
Combining Conformance Checking and
Classification of XES Log Data For The

Manufacturing Domain

Matthias Ehrendorfer, Juergen-Albrecht Fassmann, Juergen Mangler, Stefanie
Rinderle-Ma

University of Vienna, Vienna, Austria,
matthias.ehrendorfer@gmail.com, juergen.fassmann@gmail.com

University of Vienna, Faculty of Computer Science,
Research Group Workflow Systems and Technology, Vienna, Austria,

{juergen.mangler, stefanie.rinderle-ma}@univie.ac.at

1 Introduction

Currently, data collection on the shop floor is based on individual resources such
as machines, robots, and Autonomous Guided Vehicles (AGVs). There is a gap
between this approach and manufacturing orchestration software that supervises
the process of creating single products and controls the ressources’ interactions.
This creates the need to save resource-based data streams in databases, clean
it, and then re-contextualize it, i.e., by connecting it to orders, batches, and
single products. Looking at this data from a process-oriented analysis point
of view enables new analysis prospects. This paper utilises these prospects in
an experimental way by creating BPMN models for the manufacturing of two
real-world products: (1) a low volume, high complexity lower-housing for a gas-
turbine and (2) a high volume, low complexity, small tolerance valve lifter for
a gas turbine. In contrast to the resource-based data collection, 30+ values are
modeled into the BPMN models and enacted by a workflow engine, creating
execution logs in the XES standard format. Conformance checks are carried out
and interpreted for both scenarios and it is shown how existing classification and
clustering techniques can be applied on the collected data in order to predict
good and bad parts, ex-post and potentially at run-time.

The process created for the manufacturing of both parts can be divided into
a number of subprocesses which correspond to different levels of the automation
pyramid (given in Fig. 1). This separation allows a better overview as well as
special foci in each of the subprocesses. The subprocesses are:

– The “Order Processing” process which is responsible for detecting the start of
the production and spawning a subprocess for every part produced. There-
fore, this process connects a number of part production processes for an
order.

This work is a result of the lab course “Business Intelligence II (2018W)” and has been partially
supported and funded by the Austrian Research Promotion Agency (FFG) via the “Austrian
Competence Center for Digital Production” (CDP) under the contract number 854187.

ar
X

iv
:1

90
4.

05
88

3v
1 

 [
cs

.O
H

] 
 1

1 
A

pr
 2

01
9



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

– The “Part Production” process describes the process steps as well as the
order in which they are executed on the level of production or measuring
steps and spawns subprocesses for each of the production steps.

– The “Production” process handles the detection of individual machines start-
ing and finishing machining and spawns subprocesses for data collection
while waiting for the production step to finish.

– The “Machining” process is responsible for capturing data sent by individual
machines during machining.

The “Order Processing” process corresponds to the “Plant management
level” of the automation pyramid while the “Production Process” resides on
the “Process control level” and the “Machining Process” can be assigned to the
“Control (PLC) level”. The “Part Production” process is the link between “Or-
der Processing” and “Production” and can therefore be found between level 2
and 3 (i.e. the second and third one counting from the top) of the automation
pyramid.

Fig. 1: Automation Pyramid

When executing the processes, log files are created. They are available as
YAML files in the XES standard format and contain the tasks given in the BPMN
models which are described in XML format. Production data obtained during the
machining as well as measurement results are also included in the corresponding
task of the log files. Due to the abovementioned usage of subprocesses, a number
of log files have to be merged in order to obtain all the process steps needed for
the production of one part. The information to do this (i.e. which subprocess
is spawned) is also contained in the task creating the subprocess of the parent
process.

As described above, the part produced in the first scenario is a low volume,
high complexity lower-housing for a gas-turbine. Therefore, the parts produced
are measured during the production process and repaired if they do not comply
to the specifications of the plan. This leads to a higher number of machining
processes as machining might be interrupted and continued a number of times.
The log data for the first scenario can be download from 1.

1 http://cpee.org/~demo/bus_paper/data/lowerhousing.tgz

http://cpee.org/~demo/bus_paper/data/lowerhousing.tgz


Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

The part produced in the second scenario is a high volume, low complexity,
small tolerance valve lifter for a gas turbine. In contrast to the part produced in
the first scenario it is not reasonable to repair bad parts and therefore, after the
machining process manual as well as automatic measurement is performed but no
repair is carried out. Due to an error while performing the manual measurement,
the manual measurement results of parts 129-180 are shifted by 2. The log data
for the second scenario can be downloaded from 2.

2 Conformance Checking of Shopfloor Processes

2.1 Modelling the Processes

In order to perform conformance checking, the logs as well as the templates
need to be transformed to a format that allows easy checking. The ProM tool
(for further information see [29]) provides the “PNetReplayer” ([2]) package
which allows performance checking using the “Replay a Log on Petri Net for
Conformance Analysis” function. This function takes a petri net (in a TPN
format) and a XES log file which is based on XML as input files and creates a
result file containing fitness values and the replay results for each log. Therefore,
the BPMN process template files given as XMLs (for further information see
section 1) need to be transformed to petri nets. The transformation from the
BPMN process template to the petri net is performed using the following rules:

– Each “call” element is transformed into two transitions with a place in be-
tween and afterwards. The first transition is identifiable as start and the
second one as end which is later used to link them to the start or complete
lifecycle transitions in the logs represented as XES file.

– Each “manipulate” element is transformed into a transition with a place
afterwards. As the log contains only one event for such elements there is no
need to create a start and end transition.

– “terminate” elements are transformed to a transition with a place that has
no outgoing edges afterwards.

– “loop” elements are transformed to two transitions (starting and closing)
with a place after each of them and the second place being connected to
the first transition in addition to the transition created by the element after
the loop. As a loop contains other elements, the content between these two
transitions is defined by the contained elements.

– “choose” elements are transformed into two places where the first one splits
into a number of branches and the second one merges these branches. “alter-
native” and “otherwise” are both handled the same way as it does not make
a difference if one of the branches is the default one when using petri nets for
conformance checking. Therefore, an “alternative” or “otherwise” element is
transformed into two transitions where the first one has an incoming edge
from the first place created by the “choose” element and is followed by a

2 http://cpee.org/~demo/bus_paper/data/gv12.tgz

http://cpee.org/~demo/bus_paper/data/gv12.tgz


Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

place and the second one is connected to the merging place created by the
“choose” element described before. As a branch contains other elements, the
content of a branch is defined by the contained elements.

– “parallel” elements are transformed to two transitions. The first one is con-
nected to a number of places equal to the number of parallel branches via
edges. The second transition merges these parallel branches by having incom-
ing edges from the last place of each parallel branch. The “parallel branch”
element is transformed to a transition signalling the start of the parallel
branch with a place afterwards. As a branch contains other elements, the
content of a branch is defined by the contained elements.

As a prerequisite for the transformation with the code provided, the process
templates need to be in the XML format and contain only the elements defined in
[7]. Additionally, the XML element “/testset/description/description” must be
available and contain the elements mentioned above with the defined attributes
and a valid nesting structure. Using the rules given before, the BPMN processes
are then transformed to petri nets using the TPN file format.

The program implementing the rules was written in python (the code is also
available at [24] for scenario 2 - at [23] for scenario 1 - and can be executed by
using the following command: “./processToTpn.py [path to existing XML] [path
to TPN that should be created]”):

1 #!/ usr/ bin /python3
2
3 import xml . e t r e e . ElementTree as ET;
4 import sys ;
5 import re ;
6
7 counter=0;
8 terminat ion=False ;
9 s t a r t s t a c k = [ ] ;

10 endstack = [ ] ;
11 loops tack = [ ] ;
12 p r i n tS t r i n g=’ ’ ;
13
14 def proce s sCh i ld ( node , indent , f i r s tOfBranch ) :
15 global counter ;
16 global s t a r t s t a c k ;
17 global endstack ;
18 global l oops tack ;
19 global p r i n tS t r i n g ;
20 global te rminat ion ;
21 except ion=False ;
22 indentSt r ing=’ ’ ;
23 i =0;
24 while i<indent :
25 indentSt r ing+=’ ’ ;
26 i +=1;
27 i f ’ p a r a l l e l b r an ch ’ in node . tag :
28 print ( indentSt r ing+node . tag ) ;
29 print ( ’ t rans ’+’ x pa r a l l e l b r an ch ’ ) ;
30 p r i n tS t r i n g+=( ’ t rans ’+’ x pa r a l l e l b r an ch ’ ) ;
31 p r i n tS t r i n g+=’\n ’ ;
32 x=s t a r t s t a c k . pop ( ) ;
33 print ( ’ in ’+x) ;
34 p r i n tS t r i n g+=( ’ in ’+x) ;
35 p r i n tS t r i n g+=’\n ’ ;
36 counter+=1;
37 print ( ’ out p ’+str ( counter )+’ ; ’ ) ;



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

38 p r i n tS t r i n g+=( ’ out p ’+str ( counter )+’ ; ’ ) ;
39 p r i n tS t r i n g+=’\n ’ ;
40 #hinzufuegen pfad zwischen t r a n s i t i o n von p a r a l l e l und (neuem)

place
41 e l i f ’ p a r a l l e l ’ in node . tag :
42 print ( indentSt r ing+node . tag ) ;
43 print ( ’ t rans ’+’ x p a r a l l e l ’ ) ;
44 p r i n tS t r i n g+=( ’ t rans ’+’ x p a r a l l e l ’ ) ;
45 p r i n tS t r i n g+=’\n ’ ;
46 print ( ’ in p ’+str ( counter ) ) ;
47 p r i n tS t r i n g+=( ’ in p ’+str ( counter ) ) ;
48 p r i n tS t r i n g+=’\n ’ ;
49 i =0;
50 outSt r ing=’ out ’ ;
51 while i<len ( l i s t ( node ) ) :
52 counter+=1;
53 outSt r ing+=’ p ’+str ( counter ) ;
54 s t a r t s t a c k . append ( ’p ’+str ( counter ) ) ;
55 i f ( i +1)<len ( l i s t ( node ) ) :
56 outSt r ing+=’ , ’ ;
57 i +=1;
58 outSt r ing+=’ ; ’ ;
59 print ( outSt r ing ) ;
60 p r i n tS t r i n g+=(outSt r ing ) ;
61 p r i n tS t r i n g+=’\n ’ ;
62 #hinzufuegen einer t r a n s i t i o n
63 e l i f ’ loop ’ in node . tag :
64 print ( indentSt r ing+node . tag ) ;
65 loops tack . append ( ’p ’+str ( counter ) ) ;
66 #hinzufuegen eines pfades zwischen d ieser t r a n s i t i o n und d ie ser

t r a n s i t i o n
67 e l i f ’ choose ’ in node . tag :
68 print ( indentSt r ing+node . tag ) ;
69 i =0;
70 while i<len ( l i s t ( node ) ) :
71 s t a r t s t a c k . append ( ’p ’+str ( counter ) ) ;
72 i +=1;
73 #counter+=1;
74 #hinzufuegen eines p laces
75 e l i f ’ a l t e r n a t i v e ’ in node . tag :
76 print ( indentSt r ing+node . tag ) ;
77 print ( ’ t rans ’+’ x a l t e r n a t i v e ’ ) ;
78 p r i n tS t r i n g+=( ’ t rans ’+’ x a l t e r n a t i v e ’ ) ;
79 p r i n tS t r i n g+=’\n ’ ;
80 x=s t a r t s t a c k . pop ( ) ;
81 print ( ’ in ’+x) ;
82 p r i n tS t r i n g+=( ’ in ’+x) ;
83 p r i n tS t r i n g+=’\n ’ ;
84 counter+=1;
85 print ( ’ out p ’+str ( counter )+’ ; ’ ) ;
86 p r i n tS t r i n g+=( ’ out p ’+str ( counter )+’ ; ’ ) ;
87 p r i n tS t r i n g+=’\n ’ ;
88 endstack . append ( ’p ’+str ( counter ) ) ;
89 except ion=True ;
90 print ( endstack ) ;
91 #hinzufuegen pfad zwischen place von choose und ( neuer ) t r a n s i t i o n
92 e l i f ’ o therwi se ’ in node . tag :
93 print ( indentSt r ing+node . tag ) ;
94 print ( ’ t rans ’+’ x a l t e r n a t i v e ’ ) ;
95 p r i n tS t r i n g+=( ’ t rans ’+’ x a l t e r n a t i v e ’ ) ;
96 p r i n tS t r i n g+=’\n ’ ;
97 x=s t a r t s t a c k . pop ( ) ;
98 print ( ’ in ’+x) ;
99 p r i n tS t r i n g+=( ’ in ’+x) ;

100 p r i n tS t r i n g+=’\n ’ ;
101 counter+=1;
102 print ( ’ out p ’+str ( counter )+’ ; ’ ) ;
103 p r i n tS t r i n g+=( ’ out p ’+str ( counter )+’ ; ’ ) ;



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

104 p r i n tS t r i n g+=’\n ’ ;
105 endstack . append ( ’p ’+str ( counter ) ) ;
106 except ion=True ;
107 print ( endstack ) ;
108 #hinzufuegen pfad zwischen place von choose und ( neuer ) t r a n s i t i o n
109 e l i f ’ c a l l ’ in node . tag :
110 print ( indentSt r ing+node . tag ) ;
111 print ( ’ t rans ’+node [ 0 ] [ 0 ] . t ex t . r ep l a c e ( ’ ’ , ’ ’ ) . r ep l a c e ( ’ ? ’ , ’ ’ )+’ ’

+node . a t t r i b [ ’ id ’ ]+ ’ ’+endpointToUrl [ node . a t t r i b [ ’ endpoint ’ ] ]+
’ s t a r t ’ ) ;

112 p r i n tS t r i n g+=( ’ t rans ” ’+node [ 0 ] [ 0 ] . t ex t . r ep l a c e ( ’ ’ , ’ ’ ) . r ep l a c e ( ’ ?
’ , ’ ’ )+’ ’+node . a t t r i b [ ’ id ’ ]+ ’ ’+endpointToUrl [ node . a t t r i b [ ’
endpoint ’ ] ]+ ’ s t a r t ” ’ ) ;

113 p r i n tS t r i n g+=’\n ’ ;
114 print ( ’ in p ’+str ( counter ) ) ;
115 p r i n tS t r i n g+=( ’ in p ’+str ( counter ) ) ;
116 p r i n tS t r i n g+=’\n ’ ;
117 counter+=1;
118 print ( ’ out p ’+str ( counter )+’ ; ’ ) ;
119 p r i n tS t r i n g+=( ’ out p ’+str ( counter )+’ ; ’ ) ;
120 p r i n tS t r i n g+=’\n ’ ;
121
122 print ( ’ t rans ’+node [ 0 ] [ 0 ] . t ex t . r ep l a c e ( ’ ’ , ’ ’ ) . r ep l a c e ( ’ ? ’ , ’ ’ )+’ ’

+node . a t t r i b [ ’ id ’ ]+ ’ ’+endpointToUrl [ node . a t t r i b [ ’ endpoint ’ ] ]+
’ complete ’ ) ;

123 p r i n tS t r i n g+=( ’ t rans ” ’+node [ 0 ] [ 0 ] . t ex t . r ep l a c e ( ’ ’ , ’ ’ ) . r ep l a c e ( ’ ?
’ , ’ ’ )+’ ’+node . a t t r i b [ ’ id ’ ]+ ’ ’+endpointToUrl [ node . a t t r i b [ ’
endpoint ’ ] ]+ ’ complete ” ’ ) ;

124 p r i n tS t r i n g+=’\n ’ ;
125 print ( ’ in p ’+str ( counter ) ) ;
126 p r i n tS t r i n g+=( ’ in p ’+str ( counter ) ) ;
127 p r i n tS t r i n g+=’\n ’ ;
128 counter+=1;
129 print ( ’ out p ’+str ( counter )+’ ; ’ ) ;
130 p r i n tS t r i n g+=( ’ out p ’+str ( counter )+’ ; ’ ) ;
131 p r i n tS t r i n g+=’\n ’ ;
132
133 i f not f i r s tOfBranch :
134 endstack . pop ( ) ;
135 endstack . append ( ’p ’+str ( counter ) ) ;
136 print ( endstack ) ;
137 #counter+=1;
138 #hinzufuegen von t r a n s i t i o n mit id
139 e l i f ’ manipulate ’ in node . tag :
140 print ( indentSt r ing+node . tag ) ;
141 print ( ’ t rans ’+node . a t t r i b [ ’ l a b e l ’ ] . r ep l a c e ( ’ ’ , ’ ’ ) . r ep l a c e ( ’ ? ’ , ’ ’

)+’ ’+node . a t t r i b [ ’ id ’ ] ) ;
142 p r i n tS t r i n g+=( ’ t rans ’+node . a t t r i b [ ’ l a b e l ’ ] . r ep l a c e ( ’ ’ , ’ ’ ) .

r ep l a c e ( ’ ? ’ , ’ ’ )+’ ’+node . a t t r i b [ ’ id ’ ] ) ;
143 p r i n tS t r i n g+=’\n ’ ;
144 print ( ’ in p ’+str ( counter ) ) ;
145 p r i n tS t r i n g+=( ’ in p ’+str ( counter ) ) ;
146 p r i n tS t r i n g+=’\n ’ ;
147 counter+=1;
148 print ( ’ out p ’+str ( counter )+’ ; ’ ) ;
149 p r i n tS t r i n g+=( ’ out p ’+str ( counter )+’ ; ’ ) ;
150 p r i n tS t r i n g+=’\n ’ ;
151 i f not f i r s tOfBranch :
152 endstack . pop ( ) ;
153 endstack . append ( ’p ’+str ( counter ) ) ;
154 print ( endstack ) ;
155 #counter+=1;
156 #hinzufuegen von t r a n s i t i o n mit id
157 e l i f ’ t erminate ’ in node . tag :
158 print ( indentSt r ing+node . tag ) ;
159 print ( ’ t rans ’+’ x te rminat ion ’ ) ;
160 p r i n tS t r i n g+=( ’ t rans ’+’ x te rminat ion ’ ) ;
161 p r i n tS t r i n g+=’\n ’ ;



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

162 print ( ’ in p ’+str ( counter ) ) ;
163 p r i n tS t r i n g+=( ’ in p ’+str ( counter ) ) ;
164 p r i n tS t r i n g+=’\n ’ ;
165 counter+=1;
166 print ( ’ out p ’+str ( counter )+’ ; ’ ) ;
167 p r i n tS t r i n g+=( ’ out p ’+str ( counter )+’ ; ’ ) ;
168 p r i n tS t r i n g+=’\n ’ ;
169 i f not f i r s tOfBranch :
170 endstack . pop ( ) ;
171 endstack . append ( ’p ’+str ( counter ) ) ;
172 terminat ion=True ;
173
174
175
176 i f len ( l i s t ( node ) )>0:
177 x=1;
178 for ch i l d in node :
179 i f ( x == 1) and (not except ion ) :
180 proce s sCh i ld ( ch i ld , indent+2, True ) ;
181 else :
182 proce s sCh i ld ( ch i ld , indent+2, Fa l se ) ;
183 x+=1;
184 else :
185 #prin t ( ’ no c h i l d s ’) ;
186 pass ;
187
188 i f ’ p a r a l l e l b r an ch ’ in node . tag :
189 pass ;
190 e l i f ’ p a r a l l e l ’ in node . tag :
191 counter+=1;
192 print ( ’ t rans ’+’ x c l o s i n g p a r a l l e l ’ ) ;
193 p r i n tS t r i n g+=( ’ t rans ’+’ x c l o s i n g p a r a l l e l ’ ) ;
194 p r i n tS t r i n g+=’\n ’ ;
195 i =0;
196 i nS t r i n g=’ in ’ ;
197 while i<len ( l i s t ( node ) ) :
198 i nS t r i ng+=’ ’+endstack . pop ( ) ;
199 i f ( i +1)<len ( l i s t ( node ) ) :
200 i nS t r i n g+=’ , ’ ;
201 i +=1;
202 outSt r ing+=’ ; ’ ;
203 print ( i nS t r i ng ) ;
204 p r i n tS t r i n g+=(inS t r i ng ) ;
205 p r i n tS t r i n g+=’\n ’ ;
206 print ( ’ out p ’+str ( counter )+’ ; ’ ) ;
207 p r i n tS t r i n g+=( ’ out p ’+str ( counter )+’ ; ’ ) ;
208 p r i n tS t r i n g+=’\n ’ ;
209 endstack . append ( ’p ’+str ( counter ) ) ;
210 #c l os e p a r a l l e l
211 e l i f ’ choose ’ in node . tag :
212 counter+=1;
213 i =0;
214 i f te rminat ion :
215 i +=1;
216 terminat ion=False ;
217 while i<len ( l i s t ( node ) ) :
218 print ( ’ t rans ’+’ x c l o s i n g d e c i s i o n ’ ) ;
219 p r i n tS t r i n g+=( ’ t rans ’+’ x c l o s i n g d e c i s i o n ’ ) ;
220 p r i n tS t r i n g+=’\n ’ ;
221 x=endstack . pop ( ) ;
222 print ( ’ in ’+x) ;
223 p r i n tS t r i n g+=( ’ in ’+x) ;
224 p r i n tS t r i n g+=’\n ’ ;
225 print ( ’ out p ’+str ( counter )+’ ; ’ ) ;
226 p r i n tS t r i n g+=( ’ out p ’+str ( counter )+’ ; ’ ) ;
227 p r i n tS t r i n g+=’\n ’ ;
228 i +=1;
229 endstack . append ( ’p ’+str ( counter ) ) ;



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

230 #c l os e dec i s ion
231 e l i f ’ loop ’ in node . tag :
232 print ( ’ t rans ’+’ x c l o s i n g l o o p ’ ) ;
233 p r i n tS t r i n g+=( ’ t rans ’+’ x c l o s i n g l o o p ’ ) ;
234 p r i n tS t r i n g+=’\n ’ ;
235 print ( ’ in p ’+str ( counter ) ) ;
236 p r i n tS t r i n g+=( ’ in p ’+str ( counter ) ) ;
237 p r i n tS t r i n g+=’\n ’ ;
238 x=loops tack . pop ( ) ;
239 print ( ’ out ’+x+’ ; ’ ) ;
240 p r i n tS t r i n g+=( ’ out ’+x+’ ; ’ ) ;
241 p r i n tS t r i n g+=’\n ’ ;
242 #c l os e loop
243
244
245 print ( ’ h e l l o world ’ ) ;
246
247 endpointToUrl={};
248 t r e e = ET. parse ( sys . argv [ 1 ] ) ;
249 root = t r e e . g e t roo t ( ) ;
250
251 for t opch i l d in root :
252 x=1;
253 i f ( t opch i l d . tag == ’ d e s c r i p t i o n ’ ) :
254 for ch i l d in t opch i l d [ 0 ] :
255 i f x == 1 :
256 proce s sCh i ld ( ch i ld , 0 , True ) ;
257 else :
258 proce s sCh i ld ( ch i ld , 0 , Fa l se ) ;
259 x+=1;
260 e l i f ( t opch i l d . tag == ’ endpoints ’ ) :
261 for ch i l d in t opch i l d :
262 regex=re . match ( ’ (\{ .∗\} ) ( . ∗ ) ’ , c h i l d . tag ) ;
263 print ( regex . group (2)+’ ’+( ch i l d . tag )+’ ’+str ( c h i l d . t ext ) ) ;
264 endpointToUrl . update ({ regex . group (2) : c h i l d . t ext }) ;
265
266 print ( s t a r t s t a c k ) ;
267 print ( endstack ) ;
268 print ( l oops tack ) ;
269 #prin t ( pr in tS t r ing ) ;
270
271 comple tePr intSt r ing=’ ’ ;
272 i =0;
273 while i<counter :
274 comple tePr intSt r ing+=’ p lace p ’+str ( i ) ;
275 i f i ==0:
276 comple tePr intSt r ing+=’ i n i t 1 ’
277 comple tePr intSt r ing+=’ ;\n ’ ;
278 i +=1;
279
280 comple tePr intSt r ing+=pr i n tS t r i n g ;
281 print ( comple tePr intSt r ing ) ;
282
283 with open( sys . argv [ 2 ] , ’w ’ ) as f i l e :
284 print ( completePr intStr ing , f i l e=f i l e ) ;
285
286 print ( endpointToUrl ) ;

In order to create the XES log file, all log files given in YAML format as
described in section 1 have to be transformed. To achieve this, the informa-
tion from the YAML “event” elements containing a “cpee:lifecycle:transition”
element with the value “activity/calling” or “activity/done” is written into the
XES file. Depending on the “cpee:lifecycle:transition” the events are considered
to be either start or end of the task. The final XES file contains all events
(starting as well as ending) of all logs.



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

The XES file is structured into a header section, which includes extensions,
global keys for events and traces and classifiers, which are used to classify the
events. An additional classifier is added for the second scenario, which is the
endpoint in combination with the CPEE lifecycle transition. The reason for this
is explained in section 2.4. Following, are multiple traces, one for each YAML log
and each trace contains multiple events, which are, as just mentioned, mapped
to the starting and completing of tasks in the YAML log file. Each trace has
an ID or “concept:name”, a name or “cpee:name” and the UUID. Each event
has a name, an endpoint (although not all events actually have an endpoint,
namely all “script” tasks), an ID (which is the ID of the task in the template),
the lifecycle transition (“start” or “complete”), the CPEE lifecycle transition
(“activity/calling” and “activity/done”) and the timestamp.

The program transforming the YAML logs to a XES file as described above
is written in python (see also [27] for scenario 2 and [26] for scenario 1) and can
be executed by using the following command: “python xes map.py” - in order to
execute successfully the slightly edited library XES 1.3 for python which can be
installed using “pip install xes” (the edited version “xes.py” is available at [5])
as well as the file “filepaths.txt”given at [18] for scenario 1 and [19] for scenario
2 which point to the locations of the logs that should be included have to be
present:

1 import yaml ;
2 import xes ;
3 import os ;
4
5 id uu id = {}
6
7
8 with open( ” f i l e p a t h s . txt ” ) as f :
9 f i l e p a t h s = f . r e a d l i n e s ( )

10 f i l e p a t h s = [ x . s t r i p ( ) for x in f i l e p a t h s ]
11 n=1
12 f i l e d a t a = { f i l e p a t h : open( f i l e p a th , ’ r ’ ) for f i l e p a t h in f i l e p a t h s }
13 log = xes . Log ( )
14 l o g s e t = False
15 for f i l e in f i l e d a t a . va lues ( ) :
16 t r e e s = yaml . l o a d a l l ( f i l e ) ;
17 t = xes . Trace ( )
18 for t r e e in t r e e s :
19 i f ’ l og ’ in t r e e :
20 i f l o g s e t == False :
21 log . ex t en s i on s = [
22 xes . Extension (name=”Time” , p r e f i x=”time” , u r i=t r e e [ ’ l og ’ ] [ ’

ex t ens i on ’ ] [ ’ time ’ ] ) ,
23 xes . Extension (name=”Concept” , p r e f i x=” concept ” , u r i=t r e e [ ’ l og ’

] [ ’ ex t ens i on ’ ] [ ’ concept ’ ] ) ,
24 xes . Extension (name=”Organ i za t i ona l ” , p r e f i x=”org ” , u r i=t r e e [ ’

l og ’ ] [ ’ ex t ens i on ’ ] [ ’ o r g an i s a t i o n a l ’ ] ) ,
25 xes . Extension (name=” L i f e c y c l e ” , p r e f i x=” l i f e c y c l e ” , u r i=t r e e [ ’

l og ’ ] [ ’ ex t ens i on ’ ] [ ’ l i f e c y c l e ’ ] )
26 ]
27 log . g l o b a l t r a c e a t t r i b u t e s = [
28 xes . Att r ibute ( type=” s t r i n g ” , key=’ concept : name ’ , va lue=t r e e [ ’

l og ’ ] [ ’ g l oba l ’ ] [ ’ t r a c e ’ ] [ ’ concept : name ’ ] ) ,
29 xes . Att r ibute ( type=” s t r i n g ” , key=’ cpee : name ’ , va lue=t r e e [ ’ l og ’

] [ ’ g l oba l ’ ] [ ’ t r a c e ’ ] [ ’ cpee : name ’ ] )
30 ]
31 log . g l o b a l e v e n t a t t r i b u t e s = [



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

32 xes . Att r ibute ( type=” s t r i n g ” , key=’ concept : name ’ , va lue=t r e e [ ’
l og ’ ] [ ’ g l oba l ’ ] [ ’ event ’ ] [ ’ concept : name ’ ] ) ,

33 xes . Att r ibute ( type=” s t r i n g ” , key=’ cpee : endpoint ’ , va lue=t r e e [ ’
l og ’ ] [ ’ g l oba l ’ ] [ ’ event ’ ] [ ’ concept : endpoint ’ ] ) ,

34 xes . Att r ibute ( type=” s t r i n g ” , key=’ id : id ’ , va lue=t r e e [ ’ l og ’ ] [ ’
g l oba l ’ ] [ ’ event ’ ] [ ’ id : id ’ ] ) ,

35 xes . Att r ibute ( type=” s t r i n g ” , key=’ l i f e c y c l e : t r a n s i t i o n ’ , va lue
=t r e e [ ’ l og ’ ] [ ’ g l oba l ’ ] [ ’ event ’ ] [ ’ l i f e c y c l e : t r a n s i t i o n ’ ] )
,

36 xes . Att r ibute ( type=” s t r i n g ” , key=’ cpee : l i f e c y c l e : t r a n s i t i o n ’ ,
va lue=t r e e [ ’ l og ’ ] [ ’ g l oba l ’ ] [ ’ event ’ ] [ ’ cpee : l i f e c y c l e :
t r a n s i t i o n ’ ] ) ,

37 xes . Att r ibute ( type=”date ” , key=’ time : timestamp ’ , va lue=”
1990−02−17T09 :45 :00 .000+01 :00 ” )

38 ]
39 log . c l a s s i f i e r s = [
40 xes . C l a s s i f i e r (name=”Event ID Trans i t i on C l a s s i f i e r ” , keys=”

id : id l i f e c y c l e : t r a n s i t i o n ” ) ,
41 xes . C l a s s i f i e r (name=”MXML Legacy C l a s s i f i e r ” , keys=” concept :

name l i f e c y c l e : t r a n s i t i o n ” ) ,
42 xes . C l a s s i f i e r (name=”Event Name” , keys=” concept : name” ) ,
43 xes . C l a s s i f i e r (name=”Event ID” , keys=” id : id ” ) ,
44 xes . C l a s s i f i e r (name=”CPEE C l a s s i f i e r ” , keys=” concept : name

cpee : l i f e c y c l e : t r a n s i t i o n ” ) ,
45 xes . C l a s s i f i e r (name=”CPEE Endpoint” , keys=” cpee : endpoint cpee

: l i f e c y c l e : t r a n s i t i o n ” )
46 ]
47 l o g s e t= True
48 t . a t t r i b u t e s = [
49 xes . Att r ibute ( type=” s t r i n g ” , key=” concept : name” , va lue=t r e e [ ’

l og ’ ] [ ’ t r a c e ’ ] [ ’ concept : name ’ ] ) ,
50 xes . Att r ibute ( type=” s t r i n g ” , key=” cpee : name” , value=t r e e [ ’ l og ’

] [ ’ t r a c e ’ ] [ ’ cpee : name ’ ] ) ,
51 xes . Att r ibute ( type=” s t r i n g ” , key=” cpee : uuid” , va lue=t r e e [ ’ l og ’

] [ ’ t r a c e ’ ] [ ’ cpee : uuid ’ ] )
52 ]
53 i f ’ event ’ in t r e e :
54 i f t r e e [ ’ event ’ ] [ ’ cpee : l i f e c y c l e : t r a n s i t i o n ’ ] == ’ a c t i v i t y /

c a l l i n g ’ or t r e e [ ’ event ’ ] [ ’ cpee : l i f e c y c l e : t r a n s i t i o n ’ ] == ’
a c t i v i t y /done ’ :

55 e = xes . Event ( )
56 endpoint=””
57 i f ( ’ concept : endpoint ’ in t r e e [ ’ event ’ ] ) :
58 endpoint = t r e e [ ’ event ’ ] [ ’ concept : endpoint ’ ]
59 e . a t t r i b u t e s = [
60 xes . Att r ibute ( type=” s t r i n g ” , key=” concept : name” , va lue=t r e e [

’ event ’ ] [ ’ concept : name ’ ] ) ,
61 xes . Att r ibute ( type=” s t r i n g ” , key=” cpee : endpoint ” , va lue=

endpoint ) ,
62 xes . Att r ibute ( type=” s t r i n g ” , key=” id : id ” , va lue=t r e e [ ’ event ’

] [ ’ id : id ’ ] ) ,
63 xes . Att r ibute ( type=” s t r i n g ” , key=” l i f e c y c l e : t r a n s i t i o n ” ,

va lue=t r e e [ ’ event ’ ] [ ’ l i f e c y c l e : t r a n s i t i o n ’ ] ) ,
64 xes . Att r ibute ( type=” s t r i n g ” , key=” cpee : l i f e c y c l e : t r a n s i t i o n ”

, va lue=t r e e [ ’ event ’ ] [ ’ cpee : l i f e c y c l e : t r a n s i t i o n ’ ] ) ,
65 xes . Att r ibute ( type=”date ” , key=”time : timestamp” , value=t r e e [

’ event ’ ] [ ’ time : timestamp ’ ] )
66 ]
67 t . add event ( e )
68 log . add trace ( t )
69 print ( str (n) + ” o f ” + str ( len ( f i l e p a t h s ) ) + ” l og s parsed . ” )
70 n=n+1
71
72
73 open( ” l o g s . xes ” , ”w” ) . wr i t e ( str ( l og ) )



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

2.2 Fitness

Fitness determines how well a process log is described by the given process
template. The fitness value is between 0 and 1. A value of 1 shows that a log
is completely conformant to the template while lower values indicate that the
execution of the log is not covered well by the template. Different kinds of fitness
values exist. The ones used for this work are:

– Move-Model Fitness is the value of correct model moves divided by the
overall number of model moves during the replay.

– Move-Log Fitness is the value of correct log moves divided by the overall
number of log moves during the replay.

– Trace Fitness is the cost-based fitness value as described in [1, p.7]. This is
a value obtained by subtracting the raw fitness cost divided by the maximum
fitness cost from 1.

Executing the conformance check as provided in the “Replay a Log on Petri
Net for Conformance Analysis” from the “PNetReplayer” ProM package on the
petri net created following the rules given in section 2.1 (and creating final
markings as well as making helper transitions invisible) and the XES log with
standard parameters (which means choosing the option “penalize improper com-
pletion”, choosing “A* Cost-based Fitness Express with ILP” as the algorithm,
and setting all “Move on Model Costs” and “Move on Log Costs” to 1) makes it
possible to obtain a CSV file with the abovementioned fitness values. These are
used to create the tables given in section 2.3 and 2.4 showing the results. They
contain one line for each log trace (or group of log traces if there are identical
ones). The columns represent one of the three fitness values given above (for
each of the templates). The maximum value for each line is highlighted. (green
for move-model fitness, yellow for move-log fitness and red for trace fitness).

2.3 Application to Log Data - Scenario 1

For the first scenario, the events from the XES log are mapped to the petri net
transitions using the labels of the tasks (e.g. Detect Lowerhousing Production
Start) combined with the information if it is starting or ending.

The result table given in Fig. 2 shows for each log how well it fits each process
template and highlights the maximum value of each characteristic by giving the
corresponding cell a green (maximum move-model fitness), yellow (maximum
move-log fitness), or red (maximum trace fitness) background color. Based on
this, one can decide an instance of which template the log is - sometimes the
template of the maximum value of move-model fitness differs from the template
of the maximum value of the other two characteristics, this seems to be based on
a combination of short templates (e.g. MachiningV2) combined with longer logs
(e.g. log of MachiningV1). If this happens, the model is moved in a correct way
going through the short template while skipping many log events (which is not
important for the move-model fitness) - for the longer MachiningV1 template
which the trace is actually based on there is a small number of steps where a



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

Fig. 2: Conformance Checking Results Using Labels For Event/Transition Map-
ping

task in the model is skipped because some events might be in the wrong order or
missing which leads to a slightly lower move-model fitness. These effects do not
occur in the move-log fitness and trace fitness so it is concluded that these two
features should be the ones to base the decision on (conveniently for all traces
these two do not contradict each other when deciding which template a trace
is based on so it is not necessary to think further about which of them is more
significant). The results of this analysis match the ones of the manual analysis
(given in templates.xlsx - available at [25]). Therefore it is concluded that the
goal of identifying the underlying template of a log using conformance checking
is working as expected.

2.4 Application to Log Data - Scenario 2

In addition to the approach used in the first scenario described in section 2.3,
not only the labels were used for mapping events in the log to tasks in the petri
net. The two characteristics which were used to perform the abovementioned
mapping for the second scenario are:

– using labels (e.g. “Detect GV12 Production Start”) as for the first scenario
– using endpoints (e.g. “https://centurio.work/flow/start/url/”)



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

Fig. 3: Conformance Checking Results Using Labels For Event/Transition Map-
ping

Fig. 4: Conformance Checking Results Using Endpoints For Event/Transition
Mapping

Using labels leads to a good solution in the first scenario. Using endpoints
is an alternative characteristic that can be used. Therefore, the results of both
characteristics are compared to each other to show the advantages and disad-
vantages.

As can be seen in the results given in Fig. 3 and 4, the matching of the
logs to the corresponding templates is similar for using labels and endpoints as
characteristic for the mapping of events to petri net transitions. The following
advantages are present when using labels

– all logs (apart from the plain instance - log number 1039) are correctly
assigned to the corresponding templates

– the results obtained are clear (i.e. the fitness values of a log for all but the
corresponding template is 0)

and endpoints respectively

– the results are more stable (i.e. the result is not dependent on the label of
the tasks)

– endpoints describe actual functionality of a task

Clearly, there are also some disadvantages for both methods. For using labels
these are

– unstable if labels are changed (e.g. “QC Shop Floor” is renamed to “Manu-
ally Measure” at some point)



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

– labels are not linked to the functionality of a task

and for endpoints:

– if endpoints are used, it is oftentimes difficult to determine the process tem-
plate (e.g. “start/url” as generic template is a problem)

– the results are less clear (higher fitness for false templates) and sometimes
even the false template is chosen

2.5 Lessons Learned

Overall, as the endpoints provide a much more stable result which is also based
on the functionality of tasks, this would be the desired characteristic. But there
is also a major drawback using it which comes from the endpoints being generic
and therefore being used in many different process models (see for example the
“start/url” endpoint). In order to tackle this problem, one could think of in-
cluding the parameters of these endpoints to get a more detailed idea of the
functionality performed. Unluckily, this is more difficult as it seems at first be-
cause there is no distinction between parameters for a call to an endpoint that
are fixed and ones that can (at least theoretically) be changed at runtime (i.e.
by using a data element which is obtained during the process execution) and
therefore the usage of the information given in the template models may not
always be the one which is also used at execution time. Consequently, using the
value of data elements (and therefore also parameters of endpoints) is not pos-
sible because they may not be defined in the template at all but at a later point
during the execution.

3 Classification and Clustering of Log Data

3.1 Extracting Machining Data From YAML Logs

Since the log data is available in the YAML format, several steps have to be taken
to transform them into data which can be used for classification and clustering.
In order to achieve this, the logs are first transformed into CSV files taking only
the “Fetch” tasks with the “activity/receiving” lifecycle transition into consider-
ation as these are the only ones containing machining data. The data extracted
from the logs contains the following information that is used in the CSV files:
“source”, “name”, “description”, “path”, “value”, “timestamp”, “StatusCode”,
“ServerTimestamp”, “VariantType”, “ClientHandle”. Afterwards, it has to be
defined which logs failed and which ones were successful. This differs for the
two scenarios. In the first one the goal is to find out if the machining log is
the last one spawned by the parent “Production” process which means that it
is the one finishing successfully. For the second scenario successful logs are the
ones which pass the measurements (the code for extracting the measurements
from the YAML logs is available at [22]) - different measurements are used for
classification as described in section 3.8. Using the information from the CSV



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

files and the definition of successful logs, the data is imported into R. In order
to represent all logs in the same way, some common parameters need to be cho-
sen. This is done by only using logs which are long enough, finding parameters
which occur in all of them and then choosing the ones which occur often enough
for meaningful analysis. More details about the selection of logs and parameters
are given in the sections where the application of the methods to the data is
described (3.7 and 3.8).

The python code for extracting the machining data from the YAML log files
and write them into a CSV file is given below. It is also provided at [14] for the
second scenario (at [13] for the first scenario) and executed using the command
“python csv map.py” which needs the file “machiningFilepaths.txt” (available
at [21]) or for the first scenario “filepaths machining.txt” (available at [20]) to
identify the machining logs containing the data.

1 import yaml ;
2 import os ;
3 import csv ;
4 import re ;
5 import sys ;
6
7 csvData = [ [ ” Id” , ” source ” , ”name” , ” d e s c r i p t i o n ” , ”path” , ” value ” , ”

timestamp” , ”StatusCode” , ”ServerTimestamp” , ”VariantType” , ”
Cl ientHandle ” ] ]

8
9 with open( ”machin ingFi lepaths . txt ” ) as f :

10 f i l e p a t h s = f . r e a d l i n e s ( )
11 f i l e p a t h s = [ x . s t r i p ( ) for x in f i l e p a t h s ]
12 n=1
13 #f i l e p a t h s = [ ’ l o g s / production /acc7d2e4−f949−4e9b−a99a−afe3469cbbe9 .

xes . yaml ’ ]
14
15 f i l e d a t a = { f i l e p a t h : open( f i l e p a th , ’ r ’ ) for f i l e p a t h in f i l e p a t h s }
16
17 #prin t ( f i l e d a t a )
18
19 for f i l e in f i l e d a t a . va lues ( ) :
20 print ( f i l e . name)
21 logname=str (n)
22 t r e e s = yaml . l o a d a l l ( f i l e ) ;
23 for t r e e in t r e e s :
24 i f ’ l og ’ in t r e e :
25 logname=t r e e [ ’ l og ’ ] [ ’ t r a c e ’ ] [ ’ concept : name ’ ]
26 i f ’ event ’ in t r e e :
27 i f t r e e [ ’ event ’ ] [ ’ cpee : l i f e c y c l e : t r a n s i t i o n ’ ] == ’ a c t i v i t y /

r e c e i v i n g ’ and t r e e [ ’ event ’ ] [ ’ concept : name ’ ] == ’ Fetch ’ :
28 i f ’ l i s t ’ in t r e e [ ’ event ’ ] :
29 for data r in t r e e [ ’ event ’ ] [ ’ l i s t ’ ] [ ’ d a t a r e c e i v e r ’ ] :
30 for data in data r [ ’ data ’ ] :
31 id=””
32 source=””
33 name=””
34 d e s c r i p t i o n=””
35 path=””
36 value=””
37 timestamp=””
38 statusCode=””
39 serverTimestamp=””
40 variantType=””
41 c l i en tHand l e=””
42 i f ’ ID ’ in data :
43 id=data [ ’ ID ’ ]
44 i f ’ source ’ in data :



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

45 source=data [ ’ source ’ ]
46 i f ’name ’ in data :
47 name=data [ ’name ’ ]
48 i f ’ d e s c r i p t i o n ’ in data :
49 d e s c r i p t i o n=data [ ’ d e s c r i p t i o n ’ ]
50 i f ’ path ’ in data :
51 path=data [ ’ path ’ ]
52 i f ’ va lue ’ in data :
53 value=str ( data [ ’ va lue ’ ] ) . r s t r i p ( )
54 i f ’ timestamp ’ in data :
55 timestamp=data [ ’ timestamp ’ ]
56 i f ’meta ’ in data :
57 i f ’ StatusCode ’ in data [ ’meta ’ ] :
58 statusCode=data [ ’meta ’ ] [ ’ StatusCode ’ ]
59 i f ’ ServerTimestamp ’ in data [ ’meta ’ ] :
60 serverTimestamp=data [ ’meta ’ ] [ ’ ServerTimestamp ’ ]
61 i f ’ VariantType ’ in data [ ’meta ’ ] :
62 variantType=data [ ’meta ’ ] [ ’ VariantType ’ ]
63 i f ’ Cl ientHandle ’ in data [ ’meta ’ ] :
64 c l i en tHand l e=data [ ’meta ’ ] [ ’ Cl ientHandle ’ ]
65 csvNewData = [ id , source , name , de s c r i p t i on , path , value ,

timestamp , statusCode , serverTimestamp , variantType ,
c l i en tHand l e ]

66 csvData . append ( csvNewData )
67 else :
68 csvNewData = [ ”” , ”” , ”” , ”” , ”” , ”” , t r e e [ ’ event ’ ] [ ’ time :

timestamp ’ ] , ”” , ”” , ”” , ”” ]
69 csvData . append ( csvNewData )
70 print ( str (n) + ” o f ” + str ( len ( f i l e p a t h s ) ) + ” l og s parsed . ” )
71 c svSt r ing=””
72 for v in csvData :
73 l i n e=’∗ ’ . j o i n ( str ( r ) for r in v )
74 c svSt r ing+=l i n e+”\n”
75 open( ” log ”+str ( logname )+” . csv ” , ”w” ) . wr i t e ( c svSt r ing )
76 csvData =[ [ ” Id” , ” source ” , ”name” , ” d e s c r i p t i o n ” , ”path” , ” value ” , ”

timestamp” , ”StatusCode” , ”ServerTimestamp” , ”VariantType” , ”
Cl ientHandle ” ] ] ;

77 n=n+1
78
79 sys . e x i t (0 ) ;

3.2 Hierarchical Clustering

Hierarchical clustering is a method of building clusters by either starting with
each observation in its own cluster or with all observations in one cluster and
then merge the ones being closest to each other using some distance metric (or
split into a number of clusters based on the distance in case one big cluster is
used as starting point). In order to cluster the data, only the features derived
from the logs as described earlier in section 3.1 were used without looking at if
the log is successful or not. In order to find the appropriate number of clusters,
a scree plot is created and clustering is then performed for promising cluster
numbers. Additionally, a silhouette plot is created so that statements about the
quality of clustering can be made. This method is only performed for the first
scenario.

3.3 K-Means Clustering

K-Means clustering is a method where the number of clusters is defined before
the algorithm is performed. The cluster centers are then randomly assigned and



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

shift iteratively based on the mean of the contained points. It is performed with
the same data set as in section 3.2 using the same number of clusters as for the
hierarchical clustering to check if the usage of different clustering methods has
any effect on the result. A silhouette plot is also created for each clustering with
different numbers of clusters. As for hierarchical clustering, this method is only
performed for the first scenario.

3.4 Feature Selection with Random Forest

Classifying data sets with a lot of feature variables in relation to the amount of
data points, comes with the need to reduce this amount of feature variables. This
reduces the amount of overfitting and makes the training of data and interpre-
tation of results easier ([3]) which is relevant for the data sets of both scenarios,
especially the first one. Goal of the feature selection is to find out which feature
variables are the most important, meaning which contribute the most to the
corresponding class of the data.

For the feature selection an automatic method provided by the “caret” pack-
age in R is used, namely recursive feature elimination. This algorithm builds
many models with the given classification algorithm and different subsets of fea-
ture variables and compares the accuracy ([6]). In this case the random forest
algorithm is used to compare the models with each other. The random forest
algorithm works by creating many randomly generated decision trees. Each deci-
sion tree of this forest is used for classifying the given data. The class which gets
the majority of predictions of the trees is used as the final classification outcome
of the forest. The advantage of the random forest algorithm is that it trains and
evaluates very fast, especially with big amounts of data and is performing well
in recognizing important feature variables ([4]).

3.5 Support Vector Machines

Support vector machines is a method to classify data. This is done by construct-
ing one or multiple hyperplanes which separate data points into different classes.
This is the primary method of classification for the data sets given. The usage
of SVM was done in R, using linear, radial, sigmoid and polynomial kernels. In
order to perform classification the function “svm” from the R package “e1071”
is used (for more information on this package see [28]).

3.6 Naive Bayes

Naive Bayes is another method to classify data, based on probabilities. This was
used as a comparison to SVM, to see if using a different classifier has signifi-
cant effects on the classification. In order to perform classification the function
“naiveBayes” from the R package “e1071” is used (for more information on this
package see [28]).



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

3.7 Application to Log Data - Scenario 1

Every log has not only differences in the number of variables measured but also
in the length of the log (i.e. the number of data points) in general. Therefore, it
is first analysed how many data points are contained in each log in order to find
the ones which can be used for the analysis later on.

Obviously, the logs having only few data elements are very difficult to use for
the analysis task and therefore only the logs which have more or equal to 100
data elements can be used. As 6 of 47 logs do not meet this prerequisite, only 41
logs are remaining after the filtering. The next task is to look at the parameters
present in all files and then the minimum number of these IDs within the files that
can be used (which means files which have ≥ 100 data elements) are calculated.
Afterwards, it has to be decided which data points are used (the last 10 data
elements of each usable variable in this case). Therefore, a log is represented in
the following way: the last 10 values of the variables following variables are used:

– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1]
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,2]
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,3]
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,1]
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,2]
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,3]
– ns=2;s=/Channel/Spindle/driveLoad

Therefore, a log is represented by 70 (7 ∗ 10) parameters (+1 if the success
or no success flag is also taken into consideration). This data is then used to
perform the data analysis.
Since the amount of feature variables in the first data set is really high with 71
in comparison to the amount of data logs with 41, the risk of overfitting the data
when trying to classify them has to be considered (for example using SVM as
algorithm for classifying the data, the accuracy for the test and training data
is, depending on the seed, nearly always or close to 100%, which is probably an
unrealistic value and that model could not be used for other data). Therefore,
before classification can be applied, features must be selected. This is done using
the method described in section 3.4.

In order to get the results presented below the R code given at [10] has
to be executed. Fig. 5 created with this code, shows the root-mean-squared-
error in comparison to the number of variables used in the model. In this case
using 8 variables gives the lowest root-mean-squared-error and therefore is a
good indicator, which and how many feature variables are sufficient, to create
a model out of it. The variables used are (the number after the dot indicates
which of the values within the last 10 - this means that “.1” is the 10th value
and “.10” is the first value counting from the back):

– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1].7
– ns=2;s=/Channel/Spindle/driveLoad.8
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,1].7



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

Fig. 5: Recursive Feature Elimination

– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1].6
– ns=2;s=/Channel/Spindle/driveLoad.7
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1].8
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1].5
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1].10

Out of those feature variables a new data frame is created. In the next step
the data is split into a training set (75%, 31 logs) and a test set (25%, 10 logs).

For classification different algorithms are used, to give an idea about the
accuracy of classification and if the models could be viable for classifying the
logs.

The accuracy given in Tab. 1 using naive bayes with 77,42% for the training
set and 80% for the test set, seems worse than the SVMs. This could indicate that



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

SVM Naive Bayes

kernel linear radial sigmoid polynomial -

cost 1 1 1 1 -

gamma 0.125 0.125 0.125 0.125 -

degree - - - 3 -

coef.0 - - 0 0 -

# support 9 12 12 13 -
vectors

accuracy 96.77% 93.55% 93.55% 87.10% 77.42%
training set

accuracy 90.00% 90.00% 90.00% 80.00% 80.00%
test set

Tab. 1: Classification Results With Different Kernels For Scenario 1

SVM is a good algorithm for this data set. The accuracies for the training set with
93,55% for both radial and sigmoid and 87,1% for polynomial are all decently
high, but still lower than SVM with a linear kernel. Furthermore, the accuracy
for the test set with 90% for both radial and sigmoid and 80% for polynomial,
are equal or a bit less than the SVM with linear kernel, but regarding the fact
that there are only 10 data sets in the test set, jumps in accuracy are very high
for single correct or incorrect predictions.

(a) Hierarchical Clustering (b) Scree Plot

Fig. 6: Hierarchical Clustering Plots



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

In addition to classification, clustering is performed using the code given in
[11]. The scree plot (Fig. 6b) indicates that 7 or 18 clusters should be used
because these are the locations where an “elbow” can be seen. Additionally, the
clustering is performed for 2 clusters because there are two cases in the original
problem statement (success or not success).

The silhouette plots in Fig. 7 are created for the results with different numbers
of clusters.

(a) 2 Clusters (b) 7 Clusters (c) 18 Clusters

Fig. 7: Silhouette Plot For Different Numbers of Clusters Using Hierarchical Clus-
tering

If a class is assigned to each cluster (the one which has the highest number of
points inside the cluster is chosen), an estimation of the quality of the clustering
is obtained:

– 2 clusters: 68.83%
– 7 clusters: 92.68%
– 18 clusters: 97.56%

Obviously, the clustering using 18 clusters is the most accurate one but look-
ing at the ratio of clusters to number of logs, and the small number of logs in
most of the clusters this approach looks like overfitting. Also, the average sil-
houette width decreases when more clusters are used which indicates that the
points are not as well located in the cluster compared to fewer clusters.

Doing clustering with the same data described above but using kmeans leads
to the following results:

– 2 clusters: 68.83%
– 7 clusters: 92.68%
– 18 clusters: 95.12%

The results are very similar to the ones above concerning accuracy therefore
again overfitting for 18 clusters (and maybe even 7) has to be taken into account.
A notable difference to the hierarchical clustering is that the average silhouette
width for 7 and 18 clusters is lower.



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

(a) 2 Clusters (b) 7 Clusters (c) 18 Clusters

Fig. 8: Silhouette Plot For Different Numbers of Clusters Using K-Means Clus-
tering

After performing the clustering with the data described above, the question
arised how clustering would look if less features are used – therefore clustering
is done again this time not using the last 10 values of each “good” parameter
but only the first one of them (i.e. the 10th value counting from the last value).
The results gathered when executing the R code available at [12] are given in
Fig. 9.

(a) Hierarchical Clustering With Less Fea-
ture Variables (b) Scree Plot With Less Feature Variables

Fig. 9: Hierarchical Clustering With Less Feature Variables Plots



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

The plots given in Fig. 9 are similar to the plots for the full data set given
in Fig. 6 - the scree plot (see Fig. 9b) shows which number of clusters should be
used in further analysis.

Using hierarchical clustering, the following accouracies are derived:

– 2 clusters: 58.54%
– 6 clusters: 82.93%
– 10 clusters: 82.93%
– 15 clusters: 90.24%

(a) 2 Clusters (b) 6 Clusters (c) 10 Clusters (d) 15 Clusters

Fig. 10: Silhouette Plot For Different Numbers of Clusters Using Hierarchical
Clustering With Less Feature Variables

For k-means clustering the result is as follows:

– 2 clusters: 75.61%
– 6 clusters: 80.49%
– 10 clusters: 80.49%
– 15 clusters: 87.80%

(a) 2 Clusters (b) 6 Clusters (c) 10 Clusters (d) 15 Clusters

Fig. 11: Silhouette Plot For Different Numbers of Clusters Using K-Means Clus-
tering With Less Feature Variables

The accuracies achieved with a lower number of features are slightly lower
than the ones achieved with a higher number of features – but they are still not



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

too bad. Probably a number of features between the two would be optimal but a
more in-depth analysis only seems feasible if an analysis of the effect the number
of logs has on the results (i.e. does the approach even work for a larger number
of logs) has been done.

3.8 Application to Log Data - Scenario 2

To start working with the second data set it has to be determined which of
the parameters can be used for representing a log and ultimately be used in
classification. Moreover, the logs have to be checked in order to find out which
of them might not be appropriate for usage because they are somehow damaged
or simply too short.

First off, it is analysed how many data points are contained in each log.
Afterwards the decision that only logs which contain more than 100 data points
are feasible to use is established. Therefore, 3 of the 205 logs are not taken into
account for the further steps meaning that 202 logs can still be used for the
analysis. Using the 202 remaining logs, all feature variables which are present in
all of them are determined. From these 20 parameters the minimum number of
occurrence within the 202 valid logs is determined. A threshold of 10 is chosen
and all of the feature variables which are below that are deleted, which leads to
14 parameters. The code used for this process is given at [8].

As there are about 70 parameters representing a log in the first scenario
(10 last values of 7 IDs), which achieve feasible results, it is concluded that a
similar number should be chosen. Therefore, the decision that 5 data points per
parameter should represent a log (as 14 ∗ 5 equals 70) is taken. For the first
scenario the last 10 data points of each log are used - for this scenario it is
decided to use the last 5, 5 in the middle and the first 5 data points in order
to represent logs as it is interesting which of these variants provides the best
results also indicating which point in time of the manufacturing might be most
significant for the part to be correct. The parameters used for representation
are:

– ns=2;s=/Channel/MachineAxis/aaLeadP[u1,1]
– ns=2;s=/Channel/MachineAxis/aaLeadP[u1,2]
– ns=2;s=/Channel/MachineAxis/aaLeadP[u1,3]
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1]
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,2]
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,3]
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,1]
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,2]
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,3]
– ns=2;s=/Channel/MachineAxis/aaVactB[u1,1]
– ns=2;s=/Channel/MachineAxis/aaVactB[u1,2]
– ns=2;s=/Channel/MachineAxis/aaVactB[u1,3]
– ns=2;s=/Channel/Spindle/actSpeed
– ns=2;s=/Channel/Spindle/driveLoad



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

The code for reading the data from the CSV files and preparing it for usage
in R is given below and at [16]. It is already taken into account that the mea-
surements are missing for 6 of the parts - these are not used for classification
later on - therefore, 196 logs are remaining.

1 #−−−−−−−− Daten e in l e sen
2
3 #i n s t a l l . packages (” gdata ”)
4 #i n s t a l l . packages (” c l u s t e r ”)
5 #i n s t a l l . packages (” c lue ”)
6 #i n s t a l l . packages (” r l i s t ”)
7 l ibrary ( gdata )
8 l ibrary ( c l u s t e r )
9 l ibrary ( c lue )

10 l ibrary ( r l i s t )
11
12 setwd ( ”P:\\Daten\\Uni\\Master Wi r t s cha f t s i n f o rmat ik \\2018 WS\\VU

Business I n t e l l i g e n c e I I \\ aufgabe4 \\ f r age2 ” )
13 #setwd (”C:\\Users\\Admin\\Desktop\\ bi2 ”)
14
15 f i l e s<−l i s t . f i l e s ( ”machining” )
16 f i l e s<−append( f i l e s [−c ( 1 : 1 0 ) ] , f i l e s [ 1 : 1 0 ] )
17
18 a l l d a t a<−l i s t ( )
19
20 for ( i in 1 : length ( f i l e s ) ) {
21 a l l d a t a [ [ i ] ]<−read . csv (paste ( ”machining\\” , f i l e s [ i ] , sep=”” ) , header=

TRUE, sep=”∗” , s t r ing sAsFac to r s=FALSE)
22 }
23
24 a l l s p l i t d a t a<−l i s t ( )
25 for ( i in c ( 1 : length ( f i l e s ) ) ) {
26 datase t<−a l l d a t a [ [ i ] ]
27 ordereddata<−datase t [ order ( datase t$Id , datase t$ServerTimestamp ,

datase t$timestamp ) , ]
28 s p l i t d a t a<−sp l i t ( ordereddata , ordereddata$ Id )
29 a l l s p l i t d a t a [ [ i ] ]<−s p l i t d a t a
30 }
31
32 dataitems<−array ( )
33 for ( i in 1 : length ( f i l e s ) ) {
34 dataitems [ i ]<−nrow( a l l d a t a [ i ] [ [ 1 ] ] )
35 }
36
37 g o o d f i l e s<−c ( )
38 for ( i in 1 : length ( f i l e s ) ) {
39 i f ( dataitems [ i ]>=100) {
40 g o o d f i l e s<−c ( g o od f i l e s , i )
41 }
42 }
43
44 l i s t o f i d s<−c ( )
45 for ( i in g o o d f i l e s ) {
46 l i s t o f i d s<−c ( l i s t o f i d s ,names( a l l s p l i t d a t a [ [ i ] ] ) )
47 }
48
49 id s=unique ( l i s t o f i d s )
50
51 sumofids<−array ( )
52 for ( i in c ( 1 : length ( i d s ) ) ) {
53 counter<−0
54 for ( j in c ( 1 : length ( l i s t o f i d s ) ) ) {
55 i f ( i d s [ i ]== l i s t o f i d s [ j ] ) counter<−counter+1
56 }
57 sumofids [ i ]<−counter
58 }
59



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

60 idswithsums<−cbind ( ids , sumof ids )
61
62 goodids<−c ( )
63 for ( i in c ( 1 : length ( i d s ) ) ) {
64 i f ( idswithsums [ i ,2]==”202” ) goodids<−c ( goodids , idswithsums [ i , 1 ] )
65 }
66
67 numbers<−data . frame ( )
68 for ( i in g o o d f i l e s ) {
69 bu f f e r<−array ( )
70 bu f f e r [ 1 ]<−i
71 for ( j in c ( 1 : length ( goodids ) ) ) {
72 s p l i t i d<−which ( goodids [ j ] == names( a l l s p l i t d a t a [ [ i ] ] ) )
73 bu f f e r [ j +1]<−nrow( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] )
74 }
75 numbers<−rbind ( numbers , bu f f e r )
76 }
77 numbers<−setNames ( numbers , c ( ” f i l enumber ” , goodids ) )
78
79 minimum<−array ( )
80 for ( i in 2 : 21 ) {
81 minimum [ i −1]<−min( numbers [ i ] )
82 }
83
84 idswithminimum<−cbind ( goodids ,minimum)
85
86 r e a l l y g o od i d s<−c ( )
87 for ( i in c ( 1 : length ( goodids ) ) ) {
88 i f ( as .numeric ( idswithminimum [ i , 2 ] )>=10) r e a l l y g o od i d s<−c (

r e a l l ygood id s , idswithminimum [ i , 1 ] )
89 }
90
91 gooddata<−data . frame ( ) ;
92 for ( i in g o o d f i l e s ) {
93 bu f f e r<−array ( )
94 bu f f e r 1<−array ( )
95 bu f f e r 2<−array ( )
96 for ( j in c ( 1 : length ( r e a l l y g o od i d s ) ) ) {
97 s p l i t i d<−which ( r e a l l y g o od i d s [ j ] == names( a l l s p l i t d a t a [ [ i ] ] ) )
98 #for ( k in c (1 :5) ) {
99 # b u f f e r [ ( j−1)∗5+k ]<−as . numeric ( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] $value [

k ] )
100 #}
101 #for ( k in c (1 :5) ) {
102 # b u f f e r [ ( j−1)∗5+k ]<−as . numeric ( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] $value [

round (nrow( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] ) /2)−3+k ] )
103 #}
104 for ( k in c ( 1 : 5 ) ) {
105 bu f f e r [ ( j−1)∗5+k ]<−as .numeric ( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] $value [

nrow( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] )−(5−k ) ] )
106 }
107 }
108 gooddata<−rbind ( gooddata , bu f f e r )
109 }
110 gooddatanames=c ( )
111 for ( i in c ( 1 : length ( r e a l l y g o od i d s ) ) ) {
112 for ( j in c ( 1 : 5 ) ) {
113 gooddatanames=c ( gooddatanames , paste ( r e a l l y g o od i d s [ i ] , j , sep=”” ) )
114 }
115 }
116 gooddata<−setNames ( gooddata , gooddatanames )
117
118 succe s sdata<−read . csv ( ”measuring . csv ” , header=TRUE, sep=”∗” ,

s t r i ng sAsFac to r s=FALSE)
119 #successdatao ld<−successdata
120
121 helperMM1<−succe s sdata$MM1[ 1 7 9 ]
122 helperMM2<−succe s sdata$MM2[ 1 7 9 ]



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

123 helperMM3<−succe s sdata$MM3[ 1 7 9 ]
124
125 helper1MM1<−succe s sdata$MM1[ 1 8 0 ]
126 helper1MM2<−succe s sdata$MM2[ 1 8 0 ]
127 helper1MM3<−succe s sdata$MM3[ 1 8 0 ]
128
129 for ( i in c (180 : 129 ) ) {
130 succe s sdata$MM1[ i ]<−succe s sdata$MM1[ i −2]
131 succe s sdata$MM2[ i ]<−succe s sdata$MM2[ i −2]
132 succe s sdata$MM3[ i ]<−succe s sdata$MM3[ i −2]
133 }
134
135 succe s sdata$MM1[ 1 2 7 ]<−helperMM1
136 succe s sdata$MM2[ 1 2 7 ]<−helperMM2
137 succe s sdata$MM3[ 1 2 7 ]<−helperMM3
138
139 succe s sdata$MM1[ 1 2 8 ]<−helper1MM1
140 succe s sdata$MM2[ 1 2 8 ]<−helper1MM2
141 succe s sdata$MM3[ 1 2 8 ]<−helper1MM3
142
143
144 goodsuccessdata<−data . frame ( )
145 for ( i in g o o d f i l e s ) {
146 goodsuccessdata<−rbind ( goodsuccessdata , succe s sdata [ i , c ( 3 : 1 7 ) ] )
147 }
148 gooddata<−cbind ( gooddata , goodsuccessdata )
149
150
151 j<−1
152 badgooddata<−array ( )
153 for ( i in c (nrow( gooddata ) ) : 1 ) {
154 i<−i
155 i f ( i s .na( gooddata$MM1[ i ] ) | | gooddata$MM1[ i ]==”” ) {
156 badgooddata [ j ]<−i
157 j<−j+1
158 }
159 }
160
161
162 for ( i in badgooddata ) {
163 gooddata<−gooddata [− i , ]
164 }
165
166
167 for ( i in c ( 71 : 8 5 ) ) {
168 gooddata [ , c ( i ) ]<−( as . log ica l ( gooddata [ , c ( i ) ] ) )
169 }
170
171 gooddata<−cbind ( gooddata , acceptance=rowSums( gooddata [ , 7 7 : 8 5 ] )==9)
172
173 gooddata<−cbind ( gooddata , acceptance MM=rowSums( gooddata [ , 7 1 : 7 3 ] )==3)

As described above, different quintetts of data points are used to represent
the logs. The difference between using the last, first, or middle five points lies in
the following lines in the code:

For using the first five data points per parameter for representation the fol-
lowing code is used (available at [15]):

1 for ( i in g o o d f i l e s ) {
2 bu f f e r<−array ( )
3 bu f f e r 1<−array ( )
4 bu f f e r 2<−array ( )
5 for ( j in c ( 1 : length ( r e a l l y g o od i d s ) ) ) {
6 s p l i t i d<−which ( r e a l l y g o od i d s [ j ] == names( a l l s p l i t d a t a [ [ i ] ] ) )
7 for ( k in c ( 1 : 5 ) ) {



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

8 bu f f e r [ ( j−1)∗5+k ]<−as .numeric ( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] $value [ k
] )

9 }
10 #for ( k in c (1 :5) ) {
11 # b u f f e r [ ( j−1)∗5+k ]<−as . numeric ( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] $value [

round (nrow( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] ) /2)−3+k ] )
12 #}
13 #for ( k in c (1 :5) ) {
14 # b u f f e r [ ( j−1)∗5+k ]<−as . numeric ( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] $value [

nrow( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] )−(5−k ) ] )
15 #}
16 }
17 gooddata<−rbind ( gooddata , bu f f e r )
18 }

For using the middle five data points per parameter for representation the
following code is used (available at [17]):

1 for ( i in g o o d f i l e s ) {
2 bu f f e r<−array ( )
3 bu f f e r 1<−array ( )
4 bu f f e r 2<−array ( )
5 for ( j in c ( 1 : length ( r e a l l y g o od i d s ) ) ) {
6 s p l i t i d<−which ( r e a l l y g o od i d s [ j ] == names( a l l s p l i t d a t a [ [ i ] ] ) )
7 #for ( k in c (1 :5) ) {
8 # b u f f e r [ ( j−1)∗5+k ]<−as . numeric ( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] $value [

k ] )
9 #}

10 for ( k in c ( 1 : 5 ) ) {
11 bu f f e r [ ( j−1)∗5+k ]<−as .numeric ( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] $value [

round(nrow( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] ) /2)−3+k ] )
12 }
13 #for ( k in c (1 :5) ) {
14 # b u f f e r [ ( j−1)∗5+k ]<−as . numeric ( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] $value [

nrow( a l l s p l i t d a t a [ [ i ] ] [ [ s p l i t i d ] ] )−(5−k ) ] )
15 #}
16 }
17 gooddata<−rbind ( gooddata , bu f f e r )
18 }

Looking at the measurements/tests it is noteworthy that some of them are
passed/not passed every time (or close to every time) which makes them difficult
to use for classification because predicting the class which occurs very often
provides a good result without having to rely on actual data.

The chart in Fig. 12 shows the number of parts passing the test for each test
- the red line indicates the number of parts produced so the number of parts not
passing the test can also be determined. As described above, measurements which
have a good ratio of “passed” to “not passed” should be used for the classifica-
tion - therefore, “Kreis.19.2.1.Konzentrizitaet”, “Kreis.19.2.2.Konzentrizitaet”
and “Zylinder.4.5.B.Durchmesser” seem good to use. In order to also have a
manual measurement in the classification the best one of these (“MM1”) is also
added. The two bars on the right side represent the overall acceptance for auto-
matic (all but the first 3 automatic measurements are OK - i.e. all but the ones
starting with “Flaeche”) and manual measurements (all three manual measure-
ments are OK).

The goal is to find out if the result of a single measurement can be predicted
via classification. For the classification the last 5 data points of each machining
log are used. Using the last few data points worked well for the first scenario.
Using the last 5 data points of each feature variable gives 70 variables in total



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

Fig. 12: Number of Parts Passing Test (For All Tests)

and 196 usable data points for each of those variables, which is a decent ratio.
Measurements are chosen, where there is a good ratio between true and false
(ok and nok), since trying to predict a measurement result, which is 99% ok, is
probably rather pointless. Therefore, 1 manual measurement and 3 automatic
measurements are chosen, which have a good ratio. Those measurements are,
including their ratio of true/false:

– Manual Measurement 1 (181 ok/true(92,3%), 15 nok/false(7,7%))
– Kreis 19,2-1 Konzentrizitaet (76 ok/true(38,8%), 120 nok/false(61,2%))
– Kreis 19,2-2 Konzentrizitaet (73 ok/true(37,2%), 123 nok/false(62,8%))
– Zylinder 4,5-B Durchmesser (152 ok/true(77,6%), 44 nok/false(22,4%))

Although manual measurement 1 has a really high number of measurements with
the result ok, it is still the lowest of all manual measurements, and it is useful
to look at classification results for one manual measurement as well, to see if it
behaves differently.

The data was split into a training set (75%, 143 logs) and a test set (25%,
53 logs).

For classification different algorithms were used, to give an idea about the
accuracy of classification and if the models could be viable for classifying the
logs. The code used for this analysis as well as the R output can be found at [9].

Classification was first performed for “ManualMeasurement1” using the last
5 data points (Tab. 2). The accuracy for the SVM with linear kernel with 97,9%
for the training set and 84,9% for the test set seems very good, but looking at
the predictions, which all predict only one class and the initial ratio of true/false,
it can be seen that the classification is indeed very bad. The accuracies in the
testsets for other kernels with 94,3% for polynomial and 96,2% for radial and
sigmoid also seem really good, but a closer look shows, that the SVM figured out



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 0.01 1 1 -

gamma 0.01428571 0.01428571 0.001 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 52 91 31 32 83 -
vectors

accuracy 97.90% 91.61% 90.91% 90.91% 93.71% 72.73%
training set

accuracy 84.91% 96.23% 96.23% 96.23% 94.34% 54.72%
test set

Tab. 2: Classification Results For “ManualMeasurement1” Using The Last 5
Data Points

to just predict everything true, therefore getting a really high accuracy, but is
basically not useful for actual predicting. Naive Bayes doesn’t work at all here.

Those high accuracies can be attributed to the fact that the initial ratio of
manual measurement 1 is really skewed in favour of true/ok. Therefore classi-
fication doesn’t seem viable here. In the next step classification is used for the
automatic measurements, which have a far more balanced ratio between true/ok
and false/nok and should, if classification is viable, provide better results.

For classification for the measurement results of Kreis 19,2-1 Konzentrizitaet,
Kreis 19,2-2 Konzentrizitaet and Zylinder 4,5-B Durchmesser the same steps as
above for Manual Measurement 1 are used, therefore just the results of the
different SVM kernels and naive bayes are presented in the Tab. 3, 4, and 5.

The results for Kreis19,2-1 Konzentrizitaet (Tab. 3) show that the accuracies
of the testsets of the the different classification methods range from 52,8% (Naive
Bayes) to 66% (SVM with radial kernel). This is not a good accuracy at all
and it seems like the classification does not really find a good way to predict
the outcome. Apparently the SVM found its best way to predict, by predicting
nearly everything as the label which has the majority of the dataset (the data
set has about 62% labelled false). As can be seen for the “best” prediction, SVM
with a radial kernel, which predicts 48 out of 53 labels as false. This suggests
that classification is not really working for the goal stated. To further confirm
this assumption, the classification using the last 5 data points for the other
measurement results is performed.

The classification for Kreis 19,2-2 Konzentrizitaet (Tab. 4) shows that this is
the same story as above. It predicts nearly everything as the label which is more
common in the dataset, in this case false, to get the best result it can achieve.

The classification of Zylinder 4,5-B Durchmesser (Tab. 5) works even worse
than the unsuccessful classifications from above, by just predicting everything
as true, although only about 77% are labelled as such. Those results lead to the



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 1 1 1 -

gamma 0.01428571 0.01428571 0.1 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 103 129 143 117 132 -
vectors

accuracy 82.52% 77.62% 98.60% 58.74% 74.13% 66.43%
training set

accuracy 56.60% 66.04% 66.04% 62.26% 62.26% 52.83%
test set

Tab. 3: Classification Results For “Kreis19,2-1 Konzentrizitaet” Using The Last
5 Data Points

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 1 1 1 -

gamma 0.01428571 0.01428571 0.1 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 104 130 143 110 130 -
vectors

accuracy 84.62% 73.43% 98.60% 58.04% 76.22% 66.43%
training set

accuracy 52.83% 62.26% 62.26% 56.60% 60.38% 56.60%
test set

Tab. 4: Classification Results For “Kreis19,2-2 Konzentrizitaet” Using The Last
5 Data Points

conclusion that classification for this data just does not work. One possibility
could be, that the last 5 data points are just not suitable for this case. Therefore,
classification is again performed for the same measurement results, but with the
first 5 data points of the machining data.

For classification for all the measurement results using the first 5 data points
the same steps as above for manual measurement 1 using the last 5 data points
are carried out. The only difference is the different data set, which was used as
source, which contains the first 5 data points per parameter to describe a log.

Again the results given in Tab. 6, 7, 8, and, 9 indicate that, just like using the
last 5 data points, all the classifications just predict everything as true or false,



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 0.01 1 1 -

gamma 0.01428571 0.01428571 0.001 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 76 114 67 70 111 -
vectors

accuracy 88.11% 81.12% 78.32% 76.22% 87.41% 71.33%
training set

accuracy 67.92% 75.47% 75.47% 77.36% 73.58% 60.38%
test set

Tab. 5: Classification Results For “Zylinder 4,5-B Durchmesser” Using The Last
5 Data Points

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 0.01 1 1 -

gamma 0.01428571 0.01428571 0.001 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 40 84 33 35 104 -
vectors

accuracy 99.30% 93.01% 90.91% 90.21% 93.71% 33.57%
training set

accuracy 83.02% 96.23% 96.23% 96.23% 96.23% 11.32%
test set

Tab. 6: Classification Results For “ManualMeasurement1” Using The First 5
Data Points

depending which is the majority of the data set. It seems it doesn’t even matter
if the first or last 5 data points are used, which strongly suggests that there
is just no correlation between the machining variables and the measurement
result. Just to be sure, the classification for a relatively evenly distributed mea-
surement result is repeated using the middle 5 data points of the machining data.

For classification for the measurement results of Kreis 19,2-1 Konzentrizitaet
using the middle 5 data points the same steps as above for manual measurement
1 using the last 5 data points are executed. The only difference is the different
data set, which is used as source, which contains the middle 5 data points per
parameter to describe a log.



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 10 1 1 -

gamma 0.01428571 0.01428571 0.001 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 83 126 121 117 136 -
vectors

accuracy 88.81% 88.11% 82.52% 68.53% 69.93% 42.66%
training set

accuracy 56.60% 62.26% 56.60% 60.38% 64.15% 37.74%
test set

Tab. 7: Classification Results For “Kreis19,2-1 Konzentrizitaet” Using The First
5 Data Points

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 10 1 1 -

gamma 0.01428571 0.01428571 0.001 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 87 130 119 113 137 -
vectors

accuracy 88.81% 85.31% 82.52% 65.73% 72.03% 40.56%
training set

accuracy 52.83% 60.38% 58.49% 60.38% 62.26% 39.62%
test set

Tab. 8: Classification Results For “Kreis19,2-2 Konzentrizitaet” Using The First
5 Data Points

This classification (for results see Tab. 10) does again not seem to work
and again predicts everything as false. This again confirms the assumption that
classification is not really working out for the stated goal. To eliminate another
potential problem, the number of feature variables is reduced, which potentially
skew the classification. Here the method described in section 3.4 is used for the
data sets using the last and first 5 data points for log representation.

The plot given in Fig. 13 suggests that more feature variables don’t really
lead to more accuracy at a certain point when using the last 5 data points to
represent a log. Low amounts such as 14 feature variables already reach the same
accuracy. Therefore, the 14 “best” features are used to create a new data frame
and perform classification. The 14 feature variables are (the number after the



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 0.01 1 1 -

gamma 0.01428571 0.01428571 0.001 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 70 118 67 71 134 -
vectors

accuracy 96.50% 80.42% 78.32% 77.62% 81.12% 51.75%
training set

accuracy 67.92% 75.47% 75.47% 75.47% 75.47% 49.06%
test set

Tab. 9: Classification Results For “Zylinder 4,5-B Durchmesser” Using The First
5 Data Points

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 1 1 1 -

gamma 0.01428571 0.01428571 0.01 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 92 135 130 118 136 -
vectors

accuracy 88.11% 76.92% 71.33% 60.14% 72.73% 63.64%
training set

accuracy 49.06% 66.04% 64.15% 64.15% 58.49% 52.83%
test set

Tab. 10: Classification Results For “Kreis19,2-1 Konzentrizitaet” Using The Mid-
dle 5 Data Points

dot indicates which of the values within the 5 values chosen - this means that
“.1” is the 5th value and “.5” is the first value counting from the last of the five
values):

– ns=2;s=/Channel/MachineAxis/aaLoad[u1,2].1
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,2].2
– ns=2;s=/Channel/MachineAxis/aaLeadP[u1,1].5
– ns=2;s=/Channel/MachineAxis/aaLeadP[u1,1].4
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,2].4
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,2].3
– ns=2;s=/Channel/Spindle/driveLoad.3
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,3].5



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

Fig. 13: Recursive Feature Elimination “Zylinder 4,5-B Durchmesser” Last 5
Data Points

– ns=2;s=/Channel/MachineAxis/aaTorque[u1,3].3
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,2].3
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,3].3
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,3].1
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,2].5
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1].4

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 1 1 1 -

gamma 0.07142857 0.07142857 1 0.07142857 0.07142857 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 80 87 98 63 78 -
vectors

accuracy 78.32% 79.02% 87.41% 75.52% 82.52% 69.23%
training set

accuracy 75.47% 75.47% 75.47% 75.47% 73.58% 60.38%
test set

Tab. 11: Classification Results For “Zylinder 4,5-B Durchmesser” With Feature
Elimination Using The Last 5 Data Points



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

Classification results given in Tab. 11 for “Zylinder 4,5-B Durchmesser” with
feature elimination using the last 5 data points shows that even having less
data points, nothing changed. Again the prediction is really one sided. To con-
firm that feature elimination doesn’t change the success of classification, feature
elimination is also performed for the first 5 data points.

Fig. 14: Recursive Feature Elimination “Kreis19,2-2 Konzentrizitaet” First 5
Data Points

The plot given in Fig. 14 suggests that less feature variables lead to more
accuracy up to a certain point when using the first 5 data points to represent a
log. Low amounts such as 12 feature variables already reach the best accuracy.
These 12 feature variables are (the number after the dot indicates which of the
values within the 5 values chosen -this means that “.1” is the 5th value and “.5”
is the first value counting from the last of the five values):

– ns=2;s=/Channel/MachineAxis/aaTorque[u1,1].5
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,2].3
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,3].5
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1].2
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,2].1
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,1].4
– ns=2;s=/Channel/MachineAxis/aaLeadP[u1,1].4
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,1].3
– ns=2;s=/Channel/MachineAxis/aaLoad[u1,2].5
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,1].3
– ns=2;s=/Channel/MachineAxis/aaVactB[u1,3].5
– ns=2;s=/Channel/MachineAxis/aaTorque[u1,2].5



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 1 1 1 -

gamma 0.08333333 0.08333333 0.01 0.08333333 0.08333333 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 103 125 112 110 113 -
vectors

accuracy 69.23% 76.92% 64.34% 58.74% 73.43% 67.13%
training set

accuracy 62.26% 56.60% 62.26% 62.26% 60.38% 67.92%
test set

Tab. 12: Classification Results For “Kreis19,2-2 Konzentrizitaet” With Feature
Elimination Using The First 5 Data Points

Removing feature variables in this approach leads to an interesting effect
shown in Tab. 12. Instead of just going the safe route of predicting everything
false, it predicts more wrongfully true, which naturally leads to a lower accuracy,
than using all feature variables. This is the last attempt to predict the outcome
of the measurement using only the machining data via classification. There could
be certain data points which would work, but for this relatively generic way, the
solution is not useful.

Since the first goal isn’t achieved, a new approach is chosen, that looks if
the machining data can predict the outcome of not only a single measurement,
but the whole part. A part where the measurement of at least one automatic
measurement, except the first three (the first three being the ones starting with
“Flaeche” in Fig. 12), is NOK/FALSE is considered faulty. Again the same
classification method as above is used. The classification is performed using the
last 5, the first 5 and the middle 5 data points with naive bayes and different
kernels for SVM.

Just like the classification for single measurement results, the SVM predicts
everything as the majority of the labels (the test set is 75% false), which is just
not a useable way for classification. Furthermore, no matter which data points
are used, the results given in Tab. 13, 14, and 15 are very similar, which speaks
for no correlation between the data points and the actual outcome of the part.

Another approach used is to look at manual measurements and automatic
measurements and compare the results (as described above for the manual mea-
surement to be OK/TRUE all three manual measurements have to be OK/TRUE
and for the automatic measurement all but the first three need to be OK/TRUE).

As can be seen in Tab. 16, 12 of the 16 manual measurement results being
NOK are actually NOK (with 4 being actually OK) and 51 of the 180 manual



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 0.01 1 1 -

gamma 0.01428571 0.01428571 0.001 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 89 125 88 91 121 -
vectors

accuracy 86.01% 77.62% 72.03% 70.63% 81.82% 70.63%
training set

accuracy 64.15% 71.70% 71.70% 69.81% 67.92% 66.04%
test set

Tab. 13: Classification Results For Overall Automatic Measurement Using The
Last 5 Data Points

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 0.01 1 1 -

gamma 0.01428571 0.01428571 0.001 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 78 121 86 86 133 -
vectors

accuracy 90.91% 81.12% 72.03% 72.03% 78.32% 36.36%
training set

accuracy 67.93% 71.70% 71.70% 69.81% 71.70% 32.08%
test set

Tab. 14: Classification Results For Overall Automatic Measurement Using The
First 5 Data Points

results being OK are actually OK (with 129 being actually NOK). This applies
only under the assumption that the automatic measurement is always correct.
These results are not good enough to predict the outcome of the actual (auto-
matic measurement) result but it can definitely be used for some considerations.
Thinking of a scenario where the automatic measurement is very expensive and
the production of one part is quite cheap it might for example be a good idea to
just make an automatic quality control for parts that pass the manual one and
accept that with this approach some good parts might not be sold but nonethe-
less the overall revenue might be higher. More economic considerations with the
goal to optimise the cash flow can be performed with further knowledge of the
actual prices for measurements and production.



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

SVM Naive Bayes

kernel linear radial radial (tuned) sigmoid polynomial -

cost 1 1 0.01 1 1 -

gamma 0.01428571 0.01428571 0.001 0.01428571 0.01428571 -

degree - - - - 3 -

coef.0 - - - 0 0 -

# support 83 131 89 91 121 -
vectors

accuracy 88.81% 77.62% 72.03% 72.03% 80.42% 64.34%
training set

accuracy 60.38% 71.70% 71.70% 75.47% 67.92% 50.94%
test set

Tab. 15: Classification Results For Overall Automatic Measurement Using The
Middle 5 Data Points

MM true MM false

automatic true 51 4

automatic false 129 12

Tab. 16: Comparison Of Manual And Automatic Measurement

3.9 Lessons Learned

Overall, classification and clustering of the data achieves good results for the
first scenario looking at it from the point of accuracy. A major problem with
these results is that they seem unstable (e.g. looking at the different results
for different seed values regarding the split between training and test data set)
which is most likely based on the small number of logs available. To make a final
conclusion on the precision of clustering and classification approaches using this
data a higher number of logs would be needed. Additionally, there is the problem
of not all logs measuring the same variables. If this was more standardized, it
would be possible to use a higher number of variables for analysis which would
probably make the results even better. All in all, the results obtained meet the
goal of describing the data given pretty well but the question is if this result is
meaningful as this would require a higher number of logs.

For, the second scenario classification does not provide satisfactory results
looking at the goal of using the machining data to predict measurement results
or the overall “OKness” of a part. There are quite a few reasons that could
be made responsible for this lack of accuracy for the classification methods all
having as root cause that the wrong machining data is used for prediction with
the most obvious one being that 5 data points per parameter do simply not
contain enough information to make a meaningful prediction. Another reason



Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

could be that due to trying it with only 3 different quintetts (first 5, middle 5,
last 5) the region that is important for the quality of the part is not covered with
the data selected. Furthermore, it is important to also take into consideration
that it might not be possible to predict product quality based on the machining
data provided at all.

A further difficulty in performing classification is the ratio of passed to not
passed tests for most of the measurements - as discussed in the beginning of
section 3.8, having a very high percentage of parts failing or succeeding at a test
makes it impossible to obtain a feasible prediction formula as just predicting the
result which occurs in nearly all cases provides a very high accuracy.

Another interesting point which is discussed in greater detail in the last
paragraphs of section 3.8 is the role manual measuring has when it comes to
determining the quality of parts. Even if manual measuring does not really give
a hint about how the result of the automatic measurement will be, it could
be useful for taking economic decisions. It might for example be feasible to
decide if the automatic measurements should be carried out based on the manual
measurement. The outcome of this consideration depends strongly on the cost
of manufacturing per part, the cost of automatic measurements as well as of the
costs that are anticipated for selling faulty parts.

4 Conclusion and Outlook

This work shows how conformance checking, classification, and clustering of
machining data gathered by executing a BPMN manufacturing process with a
workflow engine can be performed. Furthermore, the results achieved are shown
and discussed with respect to their quality, possible improvements, and sug-
gestions for future work. Overall, the results show that data collected within a
manufacturing process can be used for process-oriented analysis such as confor-
mance checking of process logs or classification and clustering of the processes
based on machining data in order to predict if produced parts are good or bad.
In contrast to the resource-based data collection method where data-streams of
single machines have to be saved in databases, cleaned and re-contextualized by
connecting it to orders, batches, or single products, the aforementioned method
has the advantage of providing data for the whole BPMN process which makes
it easy to retrieve data for individual parts for further analysis. Future work
in this field will include visualizing the data contained within the process logs,
finding standardized ways to represent logs of individual parts to make it pos-
sible to compare the machining data points of different parts, and determining
ways to choose parameters that should be recorded during the process execu-
tion. Additionally, it would be desirable to evaluate whether the ex-post analysis
performed in this paper can also be undertaken at run-time.

Acknowledgements: This work has been partially supported and funded by
the Austrian Research Promotion Agency (FFG) via the “Austrian Competence
Center for Digital Production” (CDP) under the contract number 854187.



Technical Report - Combining Conformance Checking and Classification of XES Log Data For

The Manufacturing Domain

References

1. Adriansyah, A.: Replay a log on petri net for conformance analysis plug-
in. https://svn.win.tue.nl/trac/prom/export/41469/Documentation/

ReplayerPackageDocumentation/Replay%20a%20Log%20on%20Petri%20Net%

20for%20Conformance%20Analysis.pdf (2011), [online; accessed 25-February-
2019]

2. Adriansyah, A.: Replayerpackagedocumentation. https://svn.win.tue.nl/trac/
prom/browser/Documentation/ReplayerPackageDocumentation/ (2011), [online;
accessed 25-February-2019]

3. Bermingham, M.L., Pong-Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I.,
Campbell, H., Wright, A.F., Wilson, J.F., Agakov, F., Navarro, P., et al.: Appli-
cation of high-dimensional feature selection: evaluation for genomic prediction in
man. Scientific reports 5, 10312 (2015)

4. Ho, T.K.: Random decision forests. In: Proceedings of 3rd international conference
on document analysis and recognition. vol. 1, pp. 278–282. IEEE (1995)

5. Jonathan Sumrall, Juergen-Albrecht Fassmann, M.E.: xes.py. http://cpee.org/

~demo/bus_paper/code/conf/xes.py, [online; accessed 25-February-2019]
6. Kuhn, M.: Recursive feature elimination. https://topepo.github.io/caret/

recursive-feature-elimination.html (2018), [online; accessed 26-February-
2019]

7. Mangler, J., Stuermer, G., Schikuta, E.: Cloud process execution engine - evalu-
ation of the core concepts. CoRR abs/1003.3330 (2010), http://arxiv.org/abs/
1003.3330

8. Matthias Ehrendorfer, J.A.F.: analysis.py - scenario 2. http://cpee.org/~demo/
bus_paper/code/cluss/scenario2/analysis.txt, [online; accessed 25-February-
2019]

9. Matthias Ehrendorfer, J.A.F.: ausgabe r.txt - scenario 2. http://cpee.org/

~demo/bus_paper/code/cluss/scenario2/ausgabe_r.txt, [online; accessed 25-
February-2019]

10. Matthias Ehrendorfer, J.A.F.: classification.txt - scenario 1. http://cpee.org/

~demo/bus_paper/code/cluss/scenario1/classification.txt, [online; accessed
25-February-2019]

11. Matthias Ehrendorfer, J.A.F.: clusteringfulldata.txt - scenario 1. http://

cpee.org/~demo/bus_paper/code/cluss/scenario1/clusteringFullData.txt,
[online; accessed 25-February-2019]

12. Matthias Ehrendorfer, J.A.F.: clusteringlessdata.txt - scenario 1. http://

cpee.org/~demo/bus_paper/code/cluss/scenario1/clustering_lessData.txt,
[online; accessed 25-February-2019]

13. Matthias Ehrendorfer, J.A.F.: csv map.py - scenario 1. http://cpee.org/~demo/
bus_paper/code/cluss/scenario1/csv_map.py, [online; accessed 25-February-
2019]

14. Matthias Ehrendorfer, J.A.F.: csv map.py - scenario 2. http://cpee.org/~demo/
bus_paper/code/cluss/scenario2/csv_map.py, [online; accessed 25-February-
2019]

15. Matthias Ehrendorfer, J.A.F.: daten einlesen anfang.txt - scenario 2.
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/daten_einlesen_

anfang.txt, [online; accessed 25-February-2019]
16. Matthias Ehrendorfer, J.A.F.: daten einlesen ende.txt - scenario 2. http://

cpee.org/~demo/bus_paper/code/cluss/scenario2/daten_einlesen_ende.txt,
[online; accessed 25-February-2019]

https://svn.win.tue.nl/trac/prom/export/41469/Documentation/ReplayerPackageDocumentation/Replay%20a%20Log%20on%20Petri%20Net%20for%20Conformance%20Analysis.pdf
https://svn.win.tue.nl/trac/prom/export/41469/Documentation/ReplayerPackageDocumentation/Replay%20a%20Log%20on%20Petri%20Net%20for%20Conformance%20Analysis.pdf
https://svn.win.tue.nl/trac/prom/export/41469/Documentation/ReplayerPackageDocumentation/Replay%20a%20Log%20on%20Petri%20Net%20for%20Conformance%20Analysis.pdf
https://svn.win.tue.nl/trac/prom/browser/Documentation/ReplayerPackageDocumentation/
https://svn.win.tue.nl/trac/prom/browser/Documentation/ReplayerPackageDocumentation/
http://cpee.org/~demo/bus_paper/code/conf/xes.py
http://cpee.org/~demo/bus_paper/code/conf/xes.py
https://topepo.github.io/caret/recursive-feature-elimination.html
https://topepo.github.io/caret/recursive-feature-elimination.html
http://arxiv.org/abs/1003.3330
http://arxiv.org/abs/1003.3330
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/analysis.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/analysis.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/ausgabe_r.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/ausgabe_r.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/classification.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/classification.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/clusteringFullData.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/clusteringFullData.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/clustering_lessData.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/clustering_lessData.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/csv_map.py
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/csv_map.py
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/csv_map.py
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/csv_map.py
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/daten_einlesen_anfang.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/daten_einlesen_anfang.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/daten_einlesen_ende.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/daten_einlesen_ende.txt


Matthias Ehrendorfer, Juergen-Albrecht Fassmann, et. al.

17. Matthias Ehrendorfer, J.A.F.: daten einlesen mitte.txt - scenario 2. http://cpee.
org/~demo/bus_paper/code/cluss/scenario2/daten_einlesen_mitte.txt, [on-
line; accessed 25-February-2019]

18. Matthias Ehrendorfer, J.A.F.: filepaths.txt - scenario 1. http://cpee.org/~demo/
bus_paper/code/conf/scenario1/filepaths.txt, [online; accessed 25-February-
2019]

19. Matthias Ehrendorfer, J.A.F.: filepaths.txt - scenario 2. http://cpee.org/~demo/
bus_paper/code/conf/scenario2/filepaths.txt, [online; accessed 25-February-
2019]

20. Matthias Ehrendorfer, J.A.F.: machining filepaths.txt - scenario 1. http://

cpee.org/~demo/bus_paper/code/cluss/scenario1/filepaths_machining.txt,
[online; accessed 25-February-2019]

21. Matthias Ehrendorfer, J.A.F.: machining filepaths.txt - scenario 2. http://

cpee.org/~demo/bus_paper/code/cluss/scenario2/machiningFilepaths.txt,
[online; accessed 25-February-2019]

22. Matthias Ehrendorfer, J.A.F.: measuring.py - scenario 2. http://cpee.org/~demo/
bus_paper/code/cluss/scenario2/measuring.py, [online; accessed 25-February-
2019]

23. Matthias Ehrendorfer, J.A.F.: processtotpn.py - scenario 1. http://cpee.org/

~demo/bus_paper/code/conf/scenario1/processToTpn.py, [online; accessed 25-
February-2019]

24. Matthias Ehrendorfer, J.A.F.: processtotpn.py - scenario 2. http://cpee.org/

~demo/bus_paper/code/conf/scenario2/processToTpn.py, [online; accessed 25-
February-2019]

25. Matthias Ehrendorfer, J.A.F.: templates.xlsx - scenario 1. http://cpee.org/

~demo/bus_paper/supplements/conf/scenario1/templates, [online; accessed 25-
February-2019]

26. Matthias Ehrendorfer, J.A.F.: xes map.py - scenario 1. http://cpee.org/~demo/
bus_paper/code/conf/scenario1/xes_map.py, [online; accessed 25-February-
2019]

27. Matthias Ehrendorfer, J.A.F.: xes map.py - scenario 2. http://cpee.org/~demo/
bus_paper/code/conf/scenario2/xes_map.py, [online; accessed 25-February-
2019]

28. Meyer, D.: e1071. https://www.rdocumentation.org/packages/e1071/

versions/1.7-0.1 (2019), [online; accessed 13-March-2019]
29. Process Mining Group: Prom tools. http://promtools.org/doku.php (2010), [on-

line; accessed 25-February-2019]

http://cpee.org/~demo/bus_paper/code/cluss/scenario2/daten_einlesen_mitte.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/daten_einlesen_mitte.txt
http://cpee.org/~demo/bus_paper/code/conf/scenario1/filepaths.txt
http://cpee.org/~demo/bus_paper/code/conf/scenario1/filepaths.txt
http://cpee.org/~demo/bus_paper/code/conf/scenario2/filepaths.txt
http://cpee.org/~demo/bus_paper/code/conf/scenario2/filepaths.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/filepaths_machining.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario1/filepaths_machining.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/machiningFilepaths.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/machiningFilepaths.txt
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/measuring.py
http://cpee.org/~demo/bus_paper/code/cluss/scenario2/measuring.py
http://cpee.org/~demo/bus_paper/code/conf/scenario1/processToTpn.py
http://cpee.org/~demo/bus_paper/code/conf/scenario1/processToTpn.py
http://cpee.org/~demo/bus_paper/code/conf/scenario2/processToTpn.py
http://cpee.org/~demo/bus_paper/code/conf/scenario2/processToTpn.py
http://cpee.org/~demo/bus_paper/supplements/conf/scenario1/templates
http://cpee.org/~demo/bus_paper/supplements/conf/scenario1/templates
http://cpee.org/~demo/bus_paper/code/conf/scenario1/xes_map.py
http://cpee.org/~demo/bus_paper/code/conf/scenario1/xes_map.py
http://cpee.org/~demo/bus_paper/code/conf/scenario2/xes_map.py
http://cpee.org/~demo/bus_paper/code/conf/scenario2/xes_map.py
https://www.rdocumentation.org/packages/e1071/versions/1.7-0.1
https://www.rdocumentation.org/packages/e1071/versions/1.7-0.1
http://promtools.org/doku.php

	1 Introduction
	2 Conformance Checking of Shopfloor Processes
	2.1 Modelling the Processes
	2.2 Fitness
	2.3 Application to Log Data - Scenario 1
	2.4 Application to Log Data - Scenario 2
	2.5 Lessons Learned

	3 Classification and Clustering of Log Data
	3.1 Extracting Machining Data From YAML Logs
	3.2 Hierarchical Clustering
	3.3 K-Means Clustering
	3.4 Feature Selection with Random Forest
	3.5 Support Vector Machines
	3.6 Naive Bayes
	3.7 Application to Log Data - Scenario 1
	3.8 Application to Log Data - Scenario 2
	3.9 Lessons Learned

	4 Conclusion and Outlook

