison of the completion times in Figure 5 shows a diverse
picture. The control group needed more time to find the answers for
questions Q1 and Q2, but completed the questions Q3 and Q6 faster
than the experiment group. Both groups achieved similar results
for the rest of the questions. Note that the completion time is not
an indicator for the quality of an answer: Participants were not
instructed to answer the questions as fast as possible, but instead to
write down the times if they feel that their answers are complete.

4.2 Handling of Outliers
All participants provided reasonable answers for the questions. If an
answer to a question was completely missing, the correctness was
assumed to be zero since the participant could not find the correct
answer. Regarding the completion time, we could only assess time
entries that were actually written down on the questionnaire (i.e., if
a participant skipped a question and did not write any time down,
we could not include it in our results). All in all, we excluded none
of the 56 participants while compiling the results in this paper.

Table 3: Statistical Tests for the Correctness (F-measure)

ID Control Group Experiment Group p-Value
Correct Incorrect Correct Incorrect

Q1 18 10 25 3 0.02751
Q2 8 20 19 9 0.00347
Q4 17 11 26 2 0.00477
Q7 13 15 18 10 0.14112
Q8 7 21 15 13 0.02716

Mean Std.Dev. Mean Std.Dev.

Q3 0.66045 0.38515 0.62644 0.40428 0.43703
Q5 0.35799 0.44687 0.50567 0.48719 0.08474
Q6 0.40476 0.48311 0.42857 0.50395 0.41166
All 0.45915 0.48226 0.65491 0.46344 2.45e-06

4.3 Hypothesis Testing
We tested the hypotheses formulated in Section 3.1.1 by using robust
statistical methods, as advised in the recent guidelines by Kitchen-
ham et al [15]. These methods do not assume a specific distribution
of the data and which are solid alternatives to traditional methods
of comparing means like the t-test [8] or the Wilcoxon Rank-Sum
Test [17] which rely on a preceding step of analyzing the normality
of data. We used a significance level of α = 0.05 for all our tests. We
used the R programming language and its accompanied packages
gdata, ggplot2, orddom and reshape2 to obtain the results shown in
this paper. The R script can be found in the online resources.

For comparing the correctness between the control and the ex-
periment groups, we applied two different methods: Since questions
Q1, Q2, Q4, Q7 and Q8 only distinguish between correct and wrong
answers, we applied one-tailed Fisher’s exact tests [7] to compare
the proportions of correct answers for those questions. The one-
tailed Fisher’s exact test works reasonable well for all sample sizes
and states in its null hypothesis that the proportion of correct an-
swers achieved by the control group is equal to or greater than the
proportion achieved by the experiment group.

For all other questions, we relied onCliff’sδ [3], a non-parametric
test with solid performance for all sample sizes whose null hypothe-
sis states that the control group achieved a correctness that is equal
to or greater than the correctness achieved by the experiment group.
We also applied Cliff’s δ when comparing the completion time, but
as a two-tailed test to reflect the structure of the hypotheses H02
and HA2 presented in Section 3.1.1.

The results of comparing the correctness is shown in Table 3.
Numbers written in bold indicate that the p-value of a test is lower
than the significance level, thus suggesting to reject the null hypoth-
esis and assume that the experiment group achieved a significantly
higher correctness than the control group. This is the case for the
questions Q1, Q2, Q4 and Q8. We also applied Cliff’s δ to all ques-
tions together to obtain a comparison of the correctness for the
whole experiment. This result also indicates a significantly better
performance of the experiment group.

The results of comparing the completion time is shown in Ta-
ble 4. Numbers written in bold indicate that the p-value of a test
is lower than the significance level, thus suggesting to reject the

Model-IntegratedQueries for the Analysis of Runtime Events EASE ’19, April 15–17, 2019, Copenhagen, Denmark

Q1 Q2 Q4 Q7 Q8

CG EG CG EG CG EG CG EG CG EG

0

2

4

6

8

10

12

14

16

18

20

22

24

26

N
um

be
r

of
 C

or
re

ct
 A

ns
w

er
s

Q3 Q5 Q6

CG EG CG EG CG EG

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
C

or
re

ct
ne

ss
 (

F
−

m
ea

su
re

)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

CG EG CG EG CG EG CG EG CG EG CG EG CG EG CG EG

0
2
4
6
8

10
12
14
16
18
20
22
24
26

M
ea

n
T

im
e

(M
in

ut
es

)

Figure 5: Correctness and mean time per question achieved by the control group (CG) and the experiment group (EG).

Table 4: Statistical Tests for the Time (Minutes)

ID Control Group Experiment Group p-Value
Mean Std.Dev. Mean Std.Dev.

Q1 19.57143 13.40378 7.64286 5.70389 3.49e-08
Q2 26.28571 11.28046 18.17857 9.87722 0.00089
Q3 10.82143 6.17074 17.71429 11.09173 0.00504
Q4 10.23077 5.66609 10.75000 9.00463 0.45337
Q5 18.55000 10.33377 22.48148 11.35568 0.19162
Q6 7.14286 3.23103 14.71429 7.23286 5.32e-07
Q7 10.36364 7.71236 8.96154 6.64217 0.36033
Q8 12.35294 6.20424 10.39130 7.01776 0.19303

All 15.09290 10.76355 13.91388 10.00540 0.26102

Table 5: Cliff’s δ for the Correctness and the Time

FCG vs. FEG TimeCG vs. TimeEG

p1 = PS(X > Y) 0.18708 0.51476
p2 = PS(X = Y) 0.40521 0.03595
p3 = PS(X < Y) 0.40770 0.44929

δ 0.22062 -0.06547
sδ 0.04770 0.05816
z 4.62571 -1.12561

CI (low) 0.14083 -0.17823
CI (hiдh) 0.29757 0.04899

p 2.45e-06 0.26102

null hypothesis and assume that the experiment group achieved a
significantly different completion time than the control group. This
is the case for the questions Q1, Q2, Q3 and Q6. We also applied
Cliff’s δ to all questions together to obtain a comparison of the
completion time for the whole experiment. This result shows no
significant difference in the completion time per question. The miss-
ing difference of the completion times between the two groups can
also be observed when looking at the density of the time needed for
answering a question, as shown in Figure 6. The curves of the two
groups almost overlap each other, so they behaved very similarly
in terms of getting confident that their answers are complete.

0.00

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30 35 40 45 50 55

Time for Answering a Question (Minutes)

D
en

si
ty

Control Group

Experiment Group

Figure 6: Density of the time for answering a question.

More insight into Cliff’s δ for the correctness and the completion
time over all questions is shown in Table 5 with the following values:

• p1 is the probability that a participant randomly chosen
from the control group has a higher score (i.e., correctness or
completion time) than a randomly chosen participant from
the experiment group.

• p2 is the probability of equal scores between the two ran-
domly chosen participants of the two groups.

• p3 is the probability that the randomly chosen participant of
the experiment group is superior.

• Cliff’s δ , which is defined as δ = p3 − p1.
• sδ is the estimate of the standard deviation of Cliff’s δ .
• z is the z-score of Cliff’s δ .
• CI denotes the confidence interval of Cliff’s δ .
• p is the probability of z, as already shown in Tables 3 and 4.

5 INTERPRETATION
Table 3 indicates that the experiment group performed significantly
better than the control group for half of the questions. Although not
significantly, the experiment group also performed better than the
control group for the other questions aswell, with questionQ3 being
the exception. The experiment group also achieved a significantly
better correctness than the control group if taking all questions
together into account. As a result, we argue that the hypothesis

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Michael Szvetits and Uwe Zdun

H01 has to be rejected and the alternative hypothesis HA1 holds:
Model-integrated queries significantly improve the correctness of
given answers about the system behaviour.

The control group especially struggled with finding the correct
answers to the questions Q2 and Q8. Question Q2 required the
control group to utilize specific SQL functions to obtain the time
difference for the calculation of the average runtime. It is possible
that participants applied the function in a wrong way, or struggled
to look up the mechanics of the needed SQL functions in general,
as indicated by the significant difference of the completion time
for this question. Regarding question Q8, the control group might
have struggled with formulating the joins needed for processing
the events of multiple model elements. The experiment group could
visually combine multiple event streams, which might have helped
in this regard. This also applies to the questions Q4 and Q7 where
the experiment group performed better (significantly for Q4).

Except the questions Q2 and Q8, the results show no perfectly or
exceptionally badly achieved correctness of one group compared
to the other, so we think that the difficulty of the questions was
feasible. Overall, it seems that the stream-based abstraction and its
query language provides a better conceptual model for correctly
assessing model-based events than its relational counterpart.

The comparison of the completion times shows that in the ma-
jority of cases there exists no significant difference between the
control group and the experiment group. There are four questions
that indicate a noticeable difference, but two of them are in favour
of the control group and the other two in favour of the experiment
group. This mixed result suggests that the null hypothesis H02 can-
not be rejected: The times spent for analyzing the system behaviour
do not significantly differ if queries are integrated into models.

This is against our expectation described in Section 3.1.2. It seems
that the expected advantage of model-integrated queries is some-
what mitigated by the fact that participants had to apply filters and
aggregations in an unfamiliar way. Interpreting the completion time
of question Q1 is rather vague, since the participants could have
a familiarization phase for the first question beyond the regular
training phase where they did not know the questionnaire before-
hand (again, note that participants were not instructed to work as
fast as they can). Nevertheless, the experiment group completed
the question Q1 significantly faster than the control group, likely
because the annotation of the component dependency is faster than
realizing how this model element manifests itself in the relational
variant. As mentioned above, the difference for question Q2 could
result from the application of specific SQL functions.

For the questions Q3, Q5 and Q6, it took the experiment group
longer to gain confidence of their answers. The questions Q3 and
Q5 require the experiment group to apply grouping and folding,
two of the more complex operations to filter and aggregate events.
Question Q6 requires the experiment group to apply filtering, fold-
ing and a type conversion which must be formulated carefully. The
solutions required by the control group for the questionsQ3,Q5 and
Q6 have predefined SQL counterparts for those operations. Overall,
the control group and experiment group achieved similar results in
terms of getting confident that their answers are complete.

6 THREATS TO VALIDITY
We analyze the validity of our research results in four dimensions
[4]: Construct validity discusses the adequateness of the applied
research techniques with respect to the goals of the experiment.
Internal validity refers to the degree to which the observed results
really follow from the collected data due to correct elimination
of confounding variables. External validity discusses the general-
izability of the obtained research results to scenarios beyond the
experimental setup. Conclusion validity refers to the statistical va-
lidity of conclusions that are drawn from the observed variables.

6.1 Construct Validity
A potential threat to validity is the selection of certain query mecha-
nisms that were provided to the experiment participants. Regarding
the experiment group, we argue that the provided query language
meets the trend of integrating query features inspired by functional
programming into mainstream programming languages (e.g., LINQ
in C# [2], streams and lambda expressions in Java [18] and closures
in C++ [12]) and that the language could be applied adequately
using the programming knowledge of the participants. Regarding
the control group, we argue that the capabilities of SQL are well-
established for data analysis beyond the scope that was necessary to
answer the questions in the experiment. SQL-based extensions like
the ones provided by complex event processing approaches would
require a deeper level of preliminary knowledge for the participants
which cannot be guaranteed easily in an experimental setting.

In a realistic setup, the running system would provide a con-
stant stream of events which are observed by the analyst. One
could argue that the event log does not adequately represent such
a scenario because it provides a fixed number of events that are
available for the analysis. We argue that analyses of log files is still
widely adopted [14] and that the difference between streaming and
constantly writing to the event log is merely a question of perfor-
mance. The questionnaire of the experiment was formulated in a
way that is independent from the actual source of events, and the
event recording performance was not one of the observed variables.

Another threat is that the questionnaire might not include ques-
tions that are relevant to real world situations. We argue that the
questions are geared towards analysis tasks that often occur in
practice, like fault analysis (see Q3), efficiency measurements (see
Q2, Q7 and Q8), dependability analysis (see Q1 and Q5) and general
domain analysis (see Q4 and Q6). However, this threat cannot be
eliminated completely since the questions in an experiment should
be generalizable to realistic scenarios, but at the same time be con-
strained in a way that they can be answered by the participants
under experimental conditions in a limited amount of time.

6.2 Internal Validity
A possible threat to internal validity is the missing compliance of
participants with the rules of the experiment. We organized the
experiment in a way such that at least one experimenter was always
present while the experiment lasted, so we consider the threat of
such misbehaviour going unnoticed as non-existent. Moreover, the
experimenters regularly checked the questionnaires of the partici-
pants in an unobtrusive manner, e.g. to check if there are two noted
start times without one of them having a noted end time.

Model-IntegratedQueries for the Analysis of Runtime Events EASE ’19, April 15–17, 2019, Copenhagen, Denmark

Regarding the fact that the system under observation was im-
plemented by software architects known to the university where
the experiment took place, one could argue that there might have
been some information leak between the developers of the observed
system and the participants, or an introduction of bias by the re-
searchers. This risk is negligible because the observed system was
designed and implemented independently by the five novice soft-
ware architects two years before the idea of the experiment even
emerged. The researchers were not involved in the construction of
the system, but merely adjusted the formats of the produced project
artefacts so they can be used for the experiment. To further reduce
researcher bias, we designed the anonymized questionnaire in away
such that every question requires a list of distinct answers which
can easily be verified objectively with the help of the F-measure
instead of a subjective grading system for the correctness.

One threat to validity that cannot be eliminated is the variation
in human performance which results from fatigue effects while
conducting the experiment. Since the experiment had a time limit
of two and a half hours and the participants achieved a mean com-
pletion time of about 15 minutes per question (recall Table 4), we
do not consider fatigue as a distorting factor: The extrapolated
time for the eight questions is thus about two hours, meaning that
the participants were able to complete the questionnaire without
stress. Moreover, the participants assured in the post-experiment
discussion that the time limit was not a hindering factor.

6.3 External Validity
Analyzing the events of only one system introduces the risk that
the experiment results are specific to the examined case or the gen-
eralizability is limited to the examined domain. There is a trade-off
between choosing a very generic system which hardly fits a do-
main and a system which covers a specific interesting domain that
motivates the participants to carefully answer the given questions.
We think that the robot system is motivating for the participants,
while at the same time the majority of questions target analysis
tasks which are not tied to the robotic domain. Moreover, the robot
system is small enough for participants to comprehend in the given
time, but at the same time produces enough events so that it is im-
possible for participants to answer the questions by just browsing
through all the recorded events. However, a complete elimination
of the threat can only be achieved by multiple experiments using
systems of different sizes and domains.

Another threat is that only selected techniques were provided
for the participants. We argue that the query language and its syn-
tax used by the experiment group meets the trend of integrating
functional programming features into mainstream languages and
incorporates many features of other query languages like OCL
and VQL. Regarding the control group, using SQL to query event
data is a common approach in practice. The inclusion and com-
parison of SQL was actually suggested by the participants from
our preceding experiment [24]. We believe that we achieved a fair
comparison, however, a perfect generalization to arbitrary query
tools and techniques is simply not possible in a single experiment.

The experiment participants were students with solid program-
ming and design experience, but limited professional experience.
We designed the questionnaire in a way such that the experience

only plays a minimal role in answering the questions, but the po-
tential threat to validity regarding the generalizability to analysts
in general cannot be ignored. A replication of our study with dif-
ferent query mechanisms as well as analysts with varying levels of
technical knowledge would provide additional insights, especially
with respect to the adequateness of the proposed query language.

6.4 Conclusion Validity
A threat to validity might occur if the questionnaire can be an-
swered very easily or is hardly impossible to solve by one of the
groups. Our results show that the control and experiment groups
neither achieved extraordinary good or bad results in relation to
each other, which is a good sign that the questions enable a fair
comparison between the groups. Distracting elements (i.e., possible
wrong answers) in both the models and the recorded events ensured
that the participants had to actively identify the required model
elements and filter the 154.797 events to find the correct answers.

The amount of events also ensured that guessing or finding
the right answer by chance was nearly impossible. The questions
had no predefined answers to choose from, so participants were
required to actively search for answers. It is highly doubtful that the
statistical results were distorted by pure luck of the participants.

Regarding the statistical validity, we relied on objective tech-
niques from information retrieval systems instead of subjective
ad-hoc assessments by human analysts. Our selected statistical
methods – Cliff’s δ [3] and Fisher’s exact test [7] – do not rely on
specific assumptions of the data distributions, work for all sample
sizes and are solid alternatives to comparing means using the t-
test [8] or the Wilcoxon Rank-Sum Test [17]. However, although
Fisher’s exact test is applicable for all sample sizes, the statisti-
cal validity might be affected by the sample size of 56 participants.
Replications of the study with practitioners and systems of different
domain and size would strengthen the significance of our findings.

7 RELATEDWORK
There exists various experimental evaluations that investigate the
impact of traceability links on the comprehension of a software
system. Shahin et al. [22] used architectural design decisions as
traceability information from the problem space to the solution
space. They performed a controlled experiment which indicated
that visualizations of architectural design decisions (using the tool
Compendium [21]) improve the correctness of understanding archi-
tecture design. Like in our experiment, they also concluded that the
provided traceability mechanism does not increase the time needed
to perform the analysis tasks. In contrast to our experiment, the
analysis of the dynamic system behaviour is out of the scope.

Haitzer and Zdun [10] measured the supportive effect of archi-
tectural components diagrams for design understanding of novice
architects. The results show that traceability links between com-
ponents and their source code improve the comprehension of the
system. Two other controlled experiments cocnluded that trace-
ability links between architectural models and their corresponding
source codes improved the comprehension of the observed system
[13]. These experiments demonstrate the usefulness of traceability
links for software comprehension, but the analysis of the dynamic
system behaviour is not focused in these works either.

EASE ’19, April 15–17, 2019, Copenhagen, Denmark Michael Szvetits and Uwe Zdun

Tran et al. [25] propose a model-driven approach that supports
traceability links between process development artefacts of service-
oriented architectures at different levels of granularity and abstrac-
tion. The implemented framework promises improved change im-
pact analysis, artefact understanding, change management and
propagation, but does not utilize relationships between the model
elements and the produced runtime information. Furthermore, their
approach is fixed on the scope of service-oriented architectures.

However, there also exists research results in terms of under-
standing an observed system without the help of traceability links.
Gravino et al. [9] assessed the comprehension of object-oriented
source code if UML class and sequence diagrams are provided to
the analyst. The results show an average improvement of 12% in
solving the given comprehension tasks if the analyst is able to uti-
lize the UML models that were created during the design phase
of the system. Again, this result demonstrates that models help to
analyze a software system, but does not indicate an improvement
of the comprehension of the dynamic behaviour of a system.

8 CONCLUSIONS
In this paper we describe the design, execution and results of a
controlled experiment whose goal was to find out if query facilities
that are integrated into models can improve the analysis perfor-
mance of human users when observing the behaviour of a system.
The improvement of the performance was assessed by comparing
the achieved correctness and completion time of a questionnaire
between two groups, one using traditional database-based queries
and one using the experimental model-integrated queries. The re-
sults provide evidence that model-integrated queries indeed allow
analysts to give more correct answers to questions about the system
behaviour, but provide no improvement of the time spent for com-
pleting the analysis tasks. We assume that the improvement of the
completion times achieved by the experiment group is mitigated
by the fact that filter and aggregation operations had to be applied
in an unfamiliar way.

REFERENCES
[1] Gordon Blair, Nelly Bencomo, and Robert B. France. 2009. Models@ run.time.

Computer 42, 10 (Oct. 2009), 22–27. https://doi.org/10.1109/MC.2009.326
[2] James Cheney, Sam Lindley, and Philip Wadler. 2013. A Practical Theory of

Language-integratedQuery. In Proceedings of the 18th ACMSIGPLAN International
Conference on Functional Programming (ICFP ’13). ACM, New York, NY, USA,
403–416. https://doi.org/10.1145/2500365.2500586

[3] Norman Cliff. 1996. Ordinal Methods for Behavioral Data Analysis. Erlbaum.
https://books.google.at/books?id=bIJFvgAACAAJ

[4] Thomas D. Cook and D.T. Campbell. 1979. Quasi-experimentation: design &
analysis issues for field settings. Rand McNally College. https://books.google.at/
books?id=68HynQEACAAJ

[5] Alan J. Demers, Johannes Gehrke, Biswanath Panda, Mirek Riedewald, Varun
Sharma, and Walker M. White. 2007. Cayuga: A General Purpose Event Monitor-
ing System. In CIDR’07. 412–422.

[6] Françoise Fabret, H. Arno Jacobsen, François Llirbat, Joăo Pereira, Kenneth A.
Ross, and Dennis Shasha. 2001. Filtering Algorithms and Implementation for
Very Fast Publish/Subscribe Systems. SIGMOD Rec. 30, 2 (May 2001), 115–126.
https://doi.org/10.1145/376284.375677

[7] Ronald Aylmer Fisher. 1925. Statistical Methods For Research Workers. Edinburgh
Oliver & Boyd.

[8] William Sealy Gosset. 1908. The Probable Error of a Mean. Biometrika 6, 1 (March
1908), 1–25. http://dx.doi.org/10.2307/2331554 Originally published under the
pseudonym “Student”.

[9] Carmine Gravino, Giuseppe Scanniello, and Genoveffa Tortora. 2015. Source-code
Comprehension Tasks Supported by UML Design Models. J. Vis. Lang. Comput.
28, C (June 2015), 23–38. https://doi.org/10.1016/j.jvlc.2014.12.004

[10] Thomas Haitzer and Uwe Zdun. 2013. Controlled Experiment on the Supportive
Effect of Architectural Component Diagrams for Design Understanding of Novice
Architects. In Proceedings of the 7th European Conference on Software Architecture
(ECSA’13). Springer-Verlag, Berlin, Heidelberg, 54–71. https://doi.org/10.1007/
978-3-642-39031-9_6

[11] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen.
2011. Empirical assessment of MDE in industry. In Software Engineering (ICSE),
2011 33rd International Conference on. 471–480. https://doi.org/10.1145/1985793.
1985858

[12] Jaakko Järvi and John Freeman. 2010. C++ Lambda Expressions and Closures.
Sci. Comput. Program. 75, 9 (Sept. 2010), 762–772. https://doi.org/10.1016/j.scico.
2009.04.003

[13] Muhammad Atif Javed and Uwe Zdun. 2014. The Supportive Effect of Traceability
Links in Architecture-Level Software Understanding: Two Controlled Experi-
ments. In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on. 215–224.
https://doi.org/10.1109/WICSA.2014.43

[14] Dileepa Jayathilake. 2012. Towards structured log analysis. In Computer Science
and Software Engineering (JCSSE), 2012 International Joint Conference on. 259–264.
https://doi.org/10.1109/JCSSE.2012.6261962

[15] Barbara A. Kitchenham, Lech Madeyski, David Budgen, Jacky Keung, Pearl Brere-
ton, Stuart Charters, Shirley Gibbs, and Amnart Pohthong. 2017. Robust Statistical
Methods for Empirical Software Engineering. Empirical Software Engineering 22,
2 (01 Apr 2017), 579–630. https://doi.org/10.1007/s10664-016-9437-5

[16] Barbara A. Kitchenham, Shari Lawrence Pfleeger, Lesley M. Pickard, Peter W.
Jones, David C. Hoaglin, Khaled El Emam, and Jarrett Rosenberg. 2002. Prelim-
inary Guidelines for Empirical Research in Software Engineering. IEEE Trans.
Softw. Eng. 28, 8 (Aug. 2002), 721–734. https://doi.org/10.1109/TSE.2002.1027796

[17] Henry B. Mann and Donald R. Whitney. 1947. On a Test of Whether one of Two
Random Variables is Stochastically Larger than the Other. Ann. Math. Statist. 18,
1 (03 1947), 50–60. https://doi.org/10.1214/aoms/1177730491

[18] HaiTao Mei, Ian Gray, and Andy Wellings. 2016. Real-Time Stream Processing
in Java. In Reliable Software Technologies – Ada-Europe 2016, Marko Bertogna,
Luis Miguel Pinho, and Eduardo Quiñones (Eds.). Springer International Publish-
ing, Cham, 44–57.

[19] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath Babu,
Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and Rohit Varma.
2002. Query Processing, Resource Management, and Approximation in a Data
Stream Management System. Technical Report 2002-41. Stanford InfoLab. http:
//ilpubs.stanford.edu:8090/549/

[20] Cornelis Joost van Rijsbergen. 1979. Information Retrieval (2nd ed.). Butterworth-
Heinemann, Newton, MA, USA.

[21] Mojtaba Shahin, Peng Liang, and Mohammad Reza Khayyambashi. 2010. Ratio-
nale Visualization of Software Architectural Design Decision Using Compendium.
In Proceedings of the 2010 ACM Symposium on Applied Computing (SAC ’10). ACM,
New York, NY, USA, 2367–2368. https://doi.org/10.1145/1774088.1774577

[22] Mojtaba Shahin, Peng Liang, and Zengyang Li. 2011. Architectural Design Deci-
sion Visualization for Architecture Design: Preliminary Results of a Controlled
Experiment. In Proceedings of the 5th European Conference on Software Architec-
ture: Companion Volume (ECSA ’11). ACM, New York, NY, USA, Article 2, 8 pages.
https://doi.org/10.1145/2031759.2031762

[23] Michael Szvetits and Uwe Zdun. 2015. Reusable event types for models at runtime
to support the examination of runtime phenomena. In 2015 ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and Systems
(MODELS). 4–13. https://doi.org/10.1109/MODELS.2015.7338230

[24] Michael Szvetits and Uwe Zdun. 2016. Controlled Experiment on the Com-
prehension of Runtime Phenomena Using Models Created at Design Time. In
Proceedings of the ACM/IEEE 19th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS ’16). ACM, New York, NY, USA, 151–161.
https://doi.org/10.1145/2976767.2976768

[25] Huy Tran, Uwe Zdun, and Schahram Dustdar. 2011. VbTrace: using view-
based and model-driven development to support traceability in process-driven
SOAs. Software & Systems Modeling 10, 1 (2011), 5–29. https://doi.org/10.1007/
s10270-009-0137-0

[26] Jon Whittle, John Hutchinson, and Mark Rouncefield. 2014. The State of Practice
in Model-Driven Engineering. IEEE Software 31, 3 (May 2014), 79–85. https:
//doi.org/10.1109/MS.2013.65

[27] Claes Wohlin, Martin Höst, and Kennet Henningsson. 2003. Empirical Research
Methods in Software Engineering. In Empirical Methods and Studies in Software
Engineering, Reidar Conradi and AlfInge Wang (Eds.). Lecture Notes in Computer
Science, Vol. 2765. Springer Berlin Heidelberg, 7–23. https://doi.org/10.1007/
978-3-540-45143-3_2

[28] Eugene Wu, Yanlei Diao, and Shariq Rizvi. 2006. High-performance Complex
Event Processing over Streams. In Proceedings of the 2006 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’06). ACM, New York, NY,
USA, 407–418. https://doi.org/10.1145/1142473.1142520

[29] Detlef Zimmer and Rainer Unland. 1999. On the semantics of complex events in
active database management systems. InData Engineering, 1999. Proceedings., 15th
International Conference on. 392–399. https://doi.org/10.1109/ICDE.1999.754955

https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1145/2500365.2500586
https://books.google.at/books?id=bIJFvgAACAAJ
https://books.google.at/books?id=68HynQEACAAJ
https://books.google.at/books?id=68HynQEACAAJ
https://doi.org/10.1145/376284.375677
http://dx.doi.org/10.2307/2331554
https://doi.org/10.1016/j.jvlc.2014.12.004
https://doi.org/10.1007/978-3-642-39031-9_6
https://doi.org/10.1007/978-3-642-39031-9_6
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1016/j.scico.2009.04.003
https://doi.org/10.1016/j.scico.2009.04.003
https://doi.org/10.1109/WICSA.2014.43
https://doi.org/10.1109/JCSSE.2012.6261962
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1109/TSE.2002.1027796
https://doi.org/10.1214/aoms/1177730491
http://ilpubs.stanford.edu:8090/549/
http://ilpubs.stanford.edu:8090/549/
https://doi.org/10.1145/1774088.1774577
https://doi.org/10.1145/2031759.2031762
https://doi.org/10.1109/MODELS.2015.7338230
https://doi.org/10.1145/2976767.2976768
https://doi.org/10.1007/s10270-009-0137-0
https://doi.org/10.1007/s10270-009-0137-0
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1109/MS.2013.65
https://doi.org/10.1007/978-3-540-45143-3_2
https://doi.org/10.1007/978-3-540-45143-3_2
https://doi.org/10.1145/1142473.1142520
https://doi.org/10.1109/ICDE.1999.754955

	Abstract
	1 Introduction
	2 Background: Model-based Analysis
	3 Experiment Description
	3.1 Goal and Hypotheses
	3.2 Parameters and Variables
	3.3 Experiment Design
	3.4 Experiment Execution

	4 Experiment Results
	4.1 Descriptive Statistics
	4.2 Handling of Outliers
	4.3 Hypothesis Testing

	5 Interpretation
	6 Threats to Validity
	6.1 Construct Validity
	6.2 Internal Validity
	6.3 External Validity
	6.4 Conclusion Validity

	7 Related Work
	8 Conclusions
	References

