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Abstract—We consider the SDN network update problem in
which a controller wants to update the routes of k (unsplittable)
flows from their old paths to the new paths, consistently, i.e.,
without temporary congestion. As updates communicated by
the controller take effect asynchronously, the challenge is to
perform these updates fast, i.e., using a minimal number of
rounds (controller interactions). We present the first fast, i.e.,
polynomial-time solution for scheduling such congestion-free
network updates, for two flows and in the node ordering model.
We also show that the problem is already NP-hard for six flows.
We complement our formal results with simulations.

I. INTRODUCTION

Emerging software-defined communication networks pro-
vide direct and “algorithmic” control over the forwarding rules
of nodes (i.e., routers and switches) and hence the network
routes. The resulting routes are not restricted to follow only
shortest paths and moreover, they can be flexibly adapted
over time, e.g., depending on certain events in the dataplane.
Indeed, there are many reasons why flows may need to be
rerouted [14], including security and policy changes (e.g.,
suspicious traffic is rerouted via a firewall), traffic engineering
optimizations, reactions to changes in the demand, mainte-
nance work, failures, etc.

Implementing route changes however is challenging, since
updating a route usually involves the distribution of new
(forwarding) rules across the asynchronous communication
network, and since even during such route changes, it is
important to maintain certain safety properties. In particu-
lar, the routes of flows should be changed without causing
any congestion, without using packet tagging, and without
introducing temporary forwarding loops. For example, in a
Software Defined Network (SDN), rules are communicated
by the remote software controller. Therefore, updates have to
be distributed in rounds, in which switches acknowledge the
next batch of updates [26, 27, 32]. This approach is known as
the node-ordering approach [14], which is attractive as it does
not require extra packet header and router memory space.

This introduces a scheduling problem: In which order to
update the different forwarding rules for the different flows
and switches over time, such that these safety properties
are maintained at any time? And how to schedule these
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Fig. 1: The flow rerouting problem: Example.

updates such that the rerouting time (and number of controller
interactions) is minimized?

A. A Simple Example

Figure 1 gives an example of the flow rerouting prob-
lem. We want to schedule the rerouting of 2 flows in a 5-
node network, connecting nodes {s, u, v, w, t} with 7 edges
{{s, u}, {s, w}, {u,w}, {u, v}, {v, w}, {v, t}, {w, t}}. In this
example, both flows originate at s and end at t: The first flow
is indicated in red and the second flow in blue.

Each of the two flows has an original (“old”) route and a
new route, which it should be updated to. We indicate the
original route with a solid line and the new route with a
dashed line. For example, the original route of the red flow is
(s, u, v, t) and needs to be updated to (s, w, t). The original
route of the blue flow is (s, w, t) and needs to be updated to
(s, u, w, v, t).

In other words, each flow defines an update pair, consisting
of two routes (the original and the new one): Acordingly,
updates are denoted using tuples, i.e., (v,B) means that we
activate all inactive (dashed) outgoing blue edges (the new
forwarding rules) of vertex v and deactivate all of its active
(solid) outgoing blue edges (the old forwarding rules).

In this example, we assume that both flows consume 1
unit of bandwidth on each link they traverse. Both flows
are unsplittable. Accordingly, we annotate the network edges
in the figure with two numbers, x

y , where x denotes the
bandwidth consumed by the two flows on the corresponding
edge before rerouting and y denotes the edge capacity.

How to reroute the two flows from their old paths to their
new paths in a congestion-free manner? In this example,
initially, we cannot perform the update (s,R), since the redISBN 978-3-903176-16-4 c© 2019 IFIP



flow combined with the existing blue flow would violate the
capacity on edge (s, w) (the flow would also be invalid because
the forwarding rule for the red flow at w is not ready yet and
hence it cannot reach t anymore).

So the first part of an update schedule should look like this,
where the updates in this sequence are performed one-by-one:

(u,B), (s,B), (w,R), (s,R), . . .

One valid sequence is the following:

(u,B), (s,B), (w,R), (s,R), (u,R), (v,R), (v,B), (w,B)

But this schedule requires 8 rounds, updating only one vertex
for one flow at a time.

A faster update sequence schedules multiple updates in a
single round, if possible without introducing congestion: Up-
dates that are scheduled for the same round are asynchronous
and can occur in any order, and hence, need to be performed
carefully. The following schedule requires 4 rounds and is the
shortest valid congestion-free flow rerouting solution for our
example:

(u,B), {(s,B), (v,B), (w,R)},
(s,R), {(u,R), (v,R), (w,B)}

A rigorous formal model for this problem will be given later
in this paper.

B. Our Contributions

This paper initiates the study of polynomial-time scheduling
algoritms to reroute flows in a congestion-free manner and
fast. In particular, we contribute the first polynomial-time
algorithm to compute shortest rerouting schedules for two
flows, requiring that for each flow the union of the new and
the old paths is acyclic. It is already known that for general
flow graphs, even for two flows, the problem is NP-hard [1].
In fact, our algorithm runs in (deterministic) linear time; its
runtime is hence asymptotically optimal.

We show that this is almost as good as one can hope
for when investing only polynomial time algorithms: we
rigorously prove that even deciding whether a congestion-free
reroute schedule exists is NP-hard, already for six flows. In
other words, we provide an almost tight characterization of
the polynomial-time solvability of the problem.

C. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II presents a formal model for the problem studied in this
paper. Section III describes and analyzes a polynomial-time
update scheduling algorithm for two flows and Section IV
presents the hardness proof for six flows. We present simu-
lation results in Section V. After reviewing related work in
Section VI, we conclude our contribution in Section VII.

II. A RIGOROUS FORMAL MODEL

This section presents a rigorous formal model for the fast
congestion-free flow rerouting problem introduced intuitively
in Figure 1. The problem can be described in terms of edge
capacitated directed graphs. In what follows, we will assume
basic familiarity with directed graphs and we refer the reader
to [4] for more details. We denote a directed edge e with head
v and tail u by e = (u, v). For an undirected edge e between
vertices u, v, we write e = {u, v}; u, v are called endpoints
of e.

For ease of presentation and without loss of generality, we
consider directed graphs with only one source vertex (where
flows will originate) and one terminal vertex (the flows’ sink).
We call this graph a flow network. The forwarding rules that
define the paths considered in our problem, are best seen as
flows in a network. We will be interested in rerouting flows
such that natural notions of consistency are preserved, such as
loop-freedom and congestion-freedom. In particular, we will
say that a set of flows is valid if the edge capacities of the
underlying network are respected.

Definition 1 (Flow Network, Flow, Valid Flow Sets). A flow
network is a directed capacitated graph G = (V,E, s, t, c),
where s is the source, t the terminal, V is the set of vertices
with s, t ∈ V , E ⊆ V × V is a set of ordered pairs known as
edges, and c : E → N a capacity function assigning a capacity
c(e) to every edge e ∈ E. An (s, t)-flow F of demand d ∈ N is
a directed path from s to t in a flow network such that d ≤ c(e)
for all e ∈ E(F ). Given a set of (s, t)-flows F = {F1, . . . , Fk}
with demands d1, . . . , dk respectively, we call F a valid flow
set, or simply valid, if c(e) ≥

∑
i : e∈E(Fi)

di.

Recall that we consider the problem of how to reroute a
current (old) flow to a new flow, and hence we will consider
such flows in “update pairs”:

Definition 2 (Update Flow Pair). An update flow pair P =
(F o, Fu) consists of two (s, t)-flows F o, the old flow, and Fu,
the update (or new) flow, both having demand d. Accordingly,
by P = {P1, . . . Pk}, we denote a family of update flow pairs.

The update flow network is a flow network (the underlying
edge capacitated graph) together with a valid family of flow
pairs. For an illustration, recall the initial network in Figure 1:
The old flows are presented as the directed paths made of solid
edges and the new ones are represented by the dashed edges.

A flow can be rerouted by updating the outgoing edges
of the vertices along its path (the forwarding rules), i.e., by
blocking the outgoing edge of the old flow and by allowing
traffic along the outgoing edge of the new flow (if either of
them exists). If these two edges coincide, there are no changes.
In order to ensure transient consistency, the updates of these
outgoing edges need to be scheduled over time: this results in
a sequence which can be partitioned into update rounds.

Definition 3 (Resolving Updates, Update Sequence). Given
G = (V,E,P, s, t, c) and an update flow pair P =
(F o, Fu) ∈ P of demand d, we consider the activation label



αP : E(F o ∪Fu)× 2V×P → {active, inactive}. For an edge
(u, v) ∈ E(F o ∪ Fu) and a set of updates U ⊆ V × P , αP
is defined as follows:

αP ((u, v), U) =

 active, if (u, P ) /∈ U, (u, v) ∈ E(F o),
active, if (u, P ) ∈ U, (u, v) ∈ E(Fu),
inactive, otherwise.

The graph:

α(U,G) = (V, {e ∈ E |∃i ∈ [k] s.t. αPi(e, U) = active})

is called the U -state of G and we call any update in U
resolved.

An update sequence R = (r1, . . . , r`) is an ordered parti-
tion of V ×P . For every i ∈ [`] we define Ui =

⋃i
j=1 rj and

consider the activation label αiP (e) = αP (e, Ui) for every
update flow pair P = (F o, Fu) ∈ P of demand d and edge
e ∈ E(F o ∪ Fu).

Let (u, P ) be some update. When we say that we want to
resolve (u, P ), we mean that we target a state of G in which
(u, P ) is resolved. In most cases this will mean to add (u, P )
to the set of already resolved updates.

With a slight abuse of notation, let define αP (U,G) =
(V (F o) ∪ V (Fu), (E(F o) ∪ E(Fu)).

In the definition of an update sequence, ri for i ∈ [`] is
a round. We define the initial round r0 = ∅. Recall that we
consider unsplittable flows which travel along a single path.
The following will clarify how active edges are to be used.

Definition 4 (Transient Flow, Transient Family). Given a valid
family P = {P1, . . . Pk} of update flow pairs with demands
d1, . . . , dk respectively, and a set of updates U ⊆ V × P . A
flow pair P ∈ P is transient for U , if αP (U,G) contains
a unique valid (s, t)-flow TP,U . Similarly, P is a transient
family for a set of updates U ⊆ V × P , if and only if every
P ∈ P is transient for U .

In short, the transient flows look like a path of active edges
for flow F , which starts at the source vertex and ends at the
terminal vertex. Note that there may be some active edges
connected to this path, but they cannot be used to route the
flow since TP,U is unique after resolving U . The collection
of the transient flows corresponding to the transient family is
a snapshot of a valid updating scenario. Whenever we say a
path p “routes” a flow F , we mean that all edges of path p
are active for flow F .

In each round ri, any subset of updates of ri resolved
without considering the remaining updates of ri should al-
low a transient flow for every flow pair. This models the
asynchronous nature of the implementation of the update
commands in each round.

Definition 5 (Consistency Rule). Let R = (r1, . . . , r`) be an
update sequence and i ∈ [`]. We require that for any S ⊆
ri,USi := S∪

⋃
i−1 rj , there is a family of transient flow pairs.

Definition 6 (Valid Update). An update sequence R is valid,
or feasible, if every round ri ∈ R obeys the consistency rule.

Note that we do not forbid any edge e ∈ E(F oi ∩ Fui )
and we never activate or deactivate such an edge. Starting
with an initial update flow network, these edges will be active
and remain so until all updates are resolved. Hence there are
vertices v ∈ V with either no outgoing edge for a given flow
pair F at all; or v has an outgoing edge, but this edge is used
by both the old and the update flow of F . We will call such
updates (v, P ) empty.

Empty updates do not have any impact on the actual
problem since they never change any transient flow. Hence
they can always be scheduled in the first round and thus
w.l.o.g. we can ignore them in the following. Let us now define
the main problem which we consider in this paper.

Definition 7 (k-NETWORK FLOW UPDATE PROBLEM). Given
an update flow network G with k update flow pairs, is there a
feasible update sequence R? The corresponding optimization
problem is: What is the minimum ` such that there exists a
valid update sequence R using exactly ` rounds?

Finally, we introduce some preliminaries. Let G =
(V,E,P, s, t, c) be an update flow network consisting of two
flow pairs P 1, P 2, such that each flow pair is an acyclic graph.

Let Pi = (F oi , F
u
i ) be an update flow pair of demand

d. Let v1, . . . , vk be the topological order of vertices in
the graph G[F o ∪ Fu], denoted by ≺. Let {z1, . . . , zt} be
the intersection of F o and Fu w.r.t. the above topologi-
cal order. The subgraph of F oi ∪ Fui induced by the set
{v ∈ V (F oi ∪ Fui ) | zj ≺ v ≺ zj+1}, j ∈ [t− 1], is called the
jth block of the update flow pair Fi, or simply the jth i-block.
We will denote this block by bij .

For a block b, we define S (b) to be the start of the block,
i.e., the smallest vertex w.r.t. ≺; similarly, E (b) is the end of
the block: the largest vertex w.r.t. ≺.

Let G = (V,E,P, s, t, c) be an update flow network with
P = {P1, . . . , Pk} and let B be the set of its blocks. Let
b be an i-block and Pi the corresponding update flow pair.
For a feasible update sequence R, we will denote the round
R(S (b), Pi) by R(b). We say that i-block b is updated, if all
edges in b ∩ Fui are active and all edges in b ∩ F oi \ Fui are
inactive.

III. A FAST SCHEDULING ALGORITHM

This section presents an elegant, linear-time and determin-
istic algorithm to compute shortest update schedules for two
flows.

Let G = (V,E,P, s, t, c) be an update flow network where
(V,E) is the union of the DAGs implied by the flow pairs. Let
P = {B,R} be the two update flow pairs with B = (Bo, Bu)
and R = (Ro, Ru) of demands dB and dR. As in the previous
section, we identify B with blue and R with red.

We say that an I-block b1 is dependent on a J-block b2,
I, J ∈ {B,R}, I 6= J , if there is an edge e ∈ (E(b1) ∩
E(Iu)) ∩ (E(b2) ∩ E(Jo)), but c(e) < dI + dJ . In fact, to
update b1, we either violate capacity constraints, or we update
b2 first in order to prevent congestion. In this case, we write
b1 → b2 and say that b1 requires b2.



We say a block b is a free block, if it is not dependent
on any other block. A dependency graph of G is a graph
D = (VD, ED) for which there exists a bijective mapping
µ : V (D) ↔ B(G), and there is an edge (vb, vb′) in D if
b→ b′. Clearly, a block b is free if and only if it corresponds
to a sink in D.

We propose the following algorithm to check the feasibility
of the flow rerouting problem.

Algorithm 1. Feasible 2-Flow DAG Update
Input: Update Flow Network G

1) Compute the dependency graph D of G.

2) If there is a cycle in D, return impossible to update.

3) While D 6= ∅ repeat:
i Update all blocks which correspond to the sink

vertices of D, in the number of rounds from
Corollary 1.

ii Delete all of the current sink vertices from D.

Recall that empty updates can always be scheduled in the
first round, even for infeasible problem instances. So for
Algorithm 1 and all following algorithms, we simply assume
these updates to be scheduled together with the non-empty
updates of round 1.

Figure 2 gives an example of an update flow network on a
DAG and illustrates the block decomposition and its value to
finding a feasible update sequence.

Suppose R is a feasible update sequence for G. We say that
a c-block b w.r.t. R = (r1, . . . , r`) is updated in consecutive
rounds, if the following holds: if some of the edges of b are
activated/deactivated in round i and some others in round j,
then for every i < k < j, there is an edge of b which is
activated/deactivated.

We reiterate the following two lemmas from [1] (Lemmata
4 and 5).

Lemma 1. Let b be a c-block. Then in a feasible update
sequence R, all vertices (resp. their outgoing c flow edges) in
Fuc ∩b−S (b) are updated strictly before S (b). Moreover, all
vertices in b−Fuc are updated strictly after S (b) is updated.

Lemma 2. Given any feasible (not necessarily shortest) up-
date sequence R, there is a feasible update sequence R′ which
updates every block in at most 3 consecutive rounds.

From the above lemmas, we immediately derive a corollary
regarding the optimality in terms of the number of rounds:
the 3 rounds feasible update sequence.

Corollary 1. Let b be any c-block with |E(b ∩ F oc )| ≥ 2 and
|E(b ∩ Fuc )| ≥ 2. Then it is not possible to update b in less
than 3 rounds: otherwise it is not possible to update b in less
than 2 rounds.

Next we show that if there is a cycle in the dependency
graph, then it is impossible to update any flow.

Lemma 3. If there is a cycle in the dependency graph, then
there is no feasible update sequence.

Proof. Suppose that there exists a cycle in the dependency
graph. Without loss of generality, we can assume that this
is the only cycle in the dependency graph as we can always
remove vertices without creating new dependencies. Then it is
not possible to update the cycle. For the sake of contradiction,
suppose that there is a feasible update order; then there
is a feasible update order in which blocks are updated in
consecutive (distinct) rounds. But in this order, one of the
vertices in the dependency graph (a block) should be earlier
than the others. This is impossible due to dependency on other
vertices.

We will now slightly modify Algorithm 1 to create a new
algorithm which not only computes a feasible sequence R for
a given update flow network in polynomial time, whenever it
exists, but which also ensures that R is as short as possible (in
terms of number of rounds). For any block b, let c(b) denote
its corresponding flow pair.

Algorithm 2. Optimal 2-Flow DAG Update
Input: Update Flow Network G

1) Compute the dependency graph D of G.

2) If there is a cycle in D, return impossible to update.

3) If there is any block b corresponding to a sink vertex
of D with (b∩Fuc(b))−S (b) 6= ∅ set i := 2, otherwise
set i := 1.

4) While D 6= ∅ repeat:
i Schedule the update of all blocks b which corre-

spond to the sink vertices of D for the rounds i−1,
i, i+ 1, such that S (b) is updated in round i.

ii Delete all of the current sink vertices from D.

iii Set i := i+ 1.

Theorem 1. An optimal (feasible) update sequence on acyclic
update flow networks with exactly 2 update flow pairs can be
found in linear time.

Proof. Let G denote the given update flow network. In the
following, for ease of presentation, we will slightly abuse
terminology and say that “a block is updated in some round”,
meaning that the block is updated in the corresponding con-
secutive rounds as in the proof of Lemma 2.

We proceed as follows. First, we find a block decomposition
and create the dependency graph of the input instance. This
takes linear time only. If there is a cycle in that graph,
we output impossible (cf Lemma 3). Otherwise, we apply
Algorithm 2. As there is no cycle in the dependency graph
(a property that stays invariant), in each round, either there
exists a free block which is not updated yet, or everything is
already updated or is in the process of being updated. Hence,
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Fig. 2: Example for Algorithm 1. The 2 update flow pairs are red and blue, each of demand 1. The active edges of the respective
colors are indicated as solid lines and the inactive edges are dashed. Each edge in the flow graph is annotated with its current
load (top) and its capacity (bottom). We start by identifying the blue and red blocks. For red there is exactly one such block
r1, since Ro and Ru only coincide in s and t. The blue flow pair on the other hand omits two blocks b1 and b2: Bo and
Bu meet again at w and at t. We observe that b2 can only be updated after r1 has been updated; similarly, r1 can only be
updated after b1 has been updated. An update sequence respecting these dependencies can be constructed as follows. We can
first prepare the blocks by updating the following two out-edges which currently do not carry any flow: (w, red), (u, blue),
and (v, blue). Subsequently, the three blocks can be updated in a congestion-free manner in the following order: Prepare the
update for all blocks in the first round. Then, update b1 in the second round, r1 in the third round, b2 in the fourth round.

if there is a feasible solution (it may not be unique), we can
find one in time O(|G|).

For the optimality in terms of the number of rounds,
consider two feasible update sequences. Let RALG be the
update sequence produced by Algorithm 2 and let ROPT be
a feasible update sequence that realizes the minimum number
of rounds. According to Lemma 1, any block b is updated only
in round S (b).

Suppose there is a block b′ such that rOPT(b
′) < rALG(b

′).
Then let b be the block with earliest update round rALG(b) >
rOPT(b). That is, for every block b′′ with rOPT(b

′′) ≤ rOPT(b),
rOPT(b

′′) ≥ rALG(b
′′) holds. Since S (b) is updated in round

rOPT(b), there are no dependencies for b that are still in place
in this round. Thus, according to the sequence ROPT, b is a
sink vertex of the dependency graph after round rOPT(b) −
1. Furthermore, by our previous observation, every start of
some block has been updated up to this round in the optimal
sequence, and hence it is also already updated in the same
round in RALG. This means that after round rOPT(b) − 1 <
rALG(b)−1, b is a sink vertex of the dependency graph of RALG

as well. Thus, Algorithm 2 would have scheduled the update
of block b in the rounds rOPT(b)− 1, rOPT(b) and rOPT(b) + 1.
Contradiction.

Thus rALG(b) ≤ rOPT(b) for all blocks b. Now let b1, . . . , b`
be the last blocks whose starts are updated the latest under
RALG. If there is some i ∈ [`] such that

∣∣Eobi∣∣ ≥ 2 and
∣∣Eubi∣∣ ≥

2, RALG uses exactly rALG(bi) + 1 rounds; otherwise it is one
round less, by Corollary 1. By our previous observation, none
of these blocks can start later than rALG(bi) and thus rOPT uses
at least as many rounds as Algorithm 2. Hence the algorithm
is optimal in the number of rounds.

IV. NP-HARDNESS FOR MORE FLOWS

This section shows that the polynomial-time result derived
above cannot be generalized much further: it is NP-hard to
compute a shortest schedule already for six flows, and even
if the pair of old and new path forms a DAG. In fact, we
show that already the decision problem, i.e., whether a feasible
schedule exists, is NP-hard.

Theorem 2. Deciding whether a feasible network update
schedule exists for a given update flow network in which each
flow pair forms a DAG is NP -hard for six flows.

We use a reduction from 3-SAT. Let C be any 3-SAT for-
mula with n variables x1, . . . , xn and m clauses C1, . . . , Cm.
The resulting update flow network is denoted as G(C).

We will create 6 flow pairs: X , X , D1, D2, D3 and B,
each having demand 1. B is the blocking pair: it can by
updated only if all clauses are satisfied. Flows X and X
contain gadgets for all literals, X for positive ones and X for
negative ones. Updating a variable gadget in X corresponds
to assigning the variable value 1 in C. Flow B prevents the



variable gadget to be updated in both X and X , unless all
clauses are satisfied.

Flows D1, D2 and D3 encode clauses of C. Each of these
flows contains a clause gadget linking a clause to one of
its literals. This gadget can be updated only if the literal is
satisfied. Updating a clause gadget in one of those flows will
allow B to be updated.

Now we proceed with the detailed description of the reduc-
tion.

1) Clause gadgets: For every clause i ∈ [m] we introduce
eight vertices: ui, vi and for j ∈ {1, 2, 3} uij and vij .
For j ∈ {1, 2, 3} we add edge (ui, vi) to Do

j and edges
(ui, uij), (u

i
j , v

i
j) and (vij , v

i) to Du
j .

2) Variable Gadgets: For every j ∈ [n], we introduce two
vertices: wj1 and wj2. Let Pj =

{
pj1, . . . , p

j
kj

}
denote the

set of indices of the clauses containing the literal xj and
P j =

{
pj1, . . . , p

j
k′j

}
the set of indices of the clauses

containing the literal xj . Furthermore, let π(i, j) denote
the position of xj in the clause Ci, i ∈ Pj . Similarly,
π(i′, j) denotes the position of xj in Ci′ where i′ ∈ P j .
To Xu and X

u
we add edge (wj1, w

j
2).

To Xo we add the following edges:

• (u
pji
π(pji ,j)

, v
pji
π(pji ,j)

) for all i ∈ {1, . . . , kj},

• (v
pji
π(pji ,j)

, u
pji+1

π(pji+1,j)
) for all i ∈ {1, . . . , kj − 1},

• (wj1, u
pj1
π(pj1,j)

) and (v
pjk
π(pjk,j)

, wj2).

We proceed similarly with X
o

and clauses containing xj .
3) Blocking flow: The goal of flow B is to block update of

wj1, for any j ∈ [n], in both X and X .
To do that we add to Bo the following edges:

• (wj1, w
j
2), for all j ∈ [n],

• (wj2, w
j+1
1 ), for all j ∈ [n− 1].

We also add the following edges to Bu:

• (ui, vi), for all i ∈ [m],
• (vi, ui+1), for all i ∈ [m− 1].

4) Source and Terminal: Now we need to connect all the
gadgets in the flows. The source and the terminal of all
flows will be s and t.
To Do

j and Du
j , for j ∈ {1, 2, 3}, we add the following

edges:

• (vi, ui+1), for all i ∈ [m− 1],
• (s, u1) and (vm, t).

To Xo, Xu, X
o

and X
u

we add the following edges:

• (wj2, w
j+1
1 ), for all j ∈ [n− 1]

• (s, w1
1) and (wn2 , t)

We also add edges (s, w1
1) and (wn2 , t) to Bo and edges

(s, u1) and (vm, t) to Bu.
5) Edges capacity: For all j ∈ [n] we set the capacity of

edge (wj1, w
j
2) to be 2. Also for all i ∈ [m] we set capacity

of edge (ui, vi) to be 3 and capacity of edge (uij , v
i
j), for

j ∈ {1, 2, 3}, to be 1.

For all the other edges, we set their capacity to be 6, that
is, to the number of flows. Therefore they cannot violate
any capacity constraint.

Lemma 4. Given any valid update sequence R for the
above constructed update flow network G(C), the following
conditions hold.

1) For every r < R(s,B) and j ∈ [n] R(wj1, X) > r or
R(wj1, X) > r.

2) For every r ≥ R(s,B) and i ∈ [m] R(ui, D1) < r,
R(ui, D2) < r or R(ui, D3) < r.

Proof. Note that Bo and Bu have no common nodes apart
from s and t. That means that for any r either TB,Ur = Bo

or TB,Ur = Bu. Now we prove both conditions.
1) Let us consider any j ∈ [n]. As r < R(s,B), then

TB,Ur = Bo. The capacity of edge (wj1, w
j
2) is 2 and

it belongs to Bo. Therefore it can be in at most one other
transient flow, so the condition holds.

2) Let us consider any i ∈ [m]. As r ≥ R(s,B), then
TB,Ur = Bu. The capacity of edge (ui, vi) is 3 and it
belongs to Bu. Therefore it can be in at most two other
transient flows, so the condition holds.

Proof. Now we are ready to prove Theorem 2. First, let us
assume that C is satisfiable and we will construct valid update
sequence for G(C). Let σ be an assignment satisfying C. Then
the update sequence for G(C) is as follows.

1) For every j ∈ [n], if σ(xj) = 1 then resolve (wj1, X),
otherwise resolve (wj1, X).

2) For every clause Ci at least one of the edges (ui1, v
i
1),

(ui2, v
i
2) and (ui3, v

i
3) is neither in TX,rf2−1 nor TX,rf2−1.

So the update of ui can be resolved in the corresponding
flow D1, D2 or D3 (this follows from σ being satisfying
assignment).

3) As every i ∈ [m] edge (ui, vi) is used by at most 2 flows,
we can resolve every update in Bu, resolving (s,B) as
the last one.

4) For every j ∈ [n], resolve either (wj1, X) or (wj1, X),
depending on which one was not resolved in step 1.

5) For every i ∈ [m] resolve updates of ui in flows D1, D2

and D3 (those that have not been resolved in step 2).
6) Resolve the remaining updates in all flows.
Now let us assume that there is a valid update sequence σ

for G(C). We will show that C is satisfiable by constructing
satisfying assignment σ.

Let us consider round r = σ(s,B). We assign values in the
following way. For j ∈ [n], if σ(w1, X) < r then σ(xj) := 1
and if σ(w1, X) < r then σ(xj) := 0. If both σ(w1, X) > r
and σ(w1, X) > r we assign to xj an arbitrary value. By
Condition 1 of Lemma 4 this is a correct assignment, that is
no variable is assigned two values.

We want to prove that this assignment satisfies σ. Let us
consider any clause Ci. By Condition 2 of Lemma 4 at least
one of (ui, D1), (ui, D2) or (ui, D3) is updated before round



r. That means that at least for one of variables xj in Ci
σ(wj1, X) < r, if Ci contains literal xj , or σ(wj1, X) < r,
if Ci contains literal xj . This means that Ci is satisfied by xj
in σ.

V. EMPIRICAL RESULTS

In order to gain insights into the actual number of rounds
needed to reroute flows in real networks, we conducted a
simulation study on real network topologies. We also want
to compare the length of the schedules produced by our
algorithm (which provably provides shortest schedules) to
the state-of-the-art algorithm presented in [1] (which only
computes feasible schedules).1 In order to study the need for
fast algorithms, we compare the runtime of our algorithm to
the mathematical programming approach, as it is frequently
used in the literature [14].

We implemented Algorithm 2 using standard C++ libraries
and performed an exhaustive evaluation on over 100 topologies
provided by the Topology Zoo project [22]. We produced
≈ 136 million random update problems in total. In a prepro-
cessing step, the evaluation takes the raw graph and allocates
minimal capacities: set the capacity to 2 for links that carry the
old/update flow paths of both pairs, otherwise set the capacity
to 1.

The program, for every pair of source and destination (s, t),
first computes all the paths from s to t. Next, it iterates
over all possible path pairs (i.e. old and update paths) chosen
independently for each of the two flows (dismissing repeated
path pairs). Each iteration does the following.

1) Performs Line 1 on the path pairs and generates a block
dependency graph D.

2) Enumerates all paths in D and each path P is weighted
as follows.

a) Initialize w(P ) = |P |.
b) Let b1 be the block that corresponds to the last vertex

of P . Set w(P ) = w(P ) + 1 if |E[b1 ∩ Fu(b1)]| > 1.
c) Let b2 be the block that corresponds to the first vertex

of P . Set w(P ) = w(P ) + 1 if |E[b1 ∩ F o(b1)]| > 1.
3) Find the path Pmax = maxP ′ w(P ′) (ties broken arbi-

trarily). Let ` = w(Pmax).
4) For each block b corresponding to a vertex in D apply

` = max(`, |E[b ∩ F o(b)]|+ |E[b ∩ Fu(b)]|+ 1).
At the end, ` will hold the actual number of rounds it takes in
the optimal schedule produced by Algorithm 2. The case 2b
accounts for the preparation (i.e. adding new flow rules) round
of the block scheduled earliest in a chain of dependent blocks
(i.e. current path P ). Similarly, 2c accounts for the cleanup
round (i.e. removal of old flow rules) of the block scheduled
the latest in that chain.

1More specifically, we observe that our Algorithm 1 is a simpler feasibility
algorithm than [1], for two flows: it employs basic batching, which leads to
shorter schedules compared to [1]. We hence use Algorithm 1 as a baseline and
lower bound on the number of rounds needed by the more complex algorithm
in [1].

Eventually, ` is determined either by the chain of dependent
blocks that corresponds to the longest weighted path in D,
or by some single block at Line 4 due to extra prepara-
tion/cleanup rounds consumed by that block.

Minimize R (1)
ROUNDS = {1, .., (|V | − 1).|P |}∑
r∈ROUNDS

xrv,i = 1 ∀i ∈ |P |, v ∈ Pi (2)

y0(u,v),i = 1 ∀(u, v) ∈ F oi (3)

y0(u,v),i = 0 ∀(u, v) ∈ Fui (4)
∀i ∈ [|P |], r ∈ ROUNDS { (5)
xrv,i, forkrv,i, joinrv,i ∈ {0, 1} ∀v ∈ Pi (6)
yr(u,v),i, f

r
(u,v),i ∈ [0, 1] ∀(u, v) ∈ Pi (7)

R ≥ r.xrv,i ∀v ∈ Pi (8)

yr(u,v),i =
∑
r′≤r

xr
′

u,i ∀(u, v) ∈ Fui (9)

yr(u,v),i = 1−
∑
r′≤r

xr
′

u,i ∀(u, v) ∈ F oi (10)

forkrv,i =x
r
v,i ∃w,w′ ∈ Pi :

{
(v, w) ∈ F oi
(v, w′) ∈ Fui

0 else

∀v ∈ Pi (11)

fr(u,v),i ≤ y
r−1
(u,v),i + forkru,i ∀(u, v) ∈ Pi (12)

fr(u,v),i ≤ y
r
(u,v),i + forkru,i ∀(u, v) ∈ Pi (13)

joinrv,i ≤ fr(u,v),i, f
r
(u′,v),i∀v, u, u

′ ∈ Pi :

{
(u, v) ∈ F oi
(u′, v) ∈ Fui

(14)∑
(v,w)∈Pi

fr(v,w),i −
∑

(u,v)∈Pi

fr(u,v),i =
1 + forkrs,i v = s

−(1 + joinrt,i) v = t

forkrv,i − joinrv,i else

∀v ∈ Pi (15)

}∑
i∈[|P |]

fr(u,v),i ≤ C(u,v) ∀r ∈ ROUNDS, (u, v) ∈ E (16)

Fig. 3: Mixed Integer Program for k flow pairs

Our results (see Figure 4a) show that the optimal number of
rounds on the networks vary between 2 and 6. When evaluating
Algorithm 1 on the same input data, we see that the number
of rounds is higher (especially the tail), and spread between 2
and 14 (see Figure 4b).

We also implemented a mixed integer program of this prob-
lem for comparison (Figure 3), as this is the usual approach in
the literature [14]. The runtime, even for two flows, is usually
a few seconds, much longer compared to the results from the
first implementation (≈ 100 microseconds, see Figure 4c).
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Fig. 4: (a) The frequency of each possible number of rounds (in %) in optimal schedules from Algorithm 2, (b) in arbitrary
feasible schedules from Algorithm 1. (c) Distribution of runtime (in microsecond) over all the problem instances from some
of the evaluated graphs.

Next, we describe the formulation in detail. (2): each
schedule variable xrv,i indicates whether a node v is scheduled
to update flow i in round r. (5): repeat the embraced lines
for every pairs Pi and each round r ∈ ROUNDS. (9),(10):
yr(u,v),i indicates whether the link (u, v) is active for pair i
immediately after round r (i.e. active graph). (11): fork nodes
are the nodes at which old and update paths split. A fork
node v acts as a source, doubling its incoming transient flow
i, when it updates the flow during round r (i.e. if forkrv,i is
1). (14): join nodes are nodes at which the old and update
paths meet once again. A join node acts as a sink (if joinrv,i
is 1) when the two in-links both carry the transient flow i
in the transient state of round r. (12),(13): fru,v,i specifies
the transient flow i on a link (u, v). The first terms on the
r.h.s. constraints together state that the link is allowed to be
utilized in the transient state of round r, if it is active before
round r and it remains active during the round. Alternatively,
if the link is deactivating in round r due to the updating fork
node u, then the second term allows the link to be usable in
the transient state. (This, along with Constraint (15) guarantees
there will be no loops on the old out-branch of any updating
fork node.) (15): runs a variable-size transient flow i from s to
t in order to impose st-connectivity in the worst-case transient
state. The flow produced at s is of size 1 and it arrives at t
with the same size. In the meanwhile, any active fork node
(including possibly s) adds one unit to this flow and splits it
into two unit-size flows along both its out-links. Later, a join
node consumes this extra flow by taking away the 1 unit. (16):
the capacity constraints.

Because of a possible cleanup round after a fork node
updates, it is necessary to maintain st-connectivity via both
(old and update) out-links of the fork node, which is ensured
by (15). In other words, no cleanup (i.e. removal of old flow
rules) should occur on the old branch of the fork node in the
same round it reroutes to the new branch.

VI. RELATED WORK

The fundamental problem of how to reroute flows has
recently received much attention in the networking community
and we refer the reader to the recent survey by Foerster et

al. [14] for an overview of the field. Yet, today, and in contrast
to the classic problem of how to route flows [2, 9, 20, 21, 24,
37], we still know surprisingly little about useful algorithmic
techniques for efficient flow rerouting.

There exist several empirical studies motivating our
model [19, 23], however, this literature is orthogonal to ours.
Moreover, many existing consistent network update algorithms
such as [7, 19, 25, 30, 32, 35] require packet tagging and ad-
ditional forwarding rules, which render the problem different
in nature. Mahajan and Wattenhofer [32] initiated the study
of flow rerouting algorithms which schedule updates over
time. The authors also presented first algorithms to quickly
updates routes in a transiently loop-free manner [3, 13, 16],
by maximizing the number of updates per round. A second
line of research focuses on minimizing the number of rounds
of loop-free updates [8, 12, 26–28].

As congestion is known to negatively affect application
performance and user experience, it has also been studied
intensively in the context of flow rerouting problems. The
seminal work by Hongqiang et al. [25] on congestion-free
rerouting has already been extended in several papers, using
static [5, 6, 10, 17, 29, 31, 36, 41], dynamic [19], or time-
based [11, 15, 33, 34, 39, 40] approaches. Vissicchio et
al. presented FLIP [38], which combines per-packet consis-
tent updates with order-based rule replacements, in order to
reduce memory overhead: additional rules are used only when
necessary. Moreover, Hua et al. [18] recently initiated the
study of adversarial settings, and presented FOUM, a flow-
ordered update mechanism that is robust to packet-tampering
and packet dropping attacks. However, none of these papers
present polynomial-time algorithms for rerouting flows with-
out requiring packet tagging.

Our work on polynomial-time algorithms is motivated in
particular by the negative result by Ludwig et al. [27] who
showed that deciding whether a loop-free 3-round update
schedule exists is NP-hard, even in the absence of capacity
constraints. Given this negative result, much prior work typ-
ically resorts to heuristics [39], which however do not come
with any formal guarantees on the quality of the computed
schedule, or to algorithms which have a super-polynomial



runtime [26]. The only exception is the polynomial-time
algorithm by Amiri et al. [1] for acyclic flow graphs, which
however is limited to computing feasible (possibly very long)
update schedules. There are various differences between this
paper and the recent work of Amiri et al.: (1) In contrast to
our work where only flow pairs need to form a DAG, [1]
considers a much more restricted model where the union of
all flows must be acyclic. This restriction allows the authors to
design an FPT algorithm for k flows, whereas in our model the
problem is NP-complete already for six flows. Very different
techniques are required to show hardness. (2) Similarly to [1],
our algorithm relies on a dependency graph that explains the
relation between flows. However, since we aim to compute
schedules only for two flows, we do not require the big
machinery introduced for k flows but can provide a more
elegant algorithm. (3) At the same time, since in contrast to
prior work, we focus on an optimal solution, our model is
more chalelnging and requires new algorithmic ideas.

VII. FUTURE WORK

The main open question of our work concerns the
polynomial-time tractability for 2 < k < 6 flows. These
cases might be very challenging, and currently, we do not have
any insights on how to deal even with three flows. Another
direction for future work regards the study of relevant more
specific networks such as sparse networks.
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