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The Minimum Dominating Set (MDS) problem is a fundamental and challenging problem in distributed

computing. While it is well-known that minimum dominating sets cannot be well approximated locally on

general graphs, over the last years, there has been much progress on computing good local approximations

on sparse graphs, and in particular on planar graphs. In this paper we study distributed and deterministic

MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing

approximation bounds for planar graphs can be lifted to bounded genus graphs and more general graphs,

which we call locally embeddable graphs, and present

(1) a local constant-time, constant-factor MDS approximation algorithm on locally embeddable graphs,

and

(2) a local O(log
∗ n)-time (1+ϵ)-approximation scheme for any ϵ > 0 on graphs of bounded genus.

Our main technical contribution is a new analysis of a slightly modi�ed variant of an existing algorithm

by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct

topological arguments, but on combinatorial density arguments only.
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1 INTRODUCTION
This paper attends to the Minimum Dominating Set (MDS) problem, an intensively studied graph

theoretic problem in computer science in general, as well as in distributed computing.

A dominating set D in a graph G is a set of vertices such that every vertex of G either lies in D
or is adjacent to a vertex in D. Finding a minimum dominating set is NP-complete [19], even on

planar graphs of maximum degree 3 (cf. [GT2] in [14]). Consequently, attention has shifted from

computing exact solutions to approximating near optimal dominating sets. The simple greedy

algorithm computes an lnn approximation of a minimum dominating set [18, 25], and for general

graphs this algorithm is near optimal – it is NP-hard to approximate minimum dominating sets

within factor (1 − ϵ) · lnn for every ϵ > 0 [10].

The approach of algorithmic graph structure theory is to exploit structural properties of restricted

graph classes for the design of e�cient algorithms. For the dominating set problem this has led to
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a PTAS on planar graphs [5], minor closed classes of graphs with locally bounded tree-width [12],

graphs with excluded minors [15], and most generally, on every graph class with subexponential

expansion [16]. The problem admits a constant factor approximation on classes of bounded

arboricity [6] and an O(lnk) approximation (where k denotes the size of a minimum dominating

set) on classes of bounded VC-dimension [8, 13]. On the other hand, is unlikely that polynomial-

time constant factor approximations exist even on K3,3-free graphs [28]. The general goal of

algorithmic graph structure theory is to identify the broadest graph classes on which certain

algorithmic techniques can be applied and hence lead to e�cient algorithms for problems that are

hard on general graphs. These limits of tractability are often captured by abstract notions, such as

expansion, arboricity or VC-dimension of graph classes.

In this paper, we study the distributed time complexity of �nding dominating sets, in the classic

LOCAL model of distributed computing [24]. It is known that �nding small dominating sets locally

is hard: Kuhn et al. [20] show that in r rounds the MDS problem on an n-vertex graphs of maximum

degree ∆ can only be approximated within factor Ω(nc/r
2

/r ) and Ω(∆1/(r+1)/r ), where c is a constant.

This implies that, in general, to achieve a constant approximation ratio, every distributed algorithm

requires at least Ω(
√

logn/log logn) and Ω(log∆/log log∆) communication rounds. The currently

best results for general graphs are by Kuhn et al. [20] who present a (1 + ϵ) ln∆-approximation

in O(log(n)/ϵ) rounds for any ϵ > 0, and by Barenboim et al. [7] who present a deterministic

O((logn)k−1)-time algorithm that provides an O(n1/k )-approximation, for any integer parameter

k ≥ 2.

For sparse graphs, the situation is more promising (an inclusion diagram of the graph classes

mentioned in the following paragraph is depicted in Figure 1, for formal de�nitions we refer to

the referenced papers). For graphs of arboricity a, Lenzen and Wattenhofer [23] present a forest

decomposition algorithm achieving a factor O(a2) approximation in randomized time O(logn),
and a deterministic O(a log∆) approximation algorithm requiring O(log∆) rounds. Graphs of

bounded arboricity include all graphs which exclude a �xed graph as a (topological) minor and in

particular, all planar graphs and any class of bounded genus. Amiri et al. [1] provide a deterministic

O(logn) time constant factor approximation algorithm on classes of bounded expansion (which

extends also to connected dominating sets). The notion of bounded expansion o�ers an abstract

de�nition of uniform sparseness in graphs, which is based on bounding the density of shallow

minors (these notions will be de�ned formally in the next section). Czygrinow et al. [9] show that

for any given ϵ > 0, (1 + ϵ)-approximations of a maximum independent set, a maximum matching,

and a minimum dominating set, can be computed in O(log
∗ n) rounds in planar graphs, which

is asymptotically optimal [22]. Lenzen et al. [21] proposed a constant factor approximation on

planar graphs that can be computed locally in a constant number of communication rounds. A

�ner analysis of Wawrzyniak [31] showed that the algorithm of Lenzen et al. in fact computes

a 52-approximation of a minimum dominating set. Wawrzyniak [30] also showed that message

sizes of O(logn) su�ce to give a constant factor approximation on planar graphs in a constant

number of rounds. In terms of lower bounds, Hilke et al. [17] show that there is no deterministic

local algorithm (constant-time distributed graph algorithm) that �nds a (7 − ϵ)-approximation of a

minimum dominating set on planar graphs, for any positive constant ϵ .

1.1 Our Contributions
The �rst and main contribution of this paper is a deterministic and local constant factor approxi-

mation for MDS on graphs that we call locally embeddable graphs. A locally embeddable graph G
excludes the complete bipartite graph K3,t , for some t ≥ 3, as a depth-1 minor, that is, as a minor

obtained by star contractions, and furthermore satis�es that all depth-1 minors of G have constant
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Fig. 1. Inclusion diagram of sparse graph classes.

edge density. The most prominent locally embeddable graph classes are classes of bounded genus.

Concretely, our result implies that MDS can be O(д)-approximated locally and deterministically

on graphs of (both orientable or non-orientable) genus д. However, also graph classes whose

members do not embed into any �xed surface or which do not even have bounded expansion

can be locally embeddable, e.g. the class of all 3-subdivided cliques is locally embeddable and this

class does not have bounded expansion. However, every locally embeddable class is degenerate.

Apart from generalizing the earlier result of Lenzen et al. [21] for planar graphs to a larger graph

family, we introduce new techniques by arguing about densities and combinatorial properties of

shallow minors only and show that all topological arguments used in [21] can be avoided. The

abstract notion of local embeddability yields exactly the ingredients for these arguments to work

and therefore o�ers valuable insights on the limits of algorithmic techniques. This is a contribution

going beyond the mere presentation of e�cient algorithms for concrete example graph classes.

Our second main contribution is the presentation of a local and deterministic MDS approximation

algorithm with the following properties. Given a graph G from a �xed class C of graphs with

sub-logarithmic expansion, a constant factor approximation of an MDS D and any ϵ > 0, the

algorithm uses O(log
∗ n) rounds and computes from D a (1 + ϵ)-approximate MDS of G (here, the

O-notation hides constants depending on ϵ). Graphs of sub-logarithmic expansion include all

proper minor closed classes, and in particular all classes of bounded genus. Our methods are based

on earlier work of Czygrinow et al. [9]. In combination with our constant-factor approximation on

graphs of bounded genus, we obtain (1 + ϵ)-approximations in O(log
∗ n) communication rounds

on graphs of bounded genus. In combination with Amiri et al.’s result [1] on graphs of bounded

expansion, we obtain (1 + ϵ)-approximations in O(logn) deterministic rounds on graphs of sub-

logarithmic expansion. Again, the abstract notion of sub-logarithmic expansion constitutes the

border of applicability of these algorithmic techniques.

We observe that the methods of Czygrinow et al. [9] for maximum weighted independent set

and maximum matching extend to graphs of sub-logarithmic expansion, however, we focus on the

dominating set problem for the sake of a consistent presentation.

1.2 Novelty
Our main technical contribution is a new analysis of a sligthly modi�ed variant of the elegant

algorithm by Lenzen et al. [21] for planar graphs. As we will show, with a slight modi�cation, the
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algorithm also works on locally embeddable graphs, however, the analysis needs to be changed

signi�cantly. Prior works by Lenzen et al. [21] and Wawrzyniak [31] heavily depend on topological

properties of planar graphs. For example, their analyses exploit the fact that each cycle in a planar

graph de�nes an “inside” and an “outside” region, without any edges connecting the two; this

facilitates a simpli�ed accounting and comparison to the optimal solution. In the case of locally

embeddable graphs, such global, topological properties do not exist. In contrast, in this paper

we leverage the inherent local properties of our low-density graphs, which opens a new door to

approach the problem.

A second interesting technique developed in this paper is based on preprocessing: we show that

the constants involved in the approximation can be further improved by a local preprocessing step.

Another feature of our modi�ed algorithm is that it is �rst-order de�nable. More precisely, there

is a �rst order formula φ(x) with one free variable, such that in every planar graph G the set

D = {v ∈ V (G) : G |= φ(v)} corresponds exactly to the computed dominating set. In particular, the

algorithm can be modi�ed such that it does not rely on any maximum operations, such as �nding

the neighbor of maximal degree.

1.3 Organization
The remainder of this paper is organized as follows. We introduce some preliminaries in Section 2.

The constant-factor constant-time approximation result is presented in Section 3, and the O(log
∗ n)-

time approximation scheme is presented in Section 4. We conclude in Section 5.

2 PRELIMINARIES

Graphs. We consider �nite, undirected, simple graphs. Given a graph G, we write V (G) for its

vertices and E(G) for its edges. Two vertices u,v ∈ V (G) are adjacent or neighbors if {u,v} ∈ E(G).
The degree dG (v) of a vertex v ∈ V (G) is its number of neighbors in G. We write N (v) for the set

of neighbors and N [v] for the closed neighborhood N (v) ∪ {v} of v . For A ⊆ V (G), we write N [A]
for

⋃
v ∈A N [v]. We let N 1[v] := N [v] and N i+1[v] := N [N i [v]] for i > 1. If E ′ ⊆ E, we write NE′(v)

for the set {u ∈ V (G) : {u,v} ∈ E ′}. A graph G has radius at most r if there is a vertex v ∈ V (G)
such that N r [v] = V (G). The arboricity of G is the minimum number of forests into which its

edges can be partitioned. A graph H is a subgraph of a graph G if V (H ) ⊆ V (G) and E(H ) ⊆ E(G).
The edge density of G is the ratio |E(G)|/|V (G)|. It is well known that the arboricity of a graph

is within factor 2 of its degeneracy, that is, maxH ⊆G |E(H )|/|V (H )|. For A ⊆ V (G), the graph G[A]
induced by A is the graph with vertex set A and edge set {{u,v} ∈ E(G) : u,v ∈ A}. For B ⊆ V (G)
we write G − B for the graph G[V (G) \ B].

Bounded depth minors and locally embeddable graphs. A graph H is a minor of a graph G,

writtenH � G , if there is a set {Gv : v ∈ V (H )} of pairwise vertex disjoint and connected subgraphs

Gv ⊆ G such that if {u,v} ∈ E(H ), then there is an edge between a vertex of Gu and a vertex of Gv .

We say that Gv is contracted to the vertex v . If G1, . . . ,Gk ⊆ V (G) are pairwise vertex disjoint

and connected subgraphs of G, then we write G/G1/. . . /Gk for the minor obtained by contracting

the subgraphs Gi (observe that the order of contraction does not matter as the Gi ’s are vertex

disjoint). We call the set {Gv : v ∈ V (H )} a minor model of H in G. We say that two minor models

{G1

v : v ∈ V (H )} and {G2

v : v ∈ V (H )} of H in a graph G disjoint if the sets

⋃
v ∈V (H )V (G

1

v ) and⋃
v ∈V (H )V (G

2

v ) are disjoint.

A star is a connected graph G such that at most one vertex of G , called the center of the star, has

degree greater than one. A graph H is a depth-1 minor ofG if H is obtained from a subgraph ofG by

star contractions, that is, if there is a set {Gv : v ∈ V (H )} of pairwise vertex disjoint stars Gv ⊆ G
such that if {u,v} ∈ E(H ), then there is an edge between a vertex of Gu and a vertex of Gv .
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More generally, for a non-negative integer r , a graph H is a depth-r minor of G, written H �r G ,

if there is a set {Gv : v ∈ V (H )} of pairwise vertex disjoint connected subgraphs Gv ⊆ G of radius

at most r such that if {u,v} ∈ E(H ), then there is an edge between a vertex of Gu and a vertex

of Gv .

We write Kt ,3 for the complete bipartite graph with partitions of size t and 3, respectively. A

graph G is a locally embeddable graph if it excludes K3,t as a depth-1 minor for some t ≥ 3 and if

|E(H )|/|V (H )| ≤ c for some constant c and all depth-1 minors H of G.

More generally, we write ∇r (G) for maxH �rG |E(H )|/|V (H )|. A class C of graphs has bounded
expansion if there is a function f : N → N such that ∇r (G) ≤ f (r ) for all graphs G ∈ C . This is

equivalent to demanding that the arboricity of each depth-r minor of G is functionally bounded

by r . The class C has sub-logarithmic expansion if the bounding function f (r ) ∈ o (log r ). Note

that if every graph G ∈ C excludes a �xed minor, then C has constant expansion, hence classes of

sub-logarithmic expansion generalize proper minor closed classes of graphs. We refer to Figure 1

for the inclusion between the above de�ned classes.

Bounded genus graphs. The (orientable, resp. non-orientable) genus of a graph is the minimal

number ` such that the graph can be embedded on an (orientable, resp. non-orientable) surface

of genus `. We write д(G) for the orientable genus of G and д̃(G) for the non-orientable genus

of G. Every connected planar graph has orientable genus 0 and non-orientable genus 1. In general,

for connected G, we have д̃(G) ≤ 2д(G) + 1. On the other hand, there is no bound for д(G) in

terms of д̃(G). As all our results apply to both variants, for ease of presentation, and as usual in

the literature, we will simply speak of the genus of a graph in the following. We do not make

explicit use of any topological arguments and hence refer to [26] for more background on graphs

on surfaces. We will use the following facts about bounded genus graphs.

The �rst lemma states that graphs of genus д are closed under taking minors.

Lemma 2.1. If H � G, then д(H ) ≤ д(G) and д̃(H ) ≤ д̃(G).

One of the arguments we will use is based on the fact that bounded genus graphs exclude large

bipartite graphs as minors. The lemma follows immediately from Lemma 2.1 and from the fact that

д(Km,n) =
⌈
(m−2)(n−2)

4

⌉
and д̃(Km,n) =

⌈
(m−2)(n−2)

2

⌉
(see e.g. Theorem 4.4.7 in [26]).

Lemma 2.2. If д(G) = д, thenG excludesK3,4д+3 as a minor and if д̃(G) = д̃, thenG excludesK3,2д̃+3

as a minor.

Graphs of bounded genus do not contain many disjoint copies of minor models of K3,3: this is

a simple consequence of the fact that the orientable genus of a connected graph is equal to the

sum of the genera of its blocks (maximal connected subgraphs without a cut-vertex) and a similar

statement holds for the non-orientable genus, see Theorem 4.4.2 and Theorem 4.4.3 in [26].

Lemma 2.3. A graph G contains at most max{д(G), 2д̃(G)} disjoint copies of minor models of K3,3.

Finally, note that graphs of bounded genus have small edge density. It is straightforward to

obtain the following from the generalized Euler formula n − e + f ≤ χ (G) [26] for example see [2].

Lemma 2.4. Every graph with at least 3 vertices satis�es |E(G)| ≤ 3 · |V (G)|+6д(G)−6 and |E(G)| ≤
3 · |V (G)| + 3д̃(G) − 3.

Lemma 2.5. Let G be a class of graphs of genus at most д. Then the degeneracy and edge density of
every graph G ∈ G is bounded by 5

√
д.

Proof. Recall that the degeneracy of a graph G is de�ned as maxH ⊆G |E(H )|/|V (H )|, which in

particular bounds the edge density |E(G)|/|V (G)|. It hence su�ces to bound the degeneracy of G.
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If д = 0 the claim trivially holds, as in this case G is planar and hence maxH ⊆G |E(H )|/|V (H )| ≤ 3

by Lemma 2.1 and Lemma 2.4.

Now assume д ≥ 1 (we prove the lemma for graphs with orientable genus д, the proof for graphs

of non-orientable genus д is analogous). We �x any subgraph H ⊆ G. We may assume that H has

at least 5

√
д vertices, otherwise, the statement is trivially true (as in this case every vertex of H has

degree (inH ) less than 5

√
д). By Lemma 2.1 and Lemma 2.4, we have |E(H )| ≤ 3· |V (H )|+6д(H )−6 ≤

3 · |V (H )| + 6д. This implies |E(H )|/|V (H )| ≤ 3+ 6д/|V (H )| ≤ 3+ 6д/(5
√
д) ≤ 5

√
д, as claimed. �

As an immediate corollary from Lemma 2.1, Lemma 2.2 and Lemma 2.4, we get that if G is a

class of graphs of bounded genus, then G is a class of locally embeddable graphs.

Dominating sets. Let G be a graph. A set D ⊆ V (G) dominates G if all vertices of G lie either

in D or are adjacent to a vertex of D, that is, if N [D] = V (G). A minimum dominating set D is

a dominating set of minimum cardinality (among all dominating sets). The size of a minimum

dominating set of G is denoted γ (G).
f -Approximation. Let f : N → R+. Given an n-vertex graph G and a set D ⊆ V (G), we

say that D is an f -approximation for the dominating set problem, if D is a dominating set of G
and |D | ≤ f (n) · γ (G). An algorithm computes an f -approximation for the dominating set problem

on a class C of graphs if for all G ∈ C it computes a set D which is an f -approximation for the

dominating set problem. If f maps every number to a �xed constant c , we speak of a constant

factor approximation.

Distributed complexity. We consider the standard LOCAL model of distributed computing [24],

see also [29] for a recent survey. A distributed system is modeled as a graph G. At each vertex v ∈
V (G) there is an independent agent/host/processor with a unique identi�er id(v). Initially, each

agent has no knowledge about the network, but only knows its own identi�er. Information about

other agents can be obtained through message passing, i.e., through repeated interactions with

neighboring vertices, which happens in synchronous communication rounds. In each round the

following operations are performed:

(1) Each vertex performs a local computation (based on information obtained in previous

rounds).

(2) Each vertex v sends one message to each of its neighbors.

(3) Each vertex v receives one message from each of its neighbors.

The distributed complexity of the algorithm is de�ned as the number of communication rounds

until all agents terminate. We call a distributed algorithm r -local, if its output depends only on

the r -neighborhoods N r [v] of its vertices. Observe that an r -local algorithm can (trivially) be

implemented in r rounds in the LOCAL model.

3 A CONSTANT LOCAL MDS APPROXIMATION
Let us start by revisiting the MDS approximation algorithm for planar graphs by Lenzen et al. [21],

see Algorithm 1. The algorithm works in two phases. In the �rst phase, it adds all vertices whose

(open) neighborhood cannot be dominated by a small number of vertices (to be precise, by at most

6 vertices) to a set D. It has been shown in [21] that the set D is small (at most 4 times larger

than a minimum dominating set) in planar graphs. In the second phase, the algorithm de�nes a

dominator function dom which maps every vertexv that is not dominated yet by D to its dominator.

The dominator dom(v) of v is chosen arbitrary among those vertices of N [v] which dominate the

maximal number of vertices not dominated yet.

We now propose the following small change to the algorithm. As additional input, we require an

integer c which bounds the edge density of depth-1 minors ofG and we replace the condition |A| ≤ 6
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Algorithm 1 Dominating Set Approximation Algorithm for Planar Graphs [21]

1: Input: Planar graph G

2: (∗ Phase 1 ∗)
3: D ← ∅
4: for v ∈ V (in parallel) do
5: if there does not exist a set A ⊆ V (G) \ {v} such that N (v) ⊆ N [A] and |A| ≤ 6 then
6: D ← D ∪ {v}
7: end if
8: end for

9: (∗ Phase 2 ∗)
10: D ′← ∅
11: for v ∈ V (in parallel) do
12: dG−D (v) ← |N [v] \ N [D]|
13: if v ∈ V \ N [D] then
14: ∆G−D (v) ← maxw ∈N [v] dG−D (w)
15: choose any dom(v) from N [v] with dG−D (dom(v)) = ∆G−D (v)
16: D ′← D ′ ∪ {dom(v)}
17: end if
18: end for
19: return D ∪ D ′

in Line 5 by the condition |A| ≤ 2c . In the rest of this section, we show that the modi�ed algorithm

computes a constant factor approximation on any locally embeddable class of graphs. Note that

the algorithm does not have to compute the edge density of G, which is not possible in a local

manner. Rather, we leverage Lemma 2.4 which upper bounds the edge density for any �xed class

of bounded genus graphs: this upper bound can be used as an input to the local algorithm.

We �rst show that the set D computed in Phase 1 of the algorithm is small. The following lemma

is a straightforward generalization of Lemma 6.3 of [21], which in fact does not use topological

arguments at all.

Lemma 3.1. Let G be a graph and letM be a minimum dominating set of G. Assume that for some
constant c all depth-1 minors H of G satisfy |E(H )|/|V (H )| ≤ c . Let

D B{v ∈ V (G) : there is no set A ⊆ V (G) \ {v} such that N (v) ⊆ N [A] and |A| ≤ 2c}.

Then |D | ≤ (c + 1) · |M |.

Proof. Let H be the induced subgraph ofG withV (H ) = M ∪N [D \M]. Since M is a dominating

set, we can �x for eachv ∈ N [D \M] \ (D∪M) a vertexmv ∈ M that is adjacent tov . Then for each

m ∈ M , the subgraph Gm which consists of the central vertex m and all v ∈ N [D \M] \ (D ∪M)
such thatm =mv and all edges {m,v} is a star. Furthermore, observe that for di�erentm1,m2 ∈ M
the startsGm1

andGm2
are vertex disjoint. We construct a depth-1 minor H̃ of H by contracting the

star subgraphs Gm for m ∈ M into vertices vm . Then (all non-trivial inequalities will be explained
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below)

(c + 1) · |D \M | = (2c + 1) · |D \M | − c · |D \M |

≤
∑

w ∈D\M

dH̃ (w) − |E(H̃ [D \M])| (1)

≤ |E(H̃ )| (2)

≤ c · |V (H̃ )| (3)

= c · (|D \M | + |M |), (4)

and hence |D \M | ≤ c · |M |, which implies the claim.

(1) Letw ∈ D \M . As NG (w) cannot be covered by less than (2c + 1) elements fromV (G) \ {w}
(by de�nition of D), w also has at least (2c + 1) neighbors in H̃ . Hence

∑
w ∈D\M dH̃ (w) ≥

(2c + 1) · |D \M |. On the other hand, every subgraph H̃ ′ of H̃ has at most c · |V (H̃ ′)| edges

(every subgraph of a depth-1 minor is also a depth-1 minor of G and we assume that every

depth-1 minor of G has edge density at most c). Hence H̃ [D \M] has at most c · |D \M |
edges.

(2) Every edge {v,w} ∈ H̃ with v,w ∈ D \ M is counted twice in the sum

∑
w ∈D\M dH̃ (w),

once when we count dH̃ (v) and once when counting dH̃ (w). By subtracting the number of

edges that run between vertices of D \M we get the second inequality.

(3) The third inequality holds by assumption on the density of depth-1 minors of G.

(4) By construction, all vertices of N [D \M] \ D disappear into some star Gm , hence H̃ has

exactly |D \M | + |M | vertices.

�

Assumption 3.2. For the rest of this section, we �x a graph G which is locally embeddable, that is,
G excludes K3,t for some t as depth-1 minor and all depth-1 minors H of G satisfy |E(H )|/|V (H )| ≤ c
for some constant c (hence, Lemma 3.1 can be applied). Furthermore, we �xM and D as in Lemma 3.1.

Let us write R for the set V (G) \ N [D] of vertices which are not dominated by D. The algorithm

de�nes a dominator function dom : R → N [R] ⊆ V (G) \ D. The set D ′ computed by the algorithm

is the image dom(R), which is a dominating set of vertices in R. As R contains the vertices which

are not dominated by D, D ′ ∪ D is a dominating set of G. This simple observation proves that the

algorithm correctly computes a dominating set of G. Our aim is to �nd a bound on |dom(R)|.

We �x an ordering of M asm1, . . . ,m |M | such that the vertices of M ∩D are �rst (minimal) in the

ordering and inductively de�ne a minimal set E ′ ⊆ E(G) such that M is also a dominating set with

respect to E ′ as follows. For i = 1, we add all edges {m1,v} ∈ E(G) with v ∈ N (m1) \M to E ′. If for

some i ≥ 1 we have de�ned the set of edges E ′ which are incident withm1, . . . ,mi , we continue to

add for i + 1 all edges {mi+1,v} ∈ E(G) with v ∈ N (mi+1) \ (M ∪ NE′({m1, . . . ,mi })).

Form ∈ M , let Gm be the star subgraph of G with centerm and all vertices v with {m,v} ∈ E ′.
Let H be the depth-1 minor of G which is obtained by contracting all stars Gm for m ∈ M . This

construction is visualized in Figure 2. In the �gure, solid (undirected) lines represent edges from E ′,
edges incident with m ∈ M which are not in E ′ are dashed. We want to count the endpoints of

directed edges, which represent the dominator function dom.

In the following, we call a directed edge which represents the function dom a dom-edge. We did

not draw dom-edges that either start or end in M . When counting |dom(R)|, we may simply add a

term 2|M | to estimate the number of endpoints of those edges. We also did not draw a dom-edge
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m1

Gm1

m2 m |M |

Fig. 2. The graphs Gm . Solid (undirected) lines represent edges from E ′, directed edges represent the
dominator function dom. Dashed lines represent edges incident withm ∈ M which are not in E ′.

starting in Gm1
. In the �gure, we assume that the vertex m1 belongs to M ∩ D. Hence every

vertexv from N [m1] is dominated by a vertex from D and the function is thus not de�ned on suchv .

However, the vertices of N (m1) may still serve as dominators, as shown in the �gure.

The graph H has |M | vertices and by our assumption on the density of depth-1 minors of G, it

has at most c · |M | edges.

Our analysis proceeds as follows. We distinguish between two types of dom-edges, namely those

which go from one star to another star and those which start and end in the same star. By the

star contraction, all edges which go from one star to another star are represented by a single edge

in H . We show in Lemma 3.3 that each edge in H does not represent many such dom-edges with

distinct endpoints. As H has at most c · |M | edges, we will end up with a number of such edges

that is linear in |M |. On the other hand, all edges which start and end in the same star completely

disappear in H . In Lemma 3.7 we show that these star contractions “absorb” only few such edges

with distinct endpoints.

We �rst show that an edge in H represents only few dom-edges with distinct endpoints. For each

m ∈ M \D, we �x a setCm ⊆ V (G) \ {m} of size at most 2c which dominates NE′(m). The existence

of such a set follows from the de�nition of the set D. Recall that we assume that G excludes K3,t as

depth-1 minor.

Lemma 3.3. Let 1 ≤ i < j ≤ |M |. Let Ni := NE′(mi ) and Nj := NE′(mj ).
(1) Ifmj ∈ M \ D, then

|{u ∈ Nj : there is v ∈ Ni with {u,v} ∈ E(G)}| ≤ 2ct .

(2) Ifmi ∈ M \ D (and hencemj ∈ M \ D), then

|{u ∈ Ni : there is v ∈ Nj with {u,v} ∈ E(G)}| ≤ 4ct .

Proof. By de�nition of E ′, we may assume thatmi < Cmj (mi is not connected to NE′(mj ) and

hence it can be safely removed if it appears in Cmj ). Let c ∈ Cmj be arbitrary. Then there are at

most t − 1 distinct vertices u1, . . . ,ut−1 ∈ (Nj ∩N (c)) such that there arev1, . . . ,vt−1 ∈ Ni (possibly

not distinct) with {uk ,vk } ∈ E(G) for all k , 1 ≤ k ≤ t − 1. Otherwise, we can contract the star with

center mi and branch vertices N (mi ) \ {c} and thereby �nd K3,t as depth-1 minor, a contradiction.

See Figure 3 for an illustration in the case of an excluded K3,3. Possibly, c ∈ Nj and it is connected to

a vertex of Ni , hence we have at most t vertices in Nj ∩N [c]with a connection to Ni . As |Cmj | ≤ 2c ,

we conclude the �rst item.

Regarding the second item, let c ∈ Cmi be arbitrary. If c ,mj , we conclude just as above, that

there are at most t−1 distinct verticesu1, . . . ,ut−1 ∈ (Ni∩N (c)) such that there arev1, . . . ,vt−1 ∈ Nj
(possibly not distinct) with {uk ,vk } ∈ E(G) for all k , 1 ≤ k ≤ t − 1 and hence at most t vertices

in Ni ∩ N [c] with a connection to Nj . Now assume c =mj . Let c ′ ∈ Cmj . There are at most t − 1

distinct vertices u1, . . . ,ut−1 ∈ (Ni ∩ NE (mj )) such that there are vertices v1, . . . ,vt−1 ∈ Nj ∩ N (c)
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(possibly not distinct) with {uk ,vk } ∈ E(G) for all k , 1 ≤ k ≤ t − 1. Again, considering the

possibility that c ′ ∈ Ni , there are at most t vertices in Ni ∩ NE (mj ) with a connection to Nj ∩ N (c).
As |Cmj | ≤ 2c , we conclude that in total there are at most 2ct vertices in Ni ∩ NE (mj ) with a

connection to Nj . In total, there are hence at most (2c − 1)t + 2ct ≤ 4ct vertices of the described

form. �

c1 ∈ C1

uvw

m2m1

=⇒

m2 m1 c1

u v w

Fig. 3. Visualisation of the proof of Lemma 3.3 in the case of excluded K3,3

We write Y for the set of all vertices {u ∈ NE′(mi ) : mi < D and there is v ∈ NE′(mj ), j , i
and {u,v} ∈ E(G)}.

Corollary 3.4. |Y | ≤ 6c2t · |M |.

Proof. Each of the c · |M | many edges in H represents edges between Ni and Nj , where Ni
and Nj are de�ned as above. By the previous lemma, if i < j , there are at most 2ct vertices in Ni ∩Y
and at most 4ct vertices in Nj ∩ Y . Hence in total, each edge accounts for at most 6ct vertices

in Y . �

We continue to count the edges which are inside the stars. First, we show that every vertex has

small degree inside its own star.

Lemma 3.5. Letm ∈ M \ D and let v ∈ NE′(m) \Cm . Then

|{u ∈ NE′(m) : {u,v} ∈ E(G)}| ≤ 2c(t − 1).

Proof. Let c ∈ Cm . By the same argument as in Lemma 3.3, there are at most t − 1 distinct

vertices u1, . . . ,ut−1 ∈ (NE′(m) ∩ N (c)) such that {uk ,v} ∈ E(G) for all k , 1 ≤ k ≤ t − 1. �

Let C B
⋃

m∈M\D Cm . We show that there are only few vertices which are highly connected

to M ∪C . Let Z := {u ∈ NE′(M \ D) : |N (u) ∩ (M ∪C)| > 4c}.

Lemma 3.6.

|Z | < |M ∪C |.

Proof. Assume that |Z | > |M ∪C |. Then the subgraph induced by Z ∪M ∪C has more than

1

2
4c |Z | edges and |Z ∪M ∪C | vertices. Hence its edge density is larger than 2c |Z |/(|Z ∪M ∪C |) >

2c |Z |/(2|Z |) = c , contradicting our assumption on the edge density of depth-1 minors of G (which

includes its subgraphs). �

Finally, we consider the image of the dom-function inside the stars.
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Lemma 3.7. ������ ⋃
m∈M\D

{u ∈ NE′(m) : dom(u) ∈ (NE′(m) \ (Y ∪ Z ))}

������
≤ (2(t − 1) + 4)c |M |.

Proof. Fix some m ∈ M \ D and some u ∈ NE′(m) with dom(u) ∈ NE′(m) \ (Y ∪ Z ). Be-

cause dom(u) < Y , dom(u) is not connected to a vertex of a di�erent star, except possibly for vertices

from M . Because dom(u) < Z , it is however connected to at most 4c vertices from M ∪C . Hence it is

connected to at most 4c vertices from di�erent stars. According to Lemma 3.5, dom(u) is connected

to at most 2c(t − 1) vertices from the same star. Hence the degree of dom(u) is at most 4c + 2c(t − 1).

Because u preferred to choose dom(u) ∈ NE′(m) overm as its dominator, we conclude thatm has

at most 4c + 2c(t − 1) E ′-neighbors. Hence, in total there can be at most (2(t − 1) + 4)c · |M | such

vertices. �

We are now ready to put together the numbers.

Lemma 3.8. If all depth-1 minors H of G have edge density at most c and G excludes K3,t as
depth-1 minor, then the modi�ed algorithm computes a 6c2t + (2t + 5)c + 4 approximation for the
minimum dominating set problem on G.

Proof. Since M is a dominating set also with respect to the edges E ′, it su�ces to

bound |{dom(u) : u ∈ (NE′[M\D]\N [D])}|. This set is partitioned into the following (not necessarily

disjoint) sets. First, all endpoints of dom(R) that go from one star to another star are found in one of

the sets Y = {u ∈ NE′(mi ) : there isv ∈ NE′(mj ), i , j and {u,v} ∈ E(G)}, dom(R)∩M and dom(M).
All other dom-edges connect vertices inside individual stars. Here, dom(R) splits into those vertices

which are highly connected to M ∪C , that is, the set Z = {u ∈ NE′(M \D) : |N (u) ∩ (M ∪C)| > 4c},
the set C and the set Y (which will not be counted twice though). All other dom-edges lead to

vertices which lie neither in Y nor in Z .

In the previous lemmas we have bounded the sizes of each of the described sets. The set D has

size at most (c + 1)|M | according to Theorem 3.1. According to Corollary 3.4, the set Y has size at

most 6c2t |M |. In particular, there are at most so many vertices dom(u) ∈ NE′(mi ) with u ∈ NE′(mj )

for i , j. Clearly, |dom(R) ∩M | ≤ |M | and |dom(M)| ≤ |M |. According to Lemma 3.6, the set Z
satis�es |Z | < |M ∪C |. We have |C | ≤ 2c |M |, as each Cm has size at most 2c . It remains to count

the image of dom inside the stars which do not point to Y or Z . According to Lemma 3.7, this image

has size at most (2(t − 1) + 4)c |M |. In total, we can bound |dom(R)| by

(c + 1)|M | + 6c2t |M | + 2|M | + (2c + 1)|M | + (2(t − 1) + 4)c |M | ≤ (6c2t + (2t + 5)c + 4)|M |.

�

Our theorem for bounded genus graphs is now a corollary of Lemma 2.2, 2.5 and 3.8.

Theorem 3.9. Let C be a class of graphs of orientable genus at most д (non-orientable genus at
most д̃ resp.). The modi�ed algorithm computes an O(д2)-approximation (O(д̃2)-approximation resp.)
for the dominating set in a constant number of communication rounds.

For the special case of planar graphs, our analysis shows that the algorithm computes a 199-

approximation. This is not much worse than Lenzen et al.’s original analysis (130), however, o� by

a factor of almost 4 from Wawrzyniak’s [31] improved analysis (52).
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Algorithm 2 Dominating Set Approximation for Graphs of Genus ≤ д

1: Input: Graph G of genus at most д

2: Run Phase 1 of Modi�ed Algorithm 1 with density parameter 10

√
д to obtain set D

3: (∗ Preprocessing Phase ∗)
4: for v ∈ V − D (in parallel) do
5: compute Kv in G − D (see Lemma 3.10)

6: end for
7: for i = 1..д do
8: for v ∈ V − D (in parallel) do
9: if Kv , ∅ then chosen : = true

10: for all u ∈ N 12(v) do
11: if Ku ∩ Kv , ∅ and u < v then chosen := false
12: end for
13: if (chosen = true) then D := D ∪V (Kv )
14: end for
15: end for
16: Run Phase 2 of Algorithm 1

3.1 Improving the Approximation Factor with Preprocessing
We now show the approximation factors related to the genus д, derived in the previous section,

can be improved using a local preprocessing step.

Given a graphG and a vertexv ∈ V (G), letK = {K1, . . . ,Kj } denote the set of minimal subgraphs

of G containing v such that for all 1 ≤ i ≤ j, K3,3 is a depth-1 minor of Ki . Let Kh ∈ K be the one

with lexicographically smallest identi�ers in K . We call Kh the v-canonical subgraph of G and we

denote it by Kv . If K = ∅ we set Kv := ∅.

Lemma 3.10. Given a graph G and a vertex v ∈ V (G). The v-canonical subgraph Kv of v can be
computed locally in at most 6 communication rounds. Furthermore, Kv has at most 24 vertices.

Proof. The proof is constructive. AsK3,3 has diameter 2, every minimal subgraph ofG containing

K3,3 as a depth-1 minor has diameter at most 6 (every edge may have to be replaced by a path of

length 3). Therefore, it su�ces to consider the subgraph induced by the vertices at distance at

most 6 from v , H = G[N 6(v)], and �nd the lexicographically minimal subgraph which contains

K3,3 as depth-1 minor in H which includes v as a vertex. If this is the case, we output it as Kv ;

otherwise we output the empty set. Furthermore, K3,3 has 9 edges and hence a minimal subgraph

containing it as depth-1 minor has at most 24 vertices (again, every edge is subdivided at most

twice and 2 · 9 + 6 = 24). �

To improve the approximation factor, we propose the following modi�ed algorithm, see Al-

gorithm 2. We �rst carry out the �rst phase of Algorithm 1 with density parameter 10

√
д (the

parameter is twice the edge density of the input graph). In the following preprocessing phase

we eliminate all copies of depth-1 minor models of K3,3 that G possibly contains. By Lemma 2.3

we know that there are at most д (where д is the genus of the graph) disjoint such models. As

guaranteed by Lemma 3.10, the vertices can make a canonical local choice on which model the

delete. After д elimination rounds we are left with a locally embeddable graph (with the parameter

t = 3) and we call the second phase of Algorithm 1.
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Theorem 3.11. Algorithm 2 provides a 24д + O(1) MDS approximation for graphs of genus at
most д, and requires 12д + O(1) communication rounds.

Proof. The resulting vertex set is clearly a dominating set. It remains to bound its size.

As Phase 1 is unchanged, the computed set D is at most 6

√
д times larger than an optimal

dominating set by Lemma 2.4: the algorithm is called with parameter 2c and outputs a set at most

c + 1 times larger than an optimal dominating set; here, c = 5

√
д according to Lemma 2.5.

In the following preprocessing phase, if for two vertices u , v we choose both Ku and Kv , then

they must be disjoint: Since the diameter of any depth-1 minor of K3,3 is at most 6, if two such

canonical subgraphs Ku and Kv intersect, then the distance between u,v can be at most 12. Hence,

each vertex v can decide in its 12-neighborhood whether its canonical subgraph Kv is the smallest

among all choices. On the other hand, by Lemma 2.3, there are at most д disjoint such minor

models. So in the preprocessing phase, we can remove at most д disjoint subgraphs Kv (and add

their vertices to the dominating set) and thereby select at most 24д extra vertices for the dominating

set. Once the preprocessing phase is �nished, the remaining graph is locally embeddable. Observe

that if the input graph G is planar, no vertices will be added to D in the preprocessing phase.

In order to compute the size of the set in the third phase, we can use the analysis of Lemma 3.8

for t = 3, which together with the �rst phase and preprocessing phase, results in a 24д + O(1)-
approximation guarantee.

To count the number of communication rounds, note that the only change happens in the

second phase. In that phase, in each iteration, we need 12 communication rounds to compute

the 12-neighborhood. Therefore, the number of communication rounds is 12д + O(1). �

This signi�cantly improves the approximation upper bound of Theorem 3.9: namely from

4(6c2 + 2c)д + O(1), where c = O(
√
д), hence from O(д2) to 24д + O(1), at the price of 12д extra

communication rounds.

3.2 A Logical Perspective
Interestingly, as we will elaborate in the following, a small modi�cation of Algorithm 1 can be

interpreted both from a distributed computing perspective, namely as a local algorithm of constant

distributed time complexity, as well as from a logical perspective.

First order logic has atomic formulas of the form x = y, x < y and E(x,y), where x and y are

�rst-order variables and E is a binary relation symbol. The set of �rst order formulas is closed

under Boolean combinations and existential and universal quanti�cation over the vertices of a

graph. To de�ne the semantics, we inductively de�ne a satisfaction relation |=, where for a graphG ,

a formula ϕ(x1, . . . , xk ) and vertices v1, . . . ,vk ∈ V (G), G |= ϕ(v1, . . . ,vk ) means that G satis�es ϕ
if the free variables x1, . . . , xk are interpreted as v1, . . . ,vk , respectively. The free variables of a

formula are those that have an instance not in the scope of a quanti�er, and we write ϕ(x1, . . . , xk )
to indicate that the free variables of the formula ϕ are among x1, . . . , xk . For ϕ(x1, x2) = x1 < x2, we

haveG |= ϕ(v1,v2) ifv1 < v2 with respect to the ordering < ofV (G) and for ϕ(x1, x2) = E(x1, x2)we

haveG |= ϕ(v1,v2) if {v1,v2} ∈ E(G). The meaning of the equality symbol, the Boolean connectives,

and the quanti�ers is as expected.

A �rst-order formula ϕ(x) with one free variable naturally de�nes the set ϕ(G) = {v ∈ V (G) :

G |= ϕ(v)}. We say that a formula ϕ de�nes an f -approximation to the dominating set problem

on a class C of graphs, if ϕ(G) is an f -approximation of a minimum dominating set for every

graph G ∈ C .

Observe that �rst-order logic is not able to count, in particular, no �xed formula can determine a

neighbor of maximum degree in Line 14 of the algorithm. Also note however that the only place in
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our analysis which refers to the dominator function dom explicitly is Lemma 3.7. The proof of the

lemma in fact shows that we do not have to choose a vertex of maximal residual degree, but that it

su�ces to choose a neighbour of degree greater than 4c + 2c(t − 1) if such a vertex exists, or any

vertex, otherwise. For every �xed class of bounded genus, this number is a constant. We use the

binary predicate < to make a unique choice of a dominator in this case.

Then we de�ne D by the following formula

φD (x) = ¬(∃x1 . . . ∃x2c∀y

(
E(x,y) →

∨
1≤i≤2c

E(y, xi )

)
and D ′ by

ψD′(x) = ∃y
(
E(x,y) ∧ ∀z

(
φD (z) → ¬E(y, z)

)
∧ ξmax(x,y)

)
,

where ξmax(x,y) states that x is the maximum (residual) degree neighbour of y up to threshold

4c +2c(t −1). We can express this cumbersome formula with 4c +2c(t −1) quanti�ers. Note that the

formulas φD andψD′ are di�erent in spirit. While φD directly describes a property of vertices which

causes them to be included in the dominating set, in the formulaψD′(x) we state the existence of

an element which is not yet dominated by D and which elects x as a dominator.

4 (1 + ϵ)-APPROXIMATIONS
In this section we show how to extend techniques developed by Czygrinow et al. [9] to �nd

(1 + ϵ)-approximate dominating set for planar graphs to graphs of sub-logarithmic expansion.

These graphs are very general classes of sparse graphs, including planar graphs and all classes

that exclude a �xed minor. We focus on the dominating set problem, however, the approximations

for the maximum weight independent set problem and maximum matching problem proposed by

Czygrinow et al. can be extended in a similar way.

Our notation in this section closely follows that of Czygrinow et al. [9]. In particular, we will

work with vertex and edge weighted graphs, that is, every graph G is additionally equipped with

two weight functions ω : V (G) → R+ and ω̄ : E(G) → R+. If H ⊆ G is a subgraph of G, then

we write ω(H ) for

∑
v ∈V (H )ω(v) and ω̄(H ) for

∑
e ∈E(H ) ω̄(e). If {G1, . . . ,Gn} is a minor model of

a graph H in a weighted graph G, then H naturally inherits a weight function ωH from G as

follows. If u,v ∈ V (H ) are represented by the subgraphs Gu and Gv in the minor model, then

ω(u) =
∑
w ∈V (Gv )

ω(w) and if {u,v} ∈ E(H ), then ω̄H ({u,v}) =
∑

e ∈E(G),e∩V (Gu ),∅,e∩V (Gv ),∅ ω̄(e).

4.1 Clustering Algorithm
We �rst generalize the partitioning algorithm provided by Czygrinow et al. to graphs with sub-

logarithmic expansion.

De�nition 4.1 (Pseudo-Forest). A pseudo-forest is a directed graph ®F in which every vertex has

out-degree at most 1.

For a directed graph ®F , we write F for the underlying undirected graph of ®F . The following

lemma is a straightforward generalization of Fact 1 of [9].

Lemma 4.2. Let G be a graph of arboricity a with an edge-weight function ω̄. There is a distributed
procedure which in two rounds �nds a pseudo-forest ®F such that F is a subgraph of G with ω̄(F ) ≥
ω̄(G)/(2a).

Proof. We run the following algorithm. For every vertexv , we choose one edge {v,w} of largest

weight, and direct it from v to w . If we happen to choose an edge {v,w} for both vertices v and
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w , we direct it from v to w , using the larger identi�er as a tie breaker. Hence every vertex has

out-degree at most one and the algorithm outputs a pseudo-forest ®F .

Let us show that ω̄(F ) ≥ ω̄(G)/(2a). Without loss of generality we assume that G has no isolated

vertices (we make a statement about edge weights only). As G has arboricity at most a, there exists

a forest cover F into at most a forests. So one of the forests T ∈ F collects weight ω̄(T ) ≥ ω̄(G)/a.

Now associate with each vertexv ofT the valuewT (v)which is the weight of the edge connecting it

to its parent (if it exists). Similarly, writewF (v) for the weight of the arc (v,w) or (w,v) in ®F that was

chosen in the algorithm. Observe that we may be double counting edges here, but only once. Hence

we have ω̄(F ) ≥
∑
v ∈V (G)wF (v)/2 ≥

∑
v ∈V (T )wF (v)/2 ≥

∑
v ∈V (T )wT (v)/2 ≥ ω̄(G)/(2a). �

It is straightforward to generalize also Lemma 2 of [9].

Lemma 4.3 (HeavyStar). There is a local algorithm which takes an edge weighted n-vertex graphG
of arboricity at most a as input and in O(log

∗ n) rounds computes a partition ofV (G) into vertex disjoint
stars H1, . . . ,Hx ⊆ V (G) such that H = G/H1/. . .Hx has total weight ω̄H (H ) ≤ (1 − 1/(8a)) · ω̄(G).

We refrain from presenting a proof of this lemma, as the proof is literally a copy of the proof

given in [9]. Czygrinow et al. [9] use only the fact that planar graphs have arboricty 3, while we

make the statement for graphs of arboricity a. Hence only numbers must be adapted in the proof

(from 24 in their work to 8a in our case). We refer the reader to the very accessible presentation

in [9].

We come to the �nal clustering algorithm. We �x a function f (r ) ∈ o(log r ) which bounds the

expansion (density of depth-r minors) of the input graphsG . Recall that arboricity is within factor 2

of density of subgraphs, hence the depth-r minors of G have arboricity bounded by 2f (r ). By

iteratively taking depth-1 minors, we obtain minors at exponential depth, as stated in the next

lemma.

Lemma 4.4 (Proposition 4.1, statement (4.4) of [27]). Taking a depth-1 minor of a depth-1
minor for r times gives a depth - (3r − 1)/2 minor of G.

In particular, when iterating the star contraction routine of Algorithm 3, in iteration i we are

dealing with a subgraph of arboricity 2f ((3i − 1)/2) C д(i) which is sublinear in i . Hence, we

may apply Lemma 4.3 with arboricity parameter i in iteration i . Note that we do not require the

arboricity as an input to the algorithm of Lemma 4.3. Note furthermore, that we have

lim

i→∞

(
1 − 1/(8д(i)

) i
≤ lim

i→∞
e−i/д(i) = 0,

hence for every ϵ > 0 there is a constant i0 depending only on ϵ and д (and not on the graph size n)

such that

(
1 − 1/(8д(i0)

) i0 ≤ ϵ (we may assume that the function д is monotone, as the density of

depth-r minors cannot be smaller than the density of depth-r ′ minors for r ′ ≤ r ).

Algorithm 3 Clustering

1: Input: G with ∇r (G) ≤ f (r ), ϵ > 0 and i0 with

(
1 − 1/(8д(i0)

) i0 ≤ ϵ
2: for i = 1, . . . , i0
3: Call the algorithm of Lemma 4.3 to �nd vertex disjoint stars H1, . . . ,Hx in G
4: H ← G/H1/. . . /Hx with weights modi�ed accordingly

5: end for
6: return {Ci = V (Hi ) : 1 ≤ i ≤ x}.
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Lemma 4.5 (Clustering). Let c ≥ 1 be a constant and let G be a graph with ∇r (G) ≤ f (r ).
If the clustering algorithm gets G and ϵ > 0 as input, then it returns a set of clusters C1, . . . ,Cx
partitioning G, such that, each cluster has radius at most (3i0 − 1)/2 (where i0 is the number of
iterations in the algorithm). Moreover, if we contract each Ci to a single vertex to obtain a graph H ,
then ω̄H (H ) ≤ ϵ · ω̄(G). The algorithm uses Oϵ (log

∗ n) communication rounds.

In the above lemma we use the notation Oϵ to express that we are treating all constants depending

on ϵ as constants.

Proof. As described above, the graph Gi we are dealing with in iteration i has arboricity at

most 2f (3i − 1)/2) = д(i), which is sublinear in i . By applying Lemma 4.3 to Gi , we compute

in O(log
∗ n) rounds a partition of V (Gi ) into vertex disjoint stars H1, . . . ,Hx ⊆ V (Gi ) such that

H = Gi/H1/. . .Hx has total weight ω̄H (H ) ≤ (1 − 1/(8д(i)) · ω̄(Gi ). Note that by Lemma 4.4, the

graph Gi obtained in iteration i is a depth-((3i − 1)/2 minor of G. Hence, by induction, after i

iterations, the edge weight of the graphGi is at most

(
1−1/(8д(i)

) i
. As argued above, there exists i0

such that

(
1 − 1/(8д(i0)

) i0 ≤ ϵ , at which time we stop the algorithm.

As in each round we invest at most time O(log
∗ n), in total we invest at most O(log

∗ n · i0) =
Oϵ (log

∗ n) time to compute the clustering. �

4.2 Approximation for Minimum Dominating Set
We are ready to prove the main theorem of this section.

Theorem 4.6. There exists a deterministic distributed algorithm which gets as input
(1) an n-vertex graph G of sub-logarithmic expansion,
(2) a c-approximation of a minimum dominating set D of G for some constant c , and
(3) a real parameter ϵ > 0.

The algorithm runs in Oϵ ,c (log
∗ n) rounds and outputs a (1 + ϵ)-approximation of a minimum

dominating set of G.

Corollary 4.7. Let C be a class of graphs of sub-logarithmic expansion. Assume there exists an
algorithm which computes c-approximations of dominating sets on graphs from C in t rounds. Then
there exists an algorithm which for every ϵ > 0 computes a (1 + ϵ)-approximation of a minimum
dominating set on every n-vertex graph G ∈ C in Oϵ ,c (t + log

∗ n) rounds.

We have chosen to present this extension of Czygrinow et al. [9] because it connects very well

to the results we obtained in the previous section. In particular, Corollary 4.7 in combination

with Theorem 3.9 gives a deterministic distributed (1 + ϵ)-approximation algorithm in Oϵ ,д(log
∗ n)

rounds for dominating sets on graphs of genus at most д. We can similarly combine the corollary

the result of Amiri et al. [1] to obtain (1 + ϵ)-approximations in O(logn) rounds on graphs of

sub-logarithmic expansion.

Proof of Theorem 4.6. Let G be the given input graph and let D be a dominating set of G
with |D | ≤ c · γ (G), say D = {w1, . . . ,wk } (recall that γ (G) denotes the size of a minimum size

dominating set of G). Associate each vertex v ∈ V (G) \ D with one of its dominators, say with the

one of minimum identi�er, to obtain a partition (W1, . . . ,Wk ) of G into clusters of radius 1. This

partition is obtained in a single communication round. The graph H = G/W1/. . . /Wk is a depth-1

minor of G with k vertices and at most ∇1(G) · k edges. De�ne an edge weight function on E(H )
by assigning unit weight to each edge. Set δ = ϵ/(2c∇1(G)). Apply the algorithm of Lemma 4.5

with parameter δ to �nd a partition (V1, . . . ,Vl ) of V (H ) such that the weight between di�erent

clusters is at most δ · |E(H )|. The algorithm runs in Oδ (log
∗ n) = Oϵ ,c (log

∗ n) communication
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rounds. By uncontracting the partitionsVi andWi , we obtain a partition (U1, . . . ,Ul ) ofV (G), where

eachUi has constant radius. Find an optimal dominating set Si ofG[Ui ] in each subgraphG[Ui ] and

return the union S =
⋃

1≤i≤l Si of these dominating sets. As the algorithm has already learned the

subgraphs G[Ui ], by the in�nite computational power of each processor in the LOCAL model, we

can compute such a dominating set in one round. This completes the description of the algorithm.

Note that instead of solving the dominating set optimally on eachG[Ui ], which may be considered

an abuse of the LOCAL model by some, we can compute a su�ciently good approximation of

an optimal dominating set. For this, we can use the PTAS [16] for dominating sets on graphs of

polynomial expansion.

Since the Ui form a partition of V (G), it is clear that S is a dominating set of G. Denote by S∗

a dominating set of cardinality Opt. Let S ′ be obtained from S∗ by adding for each Ui all vertices

w ∈ Ui which have a neighbor in a di�erent cluster Uj . Then S ′ ∩Ui is a dominating set of G[Ui ].

Furthermore, we have

|S ′ | ≤ |S∗ | + 2δ |E(H )| ≤ γ (G) + 2cδ∇1(G) · γ (G) = (1 + ϵ) · γ (G).

Observe that the local solutions Si cannot be worse than the solution S ′ ∩Ui , hence

|S | =
∑

1≤i≤l

|Si | ≤
∑

1≤i≤l

|S ′ ∩Ui | = |S
′ | ≤ (1 + ϵ) · γ (G). �

5 CONCLUSION
This paper presented the �rst constant round, constant factor local MDS approximation algorithm

for locally embeddable graphs, a class of graphs which is more general than planar graphs. Moreover,

we have shown how our result can also be used to derive a O(log
∗ n)-time distributed approximation

scheme for bounded genus graphs.

Our proofs are purely combinatorial and avoid all topological arguments. For the family of

bounded genus graphs, topological arguments helped to improve the obtained approximation ratio

in a preprocessing step. We believe that this result constitutes a major step forward in the quest for

understanding for which graph families such local approximations exist. Besides the result itself,

we believe that our analysis introduces several new techniques which may be useful also for the

design and analysis of local algorithms for more general graphs, and also problems beyond MDS. In

particular, we believe that the notion of bounded depth minors and not the commonly used notion

of excluded minors will be the right notions in the setting of local, distributed computing.

Moreover, this paper established an interesting connection between distributed computing and

logic, by presenting a local approximation algorithm which is �rst-order logic de�nable. This also

provides an interesting new perspective on the recently introduced notion of stone-age distributed

computing [11]: distributed algorithms making minimal assumptions on the power of a node.

Avoiding counting in the arising formulas allows for example an implementation of the algorithm

in the circuit complexity class AC
0
, that is, an implementation by circuits of polynomial size and

constant depth.

It remains open whether the local constant approximation result can be generalized to sparse

graphs beyond bounded genus graphs. Also, it will be interesting to extend our study of �rst-order

de�nable approximations.
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