
Generation and Transformation of Compliant
Process Collaboration Models to BPMN

Frederik Bischoff1, Walid Fdhila2, and Stefanie Rinderle-Ma3

1 Cronn GmbH, Germany, 2 SBA-Research, Austria, 3 University of Vienna, Austria

Abstract. Collaboration is a key factor to successful businesses. To face
massive competition in which SMEs compete with well established cor-
porates, organizations tend to focus on their core businesses while del-
egating other tasks to their partners. Lately, Blockchain technology has
yet furthered and eased the way companies collaborate in a trust-less en-
vironment. As such, interest in researching process collaborations models
and techniques has been growing. However, in contrast to BPM research
for intra-organizational processes, where a multitude of process mod-
els repositories exist as a support for simulation and work evaluation,
the lack of such repositories in the context of inter-organizational pro-
cesses has become an inconvenience. The aim of this paper is to build
a repository of collaborative process models that will assist the research
in this area. A top-down approach is used to automatically generate
constrained and compliant choreography models, from which public and
private process models are derived. Though the generation is partly ran-
dom, it complies to a predefined set of compliance rules and parameters
specified by the user.

Keywords: Process Collaboration · Process Models · Compliance Rules.

1 Introduction

Digitalization, blockchain and Industry 4.0 have created an environment in which
organizations cooperate with more ease and efficiency. This open environment
enabled Small and Medium Enterprises (SMEs) to collaborate more efficiently
and compete with more established organizations. Therefore, research in process
collaborations has become primordial [9]. Academic and industrial research in-
clude standards, infrastructure, and solutions that range from management and
modeling of process collaborations, to enabling monitoring and improving secu-
rity, compliance and privacy in such constellation [7]. However, in contrast to
Business Process Management (BPM) research for intra-organizational processes
where repositories of process models exist to support simulation and evaluation
of research techniques [13], such repositories (synthetic and real-world models)
are entirely missing in the context of inter-organizational processes.
This paper provides a parametric framework to build a repository of process
collaboration models which would serve for testing and evaluating research ap-
proaches. As real world models are hard to obtain due to privacy issues, this
framework generates synthetic models, whose execution can result in distributed
logs of synthetic data useful for mining techniques. The generation must ensure

“The final authenticated version is available online at https://
doi.org/10.1007/978-3-030-21290-2_29.” 



the consistency, compatibility and compliability of such models [7]. A set of com-
pliance rules that follow specific patterns could be specified along with a set of
parameters regarding the number or type of tasks or gateways per model. The
approach follows a top-dow approach where a compliable choreography model
is generated, from which public and private processes are derived. Such mod-
els are internally represented as Refined Process Structure Tree (RPST) [17],
which are transformed into BPMN models to ensure their executability. The
resulted repository could be used to support research simulation such as change
propagation [6], compliance checking [7] or mining [1] of collaborative processes.

The paper is structured as follows. In Section 2 , fundamentals of process
collaborations are presented. Section 3 elaborates the conceptual approach that
is implemented in Section 4. In Section 5 related approaches are discussed in
Section 6 the paper concludes.

2 Fundamentals

In an inter-organization setting, partners combine their core businesses to pro-
vide an added value service, dynamically or statically, at runtime or design time
respectively [14]. Process collaborations comprise different but overlapping mod-
els [6]. A private model describes the internal logic of a partner including its
private activities and interactions. Private activities are tasks that are not visi-
ble to other participants. In the private model of Figure 1(a), Check Inventory
is a private activity, whereas Receive Order involves message exchange with an-
other participant and therefore is an interaction. A public model is a restricted
view on the private model, and shows all interactions of one single partner. Pri-
vate activities which are not relevant for other partners are omitted deliberately.
Public activities might also be non-interaction tasks made visible to partners
[5, 4]. In this paper, public activities are solely interactions but can easily be
extended through model enriching. Figure 1(b) presents the public model of the
distributor process. A collaboration model is the interconnection of all par-
ticipants public models. In BPMN, participants are represented as pools that
contain their corresponding public models and the message exchanges as arrows
that connect them. Figure 1(c) shows an example of a collaboration model. A
Choreography model represents a high level view on the sequencing of all in-
teractions between the involved partners. Each message exchange is represented
as an interaction (i.e, choreography activity) with an initiating partner, a receiv-
ing partner (shaded in grey) and the message exchanged (c.f. Figure 1(d)).

In collaborative processes, there are different level of correctness within and
across the models [11, 7]. Consistency means that the private model is con-
sistent with its corresponding public model. Compatibility involves the col-
laboration model and ensures that the public models are compatible with each
others. This means that there exist no flaws in the communication between par-
ticipants (e.g., deadlocks, livelocks). While behavioral compatibility focuses on
the correctness of behavioral dependencies between participants (i.e., control
flow), structural compatibility requires that for every message that may be sent,
the corresponding participant is able to receive it. We also distinguish between



(a) Private Model

(c) Collaboration Model

(b) Public Model

(d) Choreography Model

sender

receiver

Choreography
Task name

Choreography
Task

AND Split/Join

XOR Split/Join

Legend

Fig. 1. Choreography Model Example

three types of compliance: (i) global compliance rules (GCR) that constraint
the choreography model, (ii) local compliance rules (LCR), which constraint
the private model of a particular participant but not visible to other partners,
and finally (iii) assertions, which are agreements between two or more partners,
where a partner guarantees that its private/public process complies with the
constraint[7]. Compliability ensures that a choreography model does not con-
flict with GCRs [7]. As the aim of the paper is to produce collaborative models
that comply with pre-specified GCRs, then the generation should ensure the
correctness of the resulted models with respect to the aforementioned aspects.
Compliance patterns supported in this work will be discussed in section 3.1.

3 Model Generation and transformation to BPMN

3.1 Parametrization and compliance specification

The process collaboration generator conceptualized in this work generates all
four different model types and follows a top-down approach [7]. In a top-down
approach (cf. Figure 2), first the choreography model is build, then the public
and private models of each partner are derived and defined consistently. Thereby,
each interaction (choreography task) of the choreography model is converted into
a send and receive tasks in the corresponding public process models. In turn,
each private model is derived from its corresponding public model by enrich-
ing the latter with abstract private tasks. The collaboration model is build by
interconnecting all public models. As depicted in Figure 2, during model genera-
tion, all the aforementioned correctness criteria are considered. In particular, the
approach ensures that only model specific flow objects are used to build the pro-
cesses and that they are connected appropriately (structural compatibility). It
also guarantees the absence of deadlocks and livelocks (behavioral compatibility)



Fig. 2. Top-Down Approach

and offers the possibility to define global compliance rules GCR, to which the
generated collaboration should comply (compliability). Deriving public models
from a choreography model offers the advantage that if the latter is implemented
correctly, the compatibility of the derived public models is automatically ensured.

Constraining the Collaboration. Despite the premise that the process col-
laborations should be generated randomly, it is reasonable to set some boundaries
within which the random generation takes place. The implemented generator
provides two different ways to influence the resulting choreography model and
hence the whole collaboration. The first one provides the possibility to constrain
the choreography model in terms of the employed flow objects and their exact
quantity by specifying several input parameters. The second one enables the user
to impose global compliance rules based on compliance patterns to which the
resulting model must comply.

Parametric Constraints. The following input parameters are specified to
influence the random generation of the choreography model and subsequently
the derived models:

– Number of partners: determines the number of collaboration participants.
– Number of interactions: determines the number of messages exchanges.
– Number of exclusive gateways per model.
– Number of parallel gateways per model.
– Maximum branching: determines the maximum possible number of paths

created for each gateway.

Compliance Constraints. To specify GCRs, the pattern-based approach is
utilized [16]. In [16], a repository of process control patterns is introduced, which
are high-level templates used to represent process properties which the process
specification must satisfy. In this work, only compliance rules that constrain the
sequence and occurrence of interactions are considered. Compliance patterns that
involve data, time and resource perspectives are future work. Table 1 summarizes
the supported compliance patterns. Note that the P LeadsTo Q pattern does not
imply immediate succession of interaction Q to interaction P.

3.2 Process Collaboration Generation

The generation of compliant collaboration processes follows the principle ’first
build then check’, which means that after a random choreography model has
been generated, it will then be checked whether the interactions defined within



Pattern Description
P LeadsTo Q Interaction P must lead to Interaction Q.
P Precedes Q Interaction Q must be preceded by Interaction P.
P Universal Interaction P must always occur throughout execution.
P Exists Interaction P must be specified in process.

Table 1. Overview of supported Compliance Patterns

the compliance rules can be assigned to the already built model in such a way
that the resulting interaction sequence complies to the imposed rules. If the in-
teraction allocation is not possible without violating the compliance rules, new
random models will be build until a compliant model has been generated. If
the checking of the compliance rules fails repeatedly, it’s an indicator that the
amount of interactions in the model is too small in comparison to those specified
within the compliance rules. To overcome this, the number of interactions might
be increased by the user. After a successful assignment of the compliance rules,
the remaining public and private models are derived out of the generated chore-
ography model. At last, all models will be translated into a valid BMPN/XML.
Algorithm 1 illustrates the generation process of process collaborations, with all
major steps explained in the following subsections.

Algorithm 1: Overall Collaboration Generation Controller
1 buildSuccess = false;
2 while buildSuccess 6= true do
3 Generate Random Choreography Model;
4 if compliance rules are defined then
5 Compliance Rules Assignment;
6 if assignment successful then
7 buildSuccess = true;
8 else if number of interaction mod increase percentage ≡ 0 then
9 increase number of interactions by factor increase factor;

10 end

11 else
12 buildSuccess = true;
13 end

14 end
15 Derive Public and Private Models;
16 Transform Models to BPMN;

Random Choreography Model Generation Throughout the generation
process, it is essential to keep track of the current model state at every point to
ensure structural and behavioral correctness. Therefore a Model Tracking com-
ponent is necessary, which provides control flow logic and a corresponding data
model, and uses graph decomposition concept using RPST [17] to ensure struc-
tured process models. In [17], a parsing algorithm for two-terminal graphs1 is
introduced that results in a unique graph decomposition represented as a hierar-
chical tree of modular and objective fragments. In the Model Tracking component
of this work, the equivalent of a modular and objective fragment is called a split.
A split is created for each gateway fork that is put into the model. Each split
contains several branches that represent the different paths created by a parallel
or exclusive gateway. Again, each branch holds the set of nodes that are on the

1 A directed graph that has a unique source node s and a unique sink node t 6= s with
all other nodes V are on a path from s to t.



Fig. 3. Model Tracking Component - Concept

path of a particular branch, whereas a path and therefore a split is limited by the
merge node of its corresponding fork gateway node. In terms of a choreography
model, nodes are limited to interactions and gateways. Figure 3 illustrates the
concept of the Model Tracking component. There exist three splits with the split
nodes: start event (blue), exclusive gateway#1 (red) and parallel gateway #1
(green). The split with the start event as the split node and the end event as
the merge node has always only one branch, the root branch. Technically, this is
not a split in the sense of the terminology. But because of the underlying control
flow logic and data model that defines that every branch must be related to a
split, this pseudo-split is necessary to keep track of the root branch. Note that
branches and therefore also splits, contain other splits, e.g. split #2 contains
split #3 in branch #3. Additionally, each branch has a status, which indicates
whether the branch is open, split or closed. Open defines that the branch is not
yet enclosed by the merge node of its corresponding split node and can fur-
ther evolve by putting more nodes on its path. Closed means that the branch
is finalized and can not further evolve. Within the Model Tracking component,
a branch gets closed by putting the corresponding gateway merge node to the
parent’s branch and marking the branch as closed. A branch can also be in split
state if it contains another split and none of this split branches are yet closed,
thus there exists no merge node for this split. In this case, a branch cannot evolve
until one of it’s child split’s branches is in state closed and a merge node is placed
on the branch. Then, the state changes to open. When closing a branch, first it is
necessary to determine if a branch is allowed to be closed without violating the
correctness of the choreography models. This depends on the split node type of
the branch. The premise is that if the split node type is a parallel gateway, the
branch is determined as closable only if there is an interaction on all its enclosed
paths. This means, that if a branch has a child split, it does not necessary imply
that an interaction is on the parent branch, but might be on the branches of its
child split or even on a deeper nested branch.
Tracking branches status is crucial for satisfying structural and behavioral cor-
rectness. Because of the parametric limitation on the number of interactions in
the build process or even directly at the beginning, interactions are not always
allowed to be selected as next node type. Similarly, not every open branch is
allowed to be randomly selected for putting the next node into the model as this



might violate the correctness of the model or exceeding the number of defined
interactions. In order to determine whether this situation applies to a current
build state, the Model Tracking component monitors the amount of free and
reserved interactions. Reserved interactions are a subset of the remaining inter-
action that have either predetermined positions in the current model (resInter-
actionBranches) or will be needed in further paths created by not yet employed
gateways (resInteractionsGateways). The exact amount of these reserved inter-
actions depends on the number of non-closable branches of the current model
and the number of gateways that are not yet put into model. Free interactions
are interactions which are not yet used nor reserved for the model.

Definition 1. Let x be the number of branches which are open and non-closable,
remainingInteractions be all interactions not yet put into the model and
remainingXOR and remainingAND the number of gateways not yet put into
the model. Then, resInteractionBranches = x

resInteractionAndGateways = remainingAND + 1

resInteractionXORGateways = If remainingAND > 0 Then 0 Else 1

resInteractionGateways = resInteractionAndGateways

+resInteractionXORGateways

resInteractionsTotal = resInteractionBranches + resInteractionGateways

freeInteractions = remainingInteractions - resInteractionsTotal

Regarding the current model, each open and non closable branch increases the
amount of resInteractionBranches by one. Parallel gateways that are not yet
placed into the model will later create at least two new branches, which then
again need at least one interaction on each of it’s paths. Considering that a gate-
way node is allowed to be immediately followed by another gateway node without
an interaction in between, the minimum amount of resInteractionAndGateways
is remainingAndGateways + 1. This premise also influences the impact of re-
maining exclusive gateways on the number of resInteractionsGateways. Each
remaining exclusive gateways only increases the number of resInteractionsGate-
ways by 1 if there is no more remaining parallel gateways. Indeed, if there exist
a remaining parallel gateway, the exclusive gateway could be put on a branch
of the parallel gateway directly after the split, and therefore the one needed
interaction of the exclusive gateway is already considered in the calculation of
resInteractionAndGateways. After the amount of reserved interactions is calcu-
lated, the number of free interactions is determined by the difference between
the amount of remaining interactions and the number of reserved interactions.
Based on the values of the specified variables defined in Definition 1, the node
type of the next node to be put in the model and the corresponding position
can be randomly selected without resulting in an incorrect model. For example,
if the amount of free interactions is less than 1, the random branch selection
(position in the model) for putting the next node is limited to the branches that
are not yet closable. On the other hand, if the amount of free interactions is
superior to 0, then all open branches can be selected for putting the next node.
When selecting the next possible node type, interactions are only allowed to be
randomly chosen if the amount of free interactions is superior to 0 or not all



Algorithm 2: Generate Choreography Model
1 begin
2 while remainingInteractions > 0 do
3 nextNodeType← getRandomNodeType()
4 selectedBranch← getRandomBranch()
5 if selectedBranch is closable then
6 close branch by random
7 if closed then
8 continue
9 end

10 else
11 nextNode← instantiate node of nextNodeType
12 if nextNodeType is Gateway then
13 branchCount← getRandomBranchCount()
14 split← instantiate new split
15 for i← 0 to branchCount do
16 branch← instantiate new branch
17 split.branches← branch
18 i← i + 1

19 end

20 end
21 selectedBranch.nodes← selectedBranch.nodes ∪ nextNode
22 decrease remainingNodes of nextNodeType

23 end

24 end
25 close still open splits
26 add end event to root branch
27 enrich interactions with reasonable sender and receiver sequence

28 end

remaining interactions are reserved by not yet consumed gateways.
The overall procedure for generating random choreography models is shown in
Algorithm 2. Note that the step of random branch closing is necessary to obtain
balanced choreography models with respect to nested branches. If there would be
no random branch closing mechanism, the resulting models would be very sim-
ilar. A mechanism that closes branches whenever they are closable would only
result in models with lesser nested branches whereas a mechanism that never
closes branches would result in models that have highly nested branching. By the
time a branch is not randomly closed, a node of the predefined node type gets
instantiated. In case of an interaction, only the plain object without any sender,
receiver or message gets instantiated. Is the selected node type a gateway, the
number of branches is determined by randomly selecting a number between 2 and
the current maximum branching amount. The maximum branching amount is
generally limited by the user specified max branching parameter. But again, due
to the limitation of interactions, the specified maximum amount of branches can
not be adducted as the upper border without considering the current amount of
free interactions. The possible upper limit is determined dynamically each time
a gateway node is put into the model by taking the minimum branching amount,
which is always two, and adding the amount of free interactions.
After a random number of branches is determined, the gateway node is added

to the assigned branch and the corresponding split and branches are instanti-
ated within Model Tracking. Finally, the amount of the selected node type is
decreased by one and the loop starts over by selecting a random node type for
the next node to be put into the model. To achieve behavioral correctness in



choreography models, beside a correct sequence flow, a message flow must be
incorporated. Therefore, a sender and receiver must be assigned to each inter-
action in order to form a valid sender-receiver sequence. Thereby, the sender of
a succeeding interaction Q must always be either the sender or receiver of the
directly preceding interaction P on the path. If this rule is not considered and
the sender of a directly succeeding interaction Q is neither the sending nor the
receiving participant of the directly preceding interaction P, a flawless execution
of the process is not possible, because the sender of interaction Q will never know
if the directly preceding interaction P has been performed yet. For gateways, it
is additionally ensured that all branches of that split terminate with interactions
that have the same participant in common. This helps to determine a possible
sender for the succeeding interaction after the merge. Note that because the se-
quence flow is first build without considering the corresponding message flow, it
is likely that at some points, an additional interaction must be inserted into the
model to satisfy the above stated rules of sender-receiver sequences.

Compliance Rules Assignment Instead of considering the imposed compli-
ance rules during the generation, a first build then check approach was favored to
allow users to specify compliance rules, which can be applied to existing chore-
ography models to check if the latter complies to them. When specifying global
compliance rules, it must be checked whether the imposed rules are consistent
with one another. In the context of the four supported patterns, this applies
only to the the patterns ’LeadsTo’ and ’Precedes’. For instance, consider the
following set of compliance rules: {C1: P LeadsTo Q, C2: Q LeadsTo S C3: S
Precedes P}. In this example, the rules C1 and C2 conflict with C3 because
C1 and C2 imply that the involved activities must occur in the order P-Q-S,
whereas in C3, S must occur before P. Algorithm 3 shows the conflict checking
procedure. The result of this procedure is a set of conflict free compliance rules,
which determines a specific order sequence between the involved interactions.
The specific interactions of the compliance rules are then eventually assigned to
the existing interactions within the previously generated model in a way that it
complies to the interaction order and the compliance rules. Therefore, the first
step is to determine all possible positions within the model for each compliance
rule. The result is a set of possible position combinations (interactions placed in
the model during initial choreography generation) for the compliance rule spec-
ified for Interactions P and Q. For each possible position of P there has to be at
least one possible position for Q. The rules that determine applicable positions
for the four implemented compliance patterns are shown in Definitions 2 - 5.

Definition 2. Possible position assignments for the interactions P and Q of a
compliance pattern P LeadsTo Q are as follows.

– Interaction P should have reachable interactions on its subsequent paths.
– Interaction Q should be reachable if Interaction P has been reached.

Definition 3. Possible position assignments for the interactions P and Q of a
compliance pattern P Precedes Q are as follows.

– Interaction P is always reached prior to Interaction Q.



Algorithm 3: Adding Compliance Rules
Input : compliance rule cr
dictionary orderDependencies of Interactions P and their succeeding Interactions S

1 begin
2 if cr is order pattern then
3 p← preceding interaction of cr
4 s← succeeding interaction of cr
5 if !orderConflictCheck(p, s) then
6 add cr to complianceRules
7 if p ∈ P of orderDependencies then
8 add s to succeeding interactions S of p
9 else

10 add p to orderDependencies
11 add s to succeeding interactions S of p

12 end

13 else
14 add cr to conflictedRules
15 end

16 end

17 end
18 Function orderConflictCheck(p, s)
19 if s ∈ P of orderDependencies then
20 foreach s ∈ S of p do
21 if s == p then
22 return true
23 else if orderConflictCheck(s, p) then
24 return true

25 end

26 else
27 return false
28 end

– Interaction Q has interactions on its preceding path that are always reached
prior to Interaction Q.

Definition 4. Possible position assignments for the interaction P of a compli-
ance pattern P Universal are as follows.

– Interaction P = An interaction that will always be reached.

Definition 5. Possible position assignments for the interaction P of a compli-
ance pattern P Exists are as follows.

– Interaction P = An interaction that can be reached.

If the interactions used for specifying the rules are disjoint between all the com-
pliance rules, the sets of assignment combinations are already sufficient to assign
the involved interactions to positions that result in a model that is compliant
with the opposed rules. But if there are particular interactions that are used
in more than one compliance rule specification, the intersection of the interac-
tion’s possible assignments of all involved compliance rules represents the set of
possible assignments for this particular interaction. The assignment procedure
iterates over the interaction order and for each interaction, the intersection of the
possible assignments of all affected compliance rules is calculated. Is the current
interaction specified as the succeeding interaction of an affected order compli-
ance rule, the possible model positions of this rule are limited to the succeeding
model positions of the corresponding, already assigned, preceding interaction. Is
the resulting intersection of the sets of possible assignments empty, then there



is no valid position in the model where the interaction could be assigned to. In
this case, the whole assignment process fails and results in a failed choreography
build process. Is the intersection of possible model positions not empty, the pro-
cedure choses the interaction that has the most interactions on it’s succeeding
path.This ensures, that the assignment process does not fail because of higher
ranked interactions being assigned to positions at the end of the model, so that
there are no valid positions left for lower ranked ones.

Deriving the Collaboration Models In the process of deriving the models,
each interaction of the choreography model results in a send and receive task in
the corresponding public models of the involved partners. For an interaction, in
the initiating and receiving participant public models, a send task and a corre-
sponding receiving tasks are inserted respectively. Additionally, for each public
model, a reduction of the model’s sequence flow is enabled, without violating
the choreography model sequence flow. Thereby, each gateway of the choreogra-
phy model is checked for interactions within its subsequent paths involving the
current participant. If there are none, the gateway and it’s subsequent paths are
not put into the public model of this participant. In order to derive the private
models from the public models, the public models are randomly enriched with
private tasks as well as some additional sequence flow elements (gateways) with-
out violating the predefined sequence flow. The public models are used as a basis
for private models, which then enriched with private tasks.

3.3 BPMN Transformation

In order to translate the RPST representation of the models to BPMN/XML,
the internal model elements for events, tasks, gateways, edges and participants
must be mapped to the corresponding BPMN elements of the different model
types. Therefore the procedure loops recursively through all the graphs edges,
extracts all the necessary information from the fragments (source, target) and
generates the corresponding BPMN elements. In Algorithm 4, the procedure for
transforming private and public models is outlined. As input serves the RPST
and the internal collaboration representation, which includes necessary infor-
mations about the public task relationships. Collaboration, public and private
models share the same XML structure, which is initialized in the first step (ini-
tialize BPMN XML collaboration document). In collaboration models all par-
ticipant public models are described, whereas the public models only contain
the described process of one participant and only a black box process for the
others, which is necessary for referencing to public activities. When creating
public activity elements (send / receive task), the necessary partner references
are available in the internal collaboration model representation.

4 Implementation

The presented work was implemented and integrated within the C3Pro frame-
work 2 [6]. The latter provides techniques for defining, propagating and negoti-

2 Source code available at: http://gruppe.wst.univie.ac.at/c3pro/repo.zip



Algorithm 4: Transform Private and Public Model to BPMN
Input : edges← edges of RPST
collaboration← internal collaboration representation

1 begin
2 xmlDoc← initialize BPMN XML collaboration document
3 foreach edge ∈ edges do
4 nodes← edge.getSource() ∧ edge.getTarget()
5 sequenceF lows← create new sequenceF low XML-Element for edge
6 foreach node ∈ nodes do
7 if node == SendTask then
8 processNodes← create new sendTask XML-Element
9 messages← create new message XML-Element

10 messageF lows← create new messageF low XML-Element

11 else if node == ReceiveTask then
12 processNodes← create new receiveTask XML-Element
13 messages← create new message XML-Element
14 messageF lows← create new messageF low XML-Element

15 else if node == PrivateActivity then
16 processNodes← create new task XML-Element
17 else if node == ParalellGateway then
18 processNodes← create new paralellGateway XML-Element
19 else if node == ExclusiveGateway then
20 processNodes← create new exclusiveGateway XML-Element
21 else if node == Event then
22 if node == startEvent then
23 processNodes← create new startEvent XML-Element
24 else
25 processNodes← create new endEvent XML-Element
26 end

27 end

28 end
29 xmlDoc← add sequenceF lows, processNodes,messages and messageF lows
30 Export xmlDoc

31 end

ating changes in the context of collaborative processes. The framework already
provides functionalities for importing and transforming BPMN process models
into RPST representation (but not vice versa) and calculating change effects
on the different models. The current work complements the framework by au-
tomatically generating repositories of collaborative models that would serve as
a testbed for assessing and simulating change propagation techniques. As this
work also supports the specification of compliance rules to which the generated
models should comply, the resulted repository is also being used for evaluat-
ing approaches for compliance checking in the context of process collaborations.
Even though the implementation is integrated within the C3Pro framework, it
still represents an independent component that could be used for several research
purposes; e.g., faults prediction [2], mining. The component for transforming
RPST models to BPMN enables their simulation and executability.

Figure 4 represents a simplified class structure of the implemented compo-
nents, that are necessary for generating process collaborations, starting with
the generation of the Choreography Model that complies to imposed compliance
rules, leading to deriving the public, private as well as the collaboration models,
and finishing with the translation to BPMN/XML. The numbers indicate the
order in which the components are instantiated.



Overall Process ControllerCollaboration Generator Compliance Controller

Choreography Model GeneratorBPMN Translator Model Tracking

5

26

1 4

3

Fig. 4. Prototype Architecture

The logic of coordinating the entire generation process (see Algorithm 1) is
implemented in the Collaboration Generation Controller component. The Chore-
ography Model Generator comprises the algorithm for generating random models
(see Algorithm 2). Thereby it utilizes the Model Tracking component constantly,
which represents the actual model and provides the necessary functionalities to
ensure the correctness of the resulting model. The introduced logic of specifying
and imposing GCRs is implemented within the Compliance Controller compo-
nent. It also utilizes the same instance of the Model Tracking class in order to
find possible assignments for the imposed interaction order. The Collaboration
Generator provides the functionalities of deriving the public and private models
from the generated choreography model. At last, the translation of the internal
model representation to BPMN, is encapsulated within the BPMN Translator
component (see Algorithm 4). The prototype has been tested and already served
as input for research on change propagation and compliance checking in collabo-
rative processes. The execution of generated BPMN models3 might be automated
to enable logging and process collaborations mining. Models were generated to
test the influence of the parameters ”number of parallel/exclusive gateways” and
”maximum branching” on the effort for model generation (without compliance
rules) and the interrelation of number of imposed compliance rules, gateways,
and successful generation of models.

Results and lessons learnt: The time to generate the models increases lin-
early with the number of gateways, independently whether parallel or exclusive
gateways are used. The same holds for the “maximum” branching parameter.
The reason is that the number of branches in the generated models increase and
hence the algorithm has to check for more branches when creating the models.
The number of parallel gateways does not influence the success of model gener-
ation for any number of compliance rules (1-100 compliance rules were tested).
The existence of exclusive gateways greatly influences the model generation suc-
cess; independently of the number of compliance rules (in the simulation 1-100)
76% of the model generations fail. Another simulation run tested the number of
successful model generations depending on the number of exclusive gateways (for
60 compliance rules). For 0 and 1 exclusive gateways 100% of the generations
are successful. The number of successful generations then drops in an inverse
exponential way; for more than 50 exclusive gateways no generation attempt is
successful anymore. Here also the effect of compliance rules that are depending
on each other and hence impose strict sequence order on the models kicks in.

3 Data available at: http://gruppe.wst.univie.ac.at/c3pro/data.zip



5 Related Works

Several research methods have been proposed, which generate process models
from natural language text [8, 10]. In [8], BPMN models are produced from natu-
ral language texts by utilizing syntax parsing and semantic analyzing mechanism
in combination with anaphora resolution. The result of the parsing algorithm is
a declarative model that includes the extracted actions, actors and their depen-
dencies, which serves as basis for generating the BPMN model. In [10], BPMN
and DMN models are constructed from SBVR vocabulary4. Similarly, several
transformation approaches have been proposed, which generate BPMN models
from existing UML use cases [12, 19] or sequence diagrams [15].
In comparison to this work, the aforementioned approaches require the original
specification as text or UML diagram to generate the business models. This is
limited by the availability of such resources, and also do not deal with compli-
ance constructs or choreography models.
In [18], process models are generated using semi-structured information about
process activities along with their execution conditions. This specification is then
formalized as a constraint satisfaction problem (CSP) and fed to a constraint
solver that generates synthetic execution logs, which in turn, serve as input for
process mining techniques. This again, requires a data collection phase, in which
participants have to provide valid specifications to be merged. Also, it does not
deal with choreography models nor differentiate between public or private mod-
els. In [3], BPMN process models are generated randomly. In contrast to this
work, the latter focuses on intra-organizational process models. It also supports
user-defined parameters to influence the model outcome in terms of number of
node types and degree of branching. In, [14] a bottom-up approach has been
proposed, which combines existing private processes to build process collabora-
tions using adaptors. This assumes the availability of such models and requires a
preselection of the models that will be composed (e.g, consumer, provider). The
approach does not support compliance rules and does not allow much control
over the complexity of the output models (e.g., number of exclusive gateways).

6 Conclusion

This work provided an approach that generates repositories of constrained pro-
cess collaborations while ensuring their correctness in terms of compatibility,
consistency and compliability. Such repositories are useful for simulating and
evaluating research works in the context of inter-organizational processes. The
approach is implemented and the resulted repositories are already exploited for
simulating change propagation, compliance checking and faults prediction in col-
laborative processes. Future work includes generating distributed logs for mining
and considering more compliance patterns.

Acknowledgment This work has been funded by the Vienna Science and Tech-
nology Fund (WWTF) through project ICT15-072 and COMET SBA-K1.

4 Semantics of Business Vocabulary and Business Rules



References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer Publishing Company, Incorporated, 1st edn. (2011)

2. Borkowski, M., Fdhila, W., Nardelli, M., Rinderle-Ma, S., Schulte, S.: Event-based
failure prediction in distributed business processes. Information Systems (2017)

3. Burattin, A.: PLG2: multiperspective process randomization with online and offline
simulations. In: BPM Demo Track. pp. 1–6 (2016)

4. Cabanillas, C., Norta, A., Resinas, M., Mendling, J., Ruiz-Cortés, A.: Towards
process-aware cross-organizational human resource management. In: Bider, I.,
Gaaloul, K., Krogstie, J., Nurcan, S., Proper, H.A., Schmidt, R., Soffer, P. (eds.)
Enterprise, Business-Process and Information Systems Modeling. pp. 79–93 (2014)

5. Eshuis, R., Norta, A., Kopp, O., Pitknen, E.: Service outsourcing with pro-
cess views. IEEE Transactions on Services Computing 8(1), 136–154 (Jan 2015).
https://doi.org/10.1109/TSC.2013.51

6. Fdhila, W., Indiono, C., Rinderle-Ma, S., Reichert, M.: Dealing with change in
process choreographies: Design and implementation of propagation algorithms. In-
formation Systems 49, 1 – 24 (2015)

7. Fdhila, W., Rinderle-Ma, S., Knuplesch, D., Reichert, M.: Change and compliance
in collaborative processes. In: SCC. pp. 162–169 (2015)

8. Friedrich, F., Mendling, J., Puhlmann, F.: Process model generation from natural
language text. In: CAISE (2011)

9. Grefen, P., Rinderle, S., Dustdar, S., Fdhila, W., Mendling, J., Schulte, S.: Chart-
ing process-based collaboration support in agile business networks. IEEE Internet
Computing pp. 1–1 (2018). https://doi.org/10.1109/MIC.2017.265102547

10. Kluza, K., Honkisz, K.: From sbvr to bpmn and dmn models. proposal of transla-
tion from rules to process and decision models. In: ICAISC (2016)

11. Knuplesch, D., Reichert, M., Fdhila, W., Rinderle-Ma, S.: On enabling compliance
of cross-organizational business processes. In: BPM. pp. 146–154 (2013)

12. Lubke, D., Schneider, K., Weidlich, M.: Visualizing use case sets as bpmn processes.
In: 2008 Requirements Engineering Visualization. pp. 21–25 (2008)

13. Rosa, M.L., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J.,
Dumas, M., Garćıa-Bañuelos, L.: Apromore: An advanced process model reposi-
tory. Expert Syst. Appl. 38, 7029–7040 (2011)

14. Seguel, R., Eshuis, R., Grefen, P.W.P.J.: Architecture support for flexible business
chain integration using protocol adaptors. Int. J. Cooperative Inf. Syst. 23 (2014)

15. Suchenia, A., Kluza, K., Jobczyk, K., Winiewski, P., Wypych, M., Ligeza, A.:
Supporting bpmn process models with uml sequence diagrams for representing
time issues and testing models. In: Artificial Intelligence and Soft Computing. pp.
589–598 (2017)

16. Turetken, O., Elgammal, A., van den Heuvel, W.J., Papazoglou, M.P.: Capturing
compliance requirements: A pattern-based approach. IEEE Software (2012)

17. Vanhatalo, J., Voelzer, H., Koehler, J.: The refined process structure tree. Data &
Knowledge Engineering 68(9), 793 – 818 (2009)

18. Wisniewski, P., Kluza, K., Ligeza, A.: An approach to participatory business pro-
cess modeling: Bpmn model generation using constraint programming and graph
composition. In. Applied Sciences 8(9) (2018)

19. Zafar, U., Bhuiyan, M., Prasad, P.W.C., Haque, F.: Integration of use case models
and BPMN using goal- oriented requirements engineering. JCP pp. 212–221 (2018)


