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Abstract

This paper investigates the power of preprocessing in the CONGEST model. Schmid and
Suomela (ACM HotSDN 2013) introduced the SUPPORTED CONGEST model to study the
application of distributed algorithms in Software-Defined Networks (SDNs). In this paper, we
show that a large class of lower bounds in the CONGEST model still hold in the SUPPORTED
model, highlighting the robustness of these bounds. This also raises the question how much
does preprocessing help in the CONGEST model.

1 Introduction

Common models of distributed computation typically consider scenarios where the computation
always starts from scratch, i.e., in an unknown communication topology. However, in many practical
scenarios, the communication topology does not change as frequently as the problem input. For
example, the distributed algorithm may always be run in networks whose topology is known in
advance, but the input instance may vary. In such cases, it is natural to support distributed
algorithms by allowing preprocessing of the underlying network topology [11].

With this in mind, Schmid and Suomela [11] proposed two SUPPORTED models of distributed
computation to enhance distributed algorithms with the power of preprocessing: the SUPPORTED
LOCAL and SUPPORTED CONGEST. Subsequently, Korhonen and Rybicki considered subgraph
detection problems [8] in the SUPPORTED CONGEST model, whereas Foerster et al. [6] investigated
the power of the SUPPORTED LOCAL model. In this paper, we focus on SUPPORTED CONGEST.

Contribution. We observe that many lower bounds in the standard CONGEST model still hold
under such preprocessing. Given that intuitively preprocessing seems to be very powerful, this
may come as a surprise. This raises the question of how much preprocessing actually helps in
the CONGEST model. Indeed, it may be either that the power of preprocessing is very limited or
that the current lower bounds for non-supported CONGEST are not tight. In the light of this, we
propose the following challenge: is there a separation between supported and non-supported models?
If the answer is no, then there may be a way to easily simulate preprocessing, and thus, simplify
algorithm design in the CONGEST model. In the converse case, preprocessing may offer a practical
way to accelerate current distributed algorithms.

Model. In the SUPPORTED CONGEST model, the communication topology is an undirected
graph H = (V,E) and each node has a unique identifier of size O(log n) bits. The logical state is
given by an undirected subgraph, i.e., the input graph G ⊆ H, which inherits the identifiers in H.
The computation proceeds in two steps: First, in the preprocessing phase, the nodes may compute
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any function on f(H) and store the result locally. In the second phase, the nodes are tasked to
solve a problem instance on the input graph G in the CONGEST model. To this end, the edges of
H may be used for communication and additionally the local outputs of the preprocessing. Note
that the congested clique [9] model is a special case of the SUPPORTED model: the support H is
simply a clique. In addition, one may also restrict the communication of the SUPPORTED model
to just the input graph G after preprocessing; this model is called the passive SUPPORTED model.

2 Lower Bounds for the SUPPORTED CONGEST Model

We show that CONGEST lower bounds obtained using the now standard family of lower bound
graphs construction [2] easily translate to the SUPPORTED model. To this end, we adapt here the
proof of Abboud et al. [2]. Using existing constructions for families of lower bound graphs then
immediately give the lower bounds shown in Table 1. We note that this technique does not directly
cover the lower bounds of Das Sarma et al. [10], though we believe they can be similarly translated.

Two-party communication complexity. Let f : {0, 1}2k → {0, 1} be a Boolean function.
In the two-party communication game on f , there are two players who receive a private k-bit string
x0 and x1 as input, and the task is to have at least one of the players compute f(x) = f(x0, x1). The
deterministic communication complexity CC(f) of a function f is the maximum number of bits the
two players need to exchange in the worst case (over all deterministic protocols and input strings)
in order to compute f(x0, x1). Similarly, the randomised communication complexity RCC(f) is the
worst-case complexity of protocols, which compute f with probability at least 2/3 on all inputs.

Definition 1. Let fn : {0, 1}2k(n) → {0, 1} and C : N → N be functions and Π a graph predicate.
Suppose that there exists a constant n0 such that for all n > n0 and x0, x1 ∈ {0, 1}k(n) there exists
a (weighted) graph G(n, x0, x1) satisfying the following properties:

1. G(n, x0, x1) satisfies Π if and only if fn(x0, x1) = 1,
2. G(n, x0, x1) = (V0 ∪ V1, E0 ∪ E1 ∪ S), where

– V0 and V1 are disjoint and |V0 ∪ V1| = n,
– Ei ⊆ Vi × Vi for i ∈ {0, 1},
– S ⊆ V0 × V1 is a cut and has size at least C(n), and
– the (weighted) subgraph Gi = (Vi, Ei) only depends on i, n and xi, i.e., Gi = Gi(n, xi).

If G(n) = {G(n, x) : x ∈ {0, 1}2k(n)}, then F = (G(n))n>n0 is a family of lower bound graphs.

Theorem 2. Let F be a family of lower bound graphs. Any algorithm deciding Π on a graph family
H containing

⋃
G(n) for all n > n0 in the passive or active SUPPORTED CONGEST model with

bandwidth b(n) needs

Ω

(
CC(fn)

C(n)b(n)

)
and Ω

(
RCC(fn)

C(n)b(n)

)
deterministic and randomised rounds, respectively.

Proof. Suppose A is an algorithm that decides Π on the graph family H in T (n) communication
rounds. We now construct a two-player protocol π that computes fn(x0, x1) by simulating A. Let
x0, x1 ∈ {0, 1}k(n) be the input and G = G(n, x0, x1) and H =

⋃
G(n).

Given its input xi, player i can locally construct the subgraph Gi(n, xi) ⊂ G(n, x0, x1). Note
that given Gi(xi), the support graph H does not reveal any information about E1−i or x1−i to
player i, since for any y ∈ {0, 1}k(n) we have G1−i(y) ⊆ H[V1−i]. Simulating any messages sent
between vertices ofGi(n, x) can be done without any communication with player 1−i. Any messages
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from Vi to V1−i must go across the cut S and are communicated by player i to player 1 − i. As
in each round each player communicates at most b(n) bits over any edge in S, the total amount
of bits communicated during the course of T rounds is at most 2b(n)|S(x)|T (n) ≥ 2b(n)C(n)T (n),
which must be at least CC(fn) for deterministic algorithms and RCC(fn) for randomised algorithms.

Thus, the claim follows by observing that CC(fn)
2b(n)C(n) ≤ T (n) and RCC(fn)

2b(n)C(n) ≤ T (n).

Lower bound Problem

Ω(n1/2/ logn) 4-cycle [4], 2k-cycle [8], Girth ((2 − ε)-apx.) [7]
Ω(n/ logn) (2k + 1)-cycle [4], APSP, Diameter ((3/2 − ε)-apx.) [7]
Ω(n/(logn)2) Diameter on sparse graphs [1]
Ω(n/(logn)3) Diameter and radius ((3/2 − ε)-apx.), eccentricities ((5/3 − ε)-apx.), all on sparse graphs [1]

Ω(n2−1/k/(k logn)) Subgraph detection (for any k) [5]
Ω(n2/(logn)2) Min. vertex cover, max. independent set, chrom. number ((4/3 − ε)-apx.), weighted 8-cycle [3]
Ω(n2) Identical subgraphs (det. only) [3]

Table 1: Lower bounds that transfer from the CONGEST to the SUPPORTED CONGEST model.

3 Towards New Algorithmic Opportunities?

We saw in the last section that many lower bounds from the CONGEST model translate directly
to the SUPPORTED CONGEST model, even though intuitively, the SUPPORTED model may seem
significantly more powerful. This raises the question if the SUPPORTED model is actually a stronger
model in a meaningful sense or if the prior lower bounds were so strong that they easily transferred.

First separation results. Prior work on the SUPPORTED LOCAL model [6] already pointed out
that computing an upper bound on the network size separates the LOCAL (Ω(D) rounds) and the
SUPPORTED LOCAL model (0 rounds). Analogous results hold if the support graph is promised to
have certain (monotone) properties that apply to all its subgraphs, e.g., being k-colorable. These
results directly carry over to the SUPPORTED CONGEST model, providing a 0 vs Ω(D) round
separation, even in an identifier-independent setting. On the other hand, in the SUPPORTED
LOCAL model, all problems can be solved trivially in diameter time, but can the SUPPORTED
CONGEST go further? Observe that the näıve problem of collecting all identifiers does not provide
an Ω(n2) separation in the SUPPORTED CONGEST model, as the problem may only depend on
the input graph, which may omit nodes present in the support graph. Notwithstanding, we can
alter the problem s.t. each node has to e.g. output two sets I0, I1 of identifiers with |I0| = |I1|,
where I1 contains a superset of all identifiers in G and none of the identifiers in I0 appear in G.

Open questions and possibilities. While the separation results for restricted graph classes
can be directly used to accelerate many specialized algorithms (e.g., coloring when the support
graph has a small chromatic number), we leave it as an open question how the SUPPORTED
model can be leveraged outside the case of collecting identifiers and providing upper bounds on
the graph size, even though the latter is sometimes needed as an input for some algorithms. We
believe that exciting possibilities arise, no matter the outcome to this open question. For example,
if the CONGEST model could simulate the SUPPORTED model with negligible overhead beyond
the previously mentioned exceptions, the SUPPORTED model could greatly simplify algorithm
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design by incorporating preprocessing. On the other hand, even a strong separation could lead to
significantly faster algorithms in neighboring research areas, e.g. for Software Defined Networks [11].

References

[1] Amir Abboud, Keren Censor-Hillel, and Seri Khoury. Near-linear lower bounds for distributed
distance computations, even in sparse networks. In Proc. 30th International Symposium on
Distributed Computing (DISC 2016), pages 29–42. 2016.

[2] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller cuts, higher lower
bounds, 2019. arxiv:1901.01630 [cs.DC].

[3] Keren Censor-Hillel, Seri Khoury, and Ami Paz. Quadratic and near-quadratic lower bounds
for the CONGEST model. In Proc. 31st International Symposium on Distributed Computing
(DISC 2017). 2017.

[4] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the power of the congested clique
model. In Proc. Symposium on Principles of Distributed Computing (PODC 2014), pages
367–376. 2014.

[5] Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossibilities
for distributed subgraph detection. In Proc. 30th Symposium on Parallelism in Algorithms
and Architectures (SPAA 2018), pages 153–162. 2018.

[6] Klaus-Tycho Foerster, Juho Hirvonen, Stefan Schmid, and Jukka Suomela. On the power
of preprocessing in decentralized network optimization. In Proc. 39th IEEE International
Conference on Computer Communications (INFOCOM 2019). 2019.

[7] Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute their
diameter in sublinear time. In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms
(SODA 2012), pages 1150–1162. 2012.

[8] Janne H. Korhonen and Joel Rybicki. Deterministic subgraph detection in broadcast CON-
GEST. In Proc. 21st International Conference on Principles of Distributed Systems (OPODIS
2017). 2017.

[9] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. MST construction in O(log log n)
communication rounds. In Proc. 15th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA 2003), pages 94–100. 2003.

[10] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. SIAM Journal on Computing, 41 (5): pages 1235–1265, 2012.

[11] Stefan Schmid and Jukka Suomela. Exploiting locality in distributed SDN control. In Proc.
2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN
2013), pages 121–126. 2013.

4

http://dx.doi.org/10.1007/978-3-662-53426-7_3
http://dx.doi.org/10.1007/978-3-662-53426-7_3
http://arxiv.org/abs/1901.01630
http://arxiv.org/abs/1901.01630
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.10
http://dx.doi.org/10.4230/LIPIcs.DISC.2017.10
http://dx.doi.org/10.1145/2611462.2611493
http://dx.doi.org/10.1145/2611462.2611493
http://dx.doi.org/10.1145/3210377.3210401
http://dx.doi.org/10.1145/3210377.3210401
https://arxiv.org/pdf/1812.00854v1.pdf
https://arxiv.org/pdf/1812.00854v1.pdf
http://portal.acm.org/citation.cfm?id=2095207
http://portal.acm.org/citation.cfm?id=2095207
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.4
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2017.4
http://dx.doi.org/10.1145/777412.777428
http://dx.doi.org/10.1145/777412.777428
http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1137/11085178X
http://dx.doi.org/10.1145/2491185.2491198

	Introduction
	Lower Bounds for the SUPPORTEDCONGEST Model
	Towards New Algorithmic Opportunities?

